GENERAL CHEMISTRY

Principles and Modern Applications
TENTH EDITION

PETRUCCI HERRING MADURA BISSONNETTE

Principles of Chemical

Equilibrium

Principles of Chemical
 Equilibrium

CONTENTS

15-1 Dynamic Equilibrium

15-2 The Equilibrium Constant Expression
15-3 Relationships Involving Equilibrium Constants
15-4 The Magnitude of an Equilibrium Constant

15-5 The Reaction Quotient A:
Predicting the Direction of Net Change

15-6 Altering Equilibrium Conditions: Le Châtelier's Principle
15-7 Equilibrium Calculations: Some Illustrative Examples

15-1 Dynamic Equilibrium

(a)

Equilibrium -opposing processes taking place at equal rates.

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
\mathrm{NaCl}(\mathrm{~s}) \stackrel{\mathrm{H}_{2} \mathrm{O}}{\rightleftharpoons} \mathrm{NaCl}(\mathrm{aq})
\end{gathered}
$$

$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$

A FIGURE 15-1
Dynamic equilibrium in a physical process

15-2 The Equilibrium Constant Expression

The oxidation-reduction reaction of copper(II) and $\operatorname{tin}(\mathrm{II})$ in aqueous solution is reversible.
$2 \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Sn}^{2+}(\mathrm{aq}) \xrightarrow{k_{1}} 2 \mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{Sn}^{4+}(\mathrm{aq})$
$2 \mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{Sn}^{4+}(\mathrm{aq}) \quad \xrightarrow{k_{-l}} \quad 2 \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Sn}^{2+}(\mathrm{aq})$
$2 \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Sn}^{2+}(\mathrm{aq}) \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftharpoons}} 2 \mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{Sn}^{4+}(\mathrm{aq})$

TABLE 15.1 Three Approaches to Equilibrium in the Reaction ${ }^{\text {a }}$

$2 \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Sn}^{2+}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{Sn}^{4+}(\mathrm{aq})$

$$
\mathrm{Cu}^{2+}(\mathrm{aq}) \quad \mathrm{Sn}^{2+}(\mathrm{aq}) \quad \mathrm{Cu}^{+}(\mathrm{aq}) \quad \mathrm{Sn}^{4+}(\mathrm{aq})
$$

Experiment 1

Initial amounts, mol	0.100	0.100	0.000	0.000
Equilibrium amounts, mol	0.0360	0.0680	0.0640	0.0320
Equilibrium concentrations, mol $/ \mathrm{L}$	0.0360	0.0680	0.0640	0.0320

Experiment 2

Initial amounts, mol	0.000	0.000	0.100	0.100
Equilibrium amounts, mol	0.0567	0.0283	0.0433	0.0717
Equilibrium concentrations, mol $/ \mathrm{L}$	0.0567	0.0283	0.0433	0.0717

Experiment 3

Initial amounts, mol	0.100	0.100	0.100	0.100
Equilibrium amounts, mol	0.0922	0.0961	0.1078	0.1039
Equilibrium concentrations, mol $/ \mathrm{L}$	0.0922	0.0961	0.1078	0.1039

The concentrations printed in blue are used in the calculations in Table 15.2.
${ }^{\text {a }}$ Reaction carried out in 1.00 L of solution at 298 K .

$t_{\mathrm{e}}=$ time for equilibrium to be reached
$-\mathrm{mol} \mathrm{Cu}^{2+}$
$-\mathrm{mol} \mathrm{Sn}{ }^{2+}$
$-\mathrm{mol} \mathrm{Cu}^{+}$
$-\mathrm{mol} \mathrm{Sn}^{4+}$

A FIGURE 15-3
Three approaches to equilibrium in the reaction $2 \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Sn}^{2+}(\mathrm{aq}) \quad 2 \mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{Sn}^{4+}(\mathrm{aq})$

