Synthesis and Photocatalytic Performance of TiO\textsubscript{2}–Pr Photocatalysis for Degradation of BB41

Yasemen Kalpakli\textsuperscript{1}

Yıldız Technical University, Department of Chemical Engineering, 34210, İstanbul, Turkey

E-mail: kalpakli@yildiz.edu.tr

Praseodymium ion-doped TiO\textsubscript{2} (Pr\textsuperscript{3+}-TiO\textsubscript{2}) photocatalysis were synthesized by acid sol-gel method. The catalysts were characterized structurally by X-ray diffraction (XRD), transmission electron microscopy (TEM), Brunauer, Emmet and Teller (BET) and Fourier Transform Infrared (FT-IR) techniques. Pr-doping concentration was selected 1 wt\% and calcination temperature employed was 400 °C. The absorption properties and photocatalytic activity of the catalysis were studied in a batch reactor. The photocatalytic activities of samples were tested for degradation of Basic Blue 41 (BB 41) mono azo dye solutions. Azo dye removal efficiencies were examined with total organic carbon and UV-vis measurements.

The Pr\textsuperscript{3+}-TiO\textsubscript{2} photocatalysis were found to exhibit a much higher photocatalytic activity under UV-A light irradiation for 30 minute achieved 89.38\% for 15 mgL\textsuperscript{-1} as compared to a TiO\textsubscript{2} photocatalyst. Moreover, according to Water Pollution Control Regulations, COD (Chemical Oxygen Demand) limitations for textile industry are between 200–400 mgL\textsuperscript{-1}. To evaluate the degradation characteristics of Pr\textsuperscript{3+}-TiO\textsubscript{2} photocatalysis, the change of COD values with time for 15 mgL\textsuperscript{-1} BB41 were investigated. The COD values obtained were 1.7 mg O\textsubscript{2}/L after 30 minute of oxidation processes for BB41. As it can be seen from the results COD values decreased under the limitations in a very short time.

Key Words: Sol-gel, TiO\textsubscript{2}, Pr, Photocatalytic Batch Oxidation, TOC.

References