Lecture 8: Hypothesis Testing and Contingency Analysis

t-test

- The assumption that the sampling distribution will be normally distributed holds for large samples but not for small samples
- Sample size is large, use z-test
- When sample size is small, t-test is used
 - Statistical concept of t-distribution
 - Comparing means for 2 independent groups
 - unpaired t-test
 - Comparing means for 2 matched groups
 - paired t-test

t-test for 2 independent samples

std dev

• $X_1' - X_2' = 0.08157 - 0.03943$ = 0.04

Question: What is the probability that the difference of 0.04 units between the two sample means has occurred purely by chance, i.e. due to sampling error alone?

Blood Pb concentrations

Battery workers (occupationall y exposed)	Control (not occupationall y exposed)
0.082	0.040
0.080	0.035
0.079	0.036
0.069	0.039
0.085	0.040
0.09	0.046
0.086	0.040
0.08157	0.03943
0.0067047	0.0035523

t-test for 2 independent samples

- In general, we can denote the means of the two groups as μ₁ and μ₂.
- The null hypothesis indicates that the population means are equal, H_0 : $μ_1 = μ_2$.
- In contrast, the alternative hypothesis is one the following:
 - $_{-}$ H_A:μ₁ > μ₂ if we believe the mean for group 1 is greater than the mean for group 2.
 - □ $H_A: \mu_1 < \mu_2$ if we believe the mean for group 1 is less than the mean for group 2.
 - □ H_A: μ₁ ≠ μ₂ if we believe the means are different but we do not specify which one is greater.
- We can also express these hypotheses in terms of the difference in the means:
 - \Box $H_A: \mu_1-\mu_2>0$,
 - \Box H_A: $\mu_1 \mu_2 < 0$, or
 - □ $H_A: \mu_1 \mu_2 \neq 0$

Unpaired t-test

 We are testing the hypothesis that battery workers could have **higher blood** Pb levels than the **control** group of workers as they are occupationally exposed

Note: conventionally, a p-value of 0.05 is generally recognized as low enough to reject the Null Hypothesis of "no difference"

Discol	DI.			4	4: -	
Blood	Pb	cor	าcer	ntra	atio	ns

	Battery workers (occupationall y exposed)	Control (not occupationall y exposed)
	0.082	0.040
	0.080	0.035
	0.079	0.036
	0.069	0.039
	0.085	0.040
	0.09	0.046
	0.086	0.040
mean	0.08157	0.03943
std dev	0.0067047	0.0035523

Unpaired t-test

 Null Hypothesis: No difference in mean blood Pb level between battery workers and control group, i.e.

- H0:
$$\mu_{\text{battery}} = \mu_{\text{control}}$$

t-score is given by

$$t = \frac{\overline{X}_{1} - \overline{X}_{2}}{SE_{(X_{1} - \overline{X}_{2})}} - \frac{\overline{X}_{1} - \overline{X}_{2}}{\sqrt{\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right) \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}}$$

with (n₁+n₂–2) degrees of freedom

Unpaired t-test

For the given example

$$t = \frac{0.08157 - 0.03943}{0.002868}$$

= 14.7 with 12 d.f.

- P-value <0.001, reject
 Null hypothesis
- Some evidence, from the data, that battery workers in our study have higher blood Pb level than the control group on average

Blood Pb concentrations

Dioca i b controlliadione			
Battery workers (occupationall y exposed)	Control (not occupationall y exposed)		
0.082	0.040		
0.080	0.035		
0.079	0.036		
0.069	0.039		
0.085	0.040		
0.09	0.046		
0.086	0.040		
0.08157	0.03943		
0.0067047	0.0035523		

mean

std dev

t-table

From our example: t=14.7 with 12 d.f.

Value far exceeds 4.318, the critical value for statistical significance at the Pr=0.001 (0.1%) level when df=12 i.e. Pr < 0.001

