# Physical Layer-3 07.10.2019

# BLM 305 I Veri İletişimi (Data Communication)

### Tech. Assist. Kübra ADALI Assoc. Prof. Dr. Veli Hakkoymaz

#### References:

- •Computer Networks, Andrew Tanenbaum, Pearson, 5th Edition, 2010.
- •Computer Networking, A Top-Down Approach Featuring the Internet, James F.Kurose, Keith W.Ross, Pearson-Addison Wesley, 6<sup>th</sup> Edition, 2012.
- BLG 337 Slides from İTÜ prepared by Assoc. Prof.Dr. Berk CANBERK

## **Analog and Digital Transmssions**

While a computer call is being done, the conversions and transmissions are done bye the modems and codecs.



## **Modulation Techniques**



# Analog & Digital Data Carried By Digital Data





## **Encoding - Decoding**



## **Encoding Types**

✓ NRZ(Non-return to zero level)

✓ Manchester

#### NRZ(Non-return to zero level)

✓ Absence of voltage for the o value, constant positive value for the value of 1.

✓ Voltage is constant for each of the values 1 and 0.

- ✓ Two separate voltages for 0 and 1 bits.
- Negative voltage for one value and positive for the other

### NRZ(Non-return to zero level)



## **Manchester Encoding**

Level change in the middle of each period

✓ Low to high represents the value one.

High to low represents the value zero.

The change is done by clock and data

✓ Used by IEEE 802.3Negative voltage for one value and positive for the other

## **Manchester Encoding**

Manchester Encoding



## Multiplexing



Multiplexing and Demultiplexing

## Multiplexing Types

Frequency Division Multiplexing

Wavelength Division Multiplexing

Time Division Multiplexing

## Frequency Division Multiplexing

- ✓ The signals are combined by the reference of bandwidth.
- ✓ Individual Signals.

A f f f f

**Combined Signals** 



## Frequency Division Multiplexing



- A: original frequencies
- ✓ B: Frequencies in the bandwidth
- C: The multiplexed channel

## Wavelength Division Multiplexing



## Time Division Multiplexing

- The signals are combined by the reference of time.
- ✓ Each signal transmits one unit in 3T seconds
- ✓ Individual Signals.







#### **Combined Signals**



## Electromagnetic Spectrum

#### THE ELECTROMAGNETIC SPECTRUM



## Electromagnetic Spectrum - 2



ELF = Extremely low frequency

= Voice frequency

VLF = Very low frequency

= Low frequency

= Medium frequency

= High frequency

VHF = Very high frequency

UHF = Ultrahigh frequency

SHF = Superhigh frequency

EHF = Extremely high frequency

## Electromagnetic Waves

- ✓ The movement of electrons produces the electronic waves, and these waves could propagate through the space.
  - The speed of the electron vibrations directly effects the frequency
  - We can use the electromagnetic waves by using suitable antennas in receiving and sending them.
- ✓ These waves are measured by "Hertz": the number of times the related wave is repeated in one second.

✓ The name of it comes from the German scientist Heinrich Hertz who observed in 1887, and it is also firstly introduced by James Maxwell in 1865.

## The features of Electromagnetic Waves

- ✓ The main features of the electromagnetic waves:
  - amplitude
  - f=frequency
  - I=wavelength
  - C=speed of light



## Electromagnetic Spectrum

- ✓ spectrum: range of electromagnetic radiation
- ✓ band: spectrum parts



Capacity (more data to carry per cycle)



Range of the band



#### Radio and Micro Waves

- ✓ HF band used for worldwide transmission:
  - HF signals can travel very large distances, due to its nature that can be reflected off the ionosphere.

| Frequency        | Band name                                    | Applications             |
|------------------|----------------------------------------------|--------------------------|
| < 3 KHz          | Extremely Low Frequency (ELF)                | Submarine communications |
| 3 KHz -30 KHz    | Very Low Frequency (VLF)                     | Marine communications    |
| 20 KHz -300 KHz  | Low Frequency (LF)or<br>Long Wave (LW)       | AM radio                 |
| 300 KHz -3 MHz   | Medium Frequency (MF) or<br>Medium Wave (MW) | AM radio                 |
| 3 MHz - 30 MHz   | High Frequency (HF) or<br>Short Wave (HW)    | AM radio                 |
| 30 MHz -300 MHz  | Very High Frequency (VHF)                    | FM Radio-TV              |
| 300 MHz - 3 GHz  | (2 V V V V V                                 |                          |
| 3 GHz - 30 GHz   | Super High Frequency (SHF)                   | Satellites               |
| 30 GHz - 300 GHz | Extra High Frequency (EHF)                   | Satellites-radars        |