The Equilibrium Constant and Activities

TABLE 15.2

Expt	Trial 1: $\frac{\left[\mathrm{Cu}^{+}\right]\left[\mathrm{Sn}^{4+}\right]}{\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{Sn}^{2+}\right]}$	Trial 2: $\frac{\left(2 \times\left[\mathrm{Cu}^{+}\right]\right)\left[\mathrm{Sn}^{4+}\right]}{\left(2 \times\left[\mathrm{Cu}^{2+}\right]\right)\left[\mathrm{Sn}^{2+}\right]}$	Trial 3: $\frac{\left[\mathrm{Cu}^{+}\right]^{2}\left[\mathrm{Sn}^{4+}\right]}{\left[\mathrm{Cu}^{2+}\right]^{2}\left[\mathrm{Sn}^{2+}\right]}$
1	$\frac{0.0640 \times 0.0320}{0.0360 \times 0.0680}=0.837$	$\frac{(2 \times 0.0640) \times 0.0320}{(2 \times 0.0360) \times 0.0680}=0.837$	$\frac{0.0640^{2} \times 0.0320}{0.0360^{2} \times 0.0680}=1.49$
2	$\frac{0.0433 \times 0.0717}{0.0567 \times 0.0283}=1.93$	$\frac{(2 \times 0.0433) \times 0.0717}{(2 \times 0.0567) \times 0.0283}=1.93$	$\frac{0.0433^{2} \times 0.0717}{0.0567^{2} \times 0.0283}=1.48$
3	$\frac{0.1078 \times 0.1039}{0.0922 \times 0.0961}=1.26$	$\frac{(2 \times 0.1078) \times 0.1039}{(2 \times 0.0922) \times 0.0961}=1.26$	$\frac{0.1078^{2} \times 0.1039}{0.0922^{2} \times 0.0961}=1.48$

Equilibrium concentration data are from Table 15.1. In Trial 1, the equilibrium concentration of Cu^{+}and Sn^{2+} are placed in the numerator and the equilibrium concentration of Cu^{2+} and Sn^{4+}, in the denominator. In Trial 2, each concentration is multiplied by its stoichiometric coefficient. In Trial 3, each concentration is raised to a power equal to its stoichiometric coefficient. Trial 3 has essentially the same value for each experiment. This value is the equilibrium constant K.
*G. N. Lewis and M. Randall, Thermodynamics, McGraw Hill, New York, 1923.

Activity

Thermodynamic concept introduced by Lewis.
Dimensionless ratio referred to a chosen reference state.

$$
\begin{aligned}
& a_{B}=\frac{\gamma_{B}[B]}{c_{B}{ }^{0}}=\gamma_{B}[B] \quad c_{B}{ }^{0} \text { is a standard reference state } \\
&=1 \mathrm{~mol} \mathrm{~L}^{-1} \text { (ideal conditions) }
\end{aligned}
$$

- Accounts for non-ideal behaviour in solutions and gases.
-An effective concentration.

Activity

A similar expression applies to gases

$$
\begin{aligned}
\mathrm{a}_{\mathrm{B}}=\frac{\gamma_{\mathrm{B}} P_{\mathrm{B}}}{P_{\mathrm{B}}^{0}}=\gamma_{\mathrm{B}} P_{\mathrm{B}} \quad P_{\mathrm{B}}^{0} & \text { is a standard reference state } \\
& =1 \text { bar (ideal conditions) }
\end{aligned}
$$

Reconsider the equilibrium between $\mathbf{C u}^{\mathbf{2 +}}$ and $\mathbf{S n}^{2+}$

$$
\begin{align*}
& K=\frac{a_{\mathrm{Cu}^{+}}^{2} a_{\mathrm{Sn}^{4+}}}{a_{\mathrm{Cu}^{2+}}^{2} a_{\mathrm{Sn}^{2+}}}=1.48 \tag{15.5}\\
& a_{\mathrm{Cu}^{+}}=\frac{\gamma_{\mathrm{Cu}^{+}}\left[\mathrm{Cu}^{+}\right]}{c^{\circ}} ; \quad a_{\mathrm{Sn}^{4+}}=\frac{\gamma_{\mathrm{Sn}^{4+}}\left[\mathrm{Sn}^{4+}\right]}{c^{\circ}} \\
& a_{\mathrm{Cu}^{2+}}=\frac{\gamma_{\mathrm{Cu}^{2+}\left[\mathrm{Cu}^{2+}\right]}^{c^{\circ}} ; \quad a_{\mathrm{Sn}^{2+}}=\frac{\gamma_{\mathrm{Sn}^{2+}\left[\mathrm{Sn}^{2+}\right]}^{c^{\circ}}}{}, \frac{r^{\circ}}{}}{}
\end{align*}
$$