			Probability		
_	df	.05	.02	.01	.001
	1	12.706	31.821	63.657	636.619
	2	4.303	6.965	9.925	31.598
	3	3.182	4.541	5.841	12.924
	4	2.776	3.747	4.604	8.610
	5	2.571	3,365	4.032	6.869
	6	2.447	3.143	3.707	5.959
	7	2.365	2.998	3.499	5.408
	8	2.306	2.896	3.355	5.041
	9	2.262	2.821	3.250	4.781
	10	2.228	2.764	3.169	4.587
	11	2.201	2.718	3.106	4 437
	12	2.179	2.681	3.055	4.318
	13	2.160	2.650	3.012	4.221
	14	2.145	2.624	2.977	4.140
	15	2.13 1	2.602	2.947	4.073
	16	2.120	2.583	2.921	4.015
	17	2.110	2.567	2.898	3.965
	18	2.101	2.552	2.878	3.922
	19	2.093	2.539	2.861	3.883
	25	2.060	2.485	2.787	3.725
	26	2.056	2.479	2.779	3.707
	27	2.052	2.473	2.771	3.690
	28	2.048	2.467	2.763	3.674
	29	2.045	2.462	2.756	3.659
	30	2.042	2.457	2.750	3.646
	40	2.021	2.423	2.704	3.551
	60	2.000	2.390	2.660	3.460
	120	1.980	2.358	2.617	3.373
	α	1.960	2.326	2.576	3.291

Unpaired t-test assumptions

- Data are normally distributed in the population from which the two independent samples have been drawn
- The two samples are random and independent,
 i.e. observations in one group are not related to
 observations in the other group
- The two independent samples have been drawn from populations with the **same** (homogeneous) **variance**, i.e. $\sigma_1 = \sigma_2$

- Previous problem
 uses un-paired t-test
 as the two samples
 were matched
 - i.e. the two samples were independently derived
- Sometimes, we may need to deal with matched study designs

Patient	Fasting cholesterol	Postprandial cholesterol
1	198	202
2	192	188
3	241	238
4	229	226
5	185	174
6	303	315

Study involves 6 subjects acting as their own control (best match)

 Null hypothesis: No difference in mean cholesterol levels between fasting and after eating states

- H0: $\mu_{\text{fasting}} = \mu_{\text{postprandial}}$

Patient	Fasting cholesterol	Postprandial cholesterol	Difference (d)
1	198	202	-4
2	192	188	+4
3	241	238	+3
4	229	226	+3
5	185	174	+11
6	303	315	-12

$$\overline{d}$$
 = 0.833
s_d = 7.885
n= 6

t-score given by

$$t = \frac{\overline{d}}{SE_{\overline{d}}} = \frac{\overline{d}}{s_d / \sqrt{n}}$$
$$\frac{0.833}{3.219} = 0.259$$

with (n-1) degrees of freedom, where n is the # of pairs

Patient	Difference (d)
1	-4
2	+4
3	+3
4	+3
5	+11
6	-12

$$\overline{d}$$
 = 0.833
s_d = 7.885
n= 6

t-table

From our example: t=0.259 with 5 d.f.

Value is very much lower than 2.571, the critical value for statistical significance at the Pr=0.05 (5%) level when df=5 i.e. Pr > 0.05

	Probability				
df	.05	.02	.01	.001	
1	12.706	31.821	63.657	636.619	
2	4.303	6.965	9.925	31.598	
3	3.182	4.541	5.841	12.924	
4	2.776	3.747	4.604	8.610	
5	2.571	3.365	4.032	6.869	
6	2.447	3.143	3.707	5.959	
7	2.365	2.998	3.499	5.408	
8	2.306	2.896	3.355	5.041	
9	2.262	2.821	3.250	4.781	
10	2.228	2.764	3.169	4.587	
11	2.201	2.718	3.106	4.437	
12	2.179	2.681	3.055	4.318	
13	2.160	2.650	3.012	4.221	
14	2.145	2.624	2.977	4.140	
15	2.131	2.602	2.947	4.073	
16	2.120	2.583	2.921	4.015	
17	2.110	2.567	2.898	3.965	
18	2.101	2.552	2.878	3.922	
19	2.093	2.539	2.861	3.883	
25	2.060	2.485	2.787	3.725	
26	2.056	2.479	2.779	3.707	
27	2.052	2.473	2.771	3.690	
28	2.048	2.467	2.763	3.674	
29	2.045	2.462	2.756	3.659	
30	2.042	2.457	2.750	3.646	
40	2.021	2.423	2.704	3.551	
60	2.000	2.390	2.660	3.460	
120	1.980	2.358	2.617	3.373	
α	1.960	2.326	2.576	3.291	

- Conclusion: Insufficient evidence, from the data, to suggest that postprandial cholesterol levels are, on average, higher than fasting cholesterol levels
- Action: Should not reject the Null Hypothesis

Patient	Fasting cholesterol	Postprandial cholesterol
1	198	202
2	192	188
3	241	238
4	229	226
5	185	174
6	303	315

Common errors relating to t-test

- Failure to recognize assumptions
 - If assumption does not hold, explore data transformation or use of non-parametric methods
- Failure to distinguish between paired and unpaired designs

Contingency Analysis: Associations between Categorical variables

Association

- Examining relationship between 2 categorical variables
- Some examples of association:
 - Smoking and lung cancer
 - Number of defected sensors and season of the year
 - Ethic group and choice of Movie Genre
- Questions of interest when testing for association between two categorical variables
 - Does the presence/absence of one factor (variable) influence the presence/absence of the other factor (variable)?