Figure 2.3 The various radio bands and their common use

## Microwaves

- ✓ smaller and weaker wavelengths than radio waves
- easily effected by objects

| Frequency          | Band name      | Applications             |
|--------------------|----------------|--------------------------|
| 0.4 GHz - 1.5 GHz  | emilan Lorense | Broadcasting-cellular    |
| 1.5 GHz - 5.2 GHz  | S              | Cellular                 |
| 3.9 GHz - 6.2 GHz  | C              | Satellites               |
| 5.2 GHz - 10.9 GHz | X              | Fixed wireless-satellite |
| 10.9 GHz - 36 GHz  | K              | Fixed wireless-satellite |
| 36 GHz - 46 GHz    | Q              | Fixed wireless           |
| 46 GHz -56 GHz     | V              | Future satellite         |
| 56 GHz -100 GHz    | W              | Future cellular          |

Figure 2.4 The various microwave bands and their common use

#### **Antennas**

- ✓ Electrical conductor that collect outcoming electromagnetic energy and propagate the electromagnetic energy.
- ✓ Transmission
  - Sended as Radio frequency energy from transmitter
  - Converted to electromagnetic energy
  - Done By antenna
  - Radiated into surrounding environment
- Reception
  - Electromagnetic energy impinging on antenna
  - Converted to radio frequency electrical energy
  - Fed to receiver
- Same antenna often employed for transmission and reception

#### **Terrestrial Microwave**

Line of sight:depends on the sight

Parabolic dish (Antenna shape)

✓ Focused beam

 Long distance telecommunications



Pic6.12 Terrestrial Microwave



 Higher frequencies give higher data rates

#### Satellite Microwave

- Uses satellite as a relay station
- Satellite receives on one frequency, amplifies or repeats signal and transmits on another frequency
  - Television
  - Long distance telephone
  - Private business networks



# Wireless Propagation

- ✓ Signal travels along three routes:
  - Ground wave
    - Follows contour of earth
    - Up to 2MHz
    - Used as AM radio
  - Sky wave
    - Amateur radio, BBC world service,
      Voice of America
    - Signal reflected from ionosphere layer of upper atmosphere
    - (Actually refracted)
  - Line of sight
    - May be further than optical line of sight due to refraction
    - Above 30Mhz



(a) Ground-wave propagation (below 2 MHz)



(b) Sky-wave propagation (2 to 30 MHz)



(c) Line-of-sight (LOS) propagation (above 30 MHz)

#### Infrared

- emitted by very hot objects
  - A good example: human body (night vision applications)
  - frequency changes due to the temperature of the emitting body
- ✓ line-of-sight, point-to-point
  - of no use outdoors (interfered by heat of sun)
- ✓ Short distances: 10 meters
- ✓ IrDA: Infrared Data Association

#### Microwave and Infrared Bands

- Most wireless networking traffic is in the microwave frequency bands.
  - o some licensed, some unlicensed
- ✓ Infrared:
  - o for short-range wireless communication



## Spectrum Regulation

- ✓ ITU = Int'l Telecommunications Union
  - o a worldwide spectrum regulation org.
  - the world usage is divided into 3 parts:
    - American continent
    - Europe, Africa, and former Soviet union
    - rest of Asia and Oceania
- Methods for assigning spectrum
  - Lottery ( to be objective and fair)
  - Comparative bidding
    - such as pricing, technology, etc.
  - Auction ( who pays more wins!)

#### Licensed Microwave Band

- ✓ The valid time of a license is 10 years.
  - A company can't have the license and not use it.
  - Bandwidth is regarded as a resource that the public wants and needs.
- Examples: cellular, paging, PCS

#### Unlicensed Microwave Band

- Known as ISM band.
  - industrial, scientific, and medical
  - O WiFi!

- Also on the same microwave band, but no license required.
  - spreading spectrum is essential: to prevent from interfering primary (licensed) users.

## **Model of Wireless Propagation**

✓ Free Space Path Loss

✓ Slow/Fast Fading

## Shannon's Formula (Recap)

an upper bound on the bit rate W of any channel of bandwidth H Hz:

$$W = H log_2(1 + S/N)$$
  
S/N = signal to thermal noise ratio

- ✓ For conditions in real world, the calculated number is practically impossible:
  - free space path loss
    - o proportional to r<sup>-2</sup>, where r is the distance between transmitter and receiver (sometimes at higher exponent)
  - Doppler shift
    - o a signal transmitter and receiver are moving relative to one another
  - slow/fast fading

## Main Terms

#### ✓ Reflection:

 The electromagnetic wave falls on an object whose dimension is much larger than the wavelength of the current wave of the object.

#### ✓ Scattering:

 The wave falls on an object that has dimensions which are in the order of the wavelength

#### ✓ Diffraction (or shadowing):

- when the wave falls on an <u>impenetrable object</u>
- in this case, the <u>secondary waves</u> continue behind the obstructing body

# Types of Slow Fading



## Fast Fading: Examples



FIGURE 2. MULTIPATH

# Fast Fading: Examples



Figure 6.4 Multipath example indoors.