Caution

presence of an association does not necessarily imply causation

Hypothesis testing involving categorical data

Test the independence of two or more categorical variables

- Chi-square is a test for statistical association between two variables and involving 2x2 tables or contingency tables
 - Testing for associations involving small, unmatched samples and small, matched samples

Assumptions of the Chi-Square Test

- 1. The χ2 assumes that the data for the study is obtained through **random selection**
- 2. The **categories** are **mutually exclusive** i.e. each subject fits in only one category.
- 3. The **data** should be in the form of **frequencies** or **counts** of a particular category and **not in percentages**
- 4. The data should **not consist of paired samples**.
 - Observations should be independent of each other
- 5. More than **80% of the expected frequencies** must have a **value of more than 5**.
 - To tackle this problem: Either one should combine the categories only if it is relevant or obtain more data or use Fisher's exact test

Comparison between proportions

Treatment	Improvement	No improvement	Total
Arthritic drug	18	6	24
placebo	9	11	20
Total	27	17	44

- Proportion improved in drug group = 18/24 = 75%
- Proportion improved in control group = 9/20 = 45.0%
- Question: What is the probability that the observed difference of 30% is purely due to sampling error, i.e. chance in sampling?
- Use chi-squared –test

treatment	Improvement	No improvement	Total
Arthritic drug	18 (a)	6 (b)	24
placebo	9 (c)	11 (d)	20
Total	27	17	44

- Prob of selecting a person in drug group = 24/44
- Prob of selecting a person with improvement = 27/44
- Prob of selecting a person from drug group who had shown improvement= (24/44)*(27/44) = 0.3347 (assuming two independent events)
- Expected value for cell (a) =0.3347*44 = 14.73

treatment	Improvement	No improvement	Total
Arthritic drug	18 (14.73)	6 (9.27)	24
placebo	9 (12.27)	11 (7.73)	20
Total	27	17	44

General formula for Chi-squared:

$$\chi^2 = \sum \frac{(obs - exp)^2}{exp}$$

 Chi-squared –test is always performed on categorical variables using absolute frequencies, never percentage or proportion

For the given problem:

$$\sum \frac{(obs-exp)^2}{exp} - \frac{(18-14.73)^2}{14.73} + \frac{(6-9.27)^2}{9.27} + \frac{(9-12.27)^2}{12.27} + \frac{(11-7.73)^2}{7.73}$$

= 4.14 with1degree of freedom

Chi-square degree of freedom is given by:
 (no. of rows-1)*(no. of cols-1) = (2-1)*(2-1) = 1

How many of these 4 cells are free to vary if we keep the row and column totals constant?

24

20

44

 χ^2 table ${\hbox{\it Critical values in the distributions of chi-squared} \\ {\hbox{\it for different degrees of freedom} }$

		Probability			
df	.05	.02	.01	.001	-1
1	3.841	5.412	6.635	10.827	observed χ^2
2	5.991	7.824	9.210	13.815	 value of 4.14
3	7.815	9.837	11.345	16.266	value 01 4.14
4	9.488	11.668	13.277	18.467	and the second second
5	11.070	13.388	15.086	20.515	exceeds critical
6	12.592	15.033	16.812	22.457	
7	14.067	16.622	18.475	24.322	value of 3.841 for
8	15.507	18.168	20.090	26.125	Value of 0.0 11 101
9	16.919	19.679	21.666	27.877	P=0.05 but not
10	18.307	21.161	23.209	29.588	F-0.03 but not
11	19.675	22.618	24.725	31.264	aniti and scales and
12	21.026	24.054	26.217	32.909	critical value of
13	22.362	25.372	27.688	34.528	
14	23.585	26.873	29.141	36.123	5.412 for P=0.02 at
15	24.996	28.259	30.578	37.697	0.112 1011 0.02 at
16	26.296	29.633	32.000	39.252	1 d.f.
17	27.587	30.995	33.409	40.790	1 U.I.
18	28.869	32.346	34.805	42.312	
19	30.144	33.687	36.191	43.820	
20	31.410	35.020	37.566	35.315	
21	32.671	36.343	38.932	46.797	i.e. 0.05 > P > 0.02
22	33.924	37.659	40.289	48.268	
23	35.172	38.968	41.638	49.728	
24	36.415	40.270	42.980	51.179	
25	37.652	41.566	44.314	52.620	
26	38.885	42.856	45.642	54.052	
27 28	40.113	44.140	46.963	55.476 56.893	
28	41.337 42.557	45.419 46.693	48.278 49.588	58.302	
30	43.773	47.962	50.892	59.703	

- Probability of getting an observed difference of 30% in improvement rates if the Null hypothesis of no association is correct is between 2% and 5%
- Hence, there is some statistical evidence from this study to suggest that treatment of arthritic patient with the drug can significantly improve grip strength

Another Example

Music and wine buying

OBSERVED	French music playing	German music playing	Totals
Bottles of French wine sold	40	12	52
Bottles of German wine sold	8	22	30
Totals	48	34	82

Hypotheses

H₀: The nationality of the bottle of wine is independent of the nationality of the music played when it is sold.

 H_A: The nationality of the bottle of wine sold *depends* on the nationality of the music being played when it is sold.

Calculating the expectations

With independence,

Pr [French wine AND French music] = Pr [French wine] * Pr [French music]

Calculating the expectations

EXP.	French	German	Totals
	music	music	
French			
wine			52
sold			
German			
wine			30
sold			
Totals	48	34	82

Pr[French wine] = 52/82=0.634

Pr[French music] = 48/82= 0.585

If H_0 is true, Pr[French wine AND French music] = (0.634)(0.585) = 0.37112

EXP.	French	Germa	Totals
	music	n	
		music	
French	0.37 (82) =	21.6	52
wine	30.4		
sold			
German	17.6	12.4	30
wine			
sold			
Totals	48	34	82

By H_0 , Pr[French wine AND French music] = (0.634)(0.585)=0.37112

$$X^{2} = \frac{\left(Observed_{i} - Expected_{i}\right)^{2}}{Expected_{i}}$$

$$= \frac{\left(40 - 30.4\right)^{2}}{30.4} + \frac{\left(12 - 21.6\right)^{2}}{21.6} + \frac{\left(8 - 17.6\right)^{2}}{17.6} + \frac{\left(22 - 12.4\right)^{2}}{12.4}$$

$$= 20.0$$

Degrees of freedom

For music/wine example,

$$df = (2-1)(2-1) = 1$$

Conclusion

So we can **reject the null hypothesis of independence**, and say that the nationality of the wine sold did depend on what music was played.

$$\chi^2 = 20.0 >> \chi^2 = 10.83$$
, so we can say $P < 0.001$.

Assumptions

- This X² test is just a special case of the X² goodness-of-fit test, so the same rules apply.
- You can't have any expectation less than 1, and no more than 20% < 5.

Fisher's exact test

- For 2 x 2 contingency analysis.
- Does not make assumptions about the size of expectations
- When N<20 or N>20 but expected cell count is >=5 is less than 80% of cells.

 Programs will do it, but cumbersome to do by hand

	Men	Women	Row Total
Studying	а	b	a + b
Non-studying	С	d	c + d
Column Total	a + c	b + d	a + b + c + d (=n)

$$p = \frac{\binom{a+b}{a}\binom{c+d}{c}}{\binom{n}{a+c}} = \frac{\binom{a+b}{b}\binom{c+d}{d}}{\binom{n}{b+d}} = \frac{(a+b)!\ (c+d)!\ (a+c)!\ (b+d)!}{a!\ b!\ c!\ d!\ n!}$$

Fisher's exact test

Calculating the expectations

EXP.	Men	Women	Totals
Studying			12
Non- studying			4
Totals	12	4	16

A shortcut for calculating expectations (assuming H₀ is true):

Exp[Studying, Men] = 12*12/16 = 9

Comparing observed and expected

OBS.			Totals
	Men	Women	
Studying			
	12	0	12
Non-			
studying	0	4	4
Totals	12	4	16

EXP.			Totals
	Men	Women	
Studying			
	9	3	12
Non-			
studying	3	1	4
Totals	12	4	16

Too many of the expected are below 5, so we cannot use the 2 contingency test. Instead, we use a computer to do Fisher's exact test:

P = 0.00055, so we reject the H_0 of no association.