Reconsider the equilibrium between $\mathbf{C u}^{\mathbf{2 +}}$ and $\mathbf{S n}^{2+}$

$$
\begin{equation*}
K=\frac{\left(\frac{\gamma_{\mathrm{Cu}^{+}+}\left[\mathrm{Cu}^{+}\right]_{\mathrm{eq}}}{c^{\circ}}\right)^{2} \frac{\gamma_{\mathrm{Sn}^{4+}}\left[\mathrm{Sn}^{4+}\right]_{\mathrm{eq}}}{c^{\circ}}}{\left(\frac{\gamma_{\mathrm{Cu}^{2+}}\left[\mathrm{Cu}^{2+}\right]_{\mathrm{eq}}}{c^{\circ}}\right)^{2} \frac{\gamma_{\mathrm{Sn}^{2+}+\left[\mathrm{Sn}^{2+}\right.}^{c_{\mathrm{eq}}}}{c^{\circ}}} \approx \frac{\left[\mathrm{Cu}^{+}\right]_{\mathrm{eq}}^{2}\left[\mathrm{Sn}^{4+}\right]_{\mathrm{eq}}}{\left[\mathrm{Cu}^{2+}\right]_{\mathrm{eq}}^{2}\left[\mathrm{Sn}^{2+}\right]_{\mathrm{eq}}}=1.48 \tag{15.6}
\end{equation*}
$$

A general expression for K

$$
a \mathrm{~A}+b \mathrm{~B} \cdots \rightarrow g \mathrm{G}+h \mathrm{H} \cdots
$$

$$
\text { Equilibrium constant }=K_{\mathrm{c}}=\frac{[\mathrm{G}]^{g}[\mathrm{H}]^{h \ldots}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b \ldots}}
$$

Thermodynamic Equilibrium constant

$$
K_{\mathrm{eq}}=\frac{\left(\mathrm{a}_{\mathrm{G}}\right)^{g}\left(\mathrm{a}_{\mathrm{H}}\right)^{h} \ldots}{\left(\mathrm{a}_{\mathrm{A}}\right)^{a}\left(\mathrm{a}_{\mathrm{B}}\right)^{b \ldots}} \approx\left(\frac{1}{c^{\circ}}\right)^{{ }^{\Delta n}}\left[\frac{[\mathrm{G}]^{g}[\mathrm{H}]^{h} \ldots}{[\mathrm{~A}]^{m}[\mathrm{~B}]^{n} \ldots}\right)=\left(\frac{1}{c^{\circ}}\right)^{\Delta n} K_{\mathrm{eq}}
$$

15-3 Relationships Involving the Equilibrium Constant

Relationship of K to the Balanced Chemical Equation
Reversing an equation causes inversion of K.
Multiplying by coefficients by a common factor raises the equilibrium constant to the corresponding power.
Dividing the coefficients by a common factor causes the equilibrium constant to be taken to that root.

EXAMPLE 15-2 Relating K to the Balanced Chemical Equation

The following K value is given at 298 K for the synthesis of $\mathrm{NH}_{3}(\mathrm{~g})$ from its elements.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad K=5.8 \times 10^{5}
$$

What is the value of K at $298 K$ for the following reaction?

$$
\mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) \quad K=?
$$

Analyze

The solution to this problem lies in recognizing that the reaction is the reverse and one-half of the given reaction. In this example we apply two of the rules given above that relate K to balanced chemical reactions.

Solve

First, reverse the given equation. This puts $\mathrm{NH}_{3}(\mathrm{~g})$ on $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$ the left side of the equation, where we need it.

The equilibrium constant K^{\prime} becomes

$$
K^{\prime}=1 /\left(5.8 \times 10^{5}\right)=1.7 \times 10^{-6}
$$

Then, to base the equation on $1 \mathrm{~mol} \mathrm{NH}_{3}(\mathrm{~g})$, divide all coefficients by 2 .

$$
\mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g})
$$

This requires the square root of K^{\prime}.

$$
K=\sqrt{1.7 \times 10^{-6}}=1.3 \times 10^{-3}
$$

Combining Equilibrium Constant Expressions

$$
\begin{aligned}
& \mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+1 / 2 \mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g}) \quad K_{\mathrm{c}}=? \\
& \mathrm{~N}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \quad K_{\mathrm{c}(2)}=2.7 \times 10^{+18}=\frac{\left[\mathrm{N}_{2} \mathrm{O}\right]}{\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]^{1 / 2}} \\
& \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g}) \quad K_{\mathrm{c}(3)}=4.7 \times 10^{-31}=\frac{\left[\mathrm{NO}^{2}\right.}{\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]} \\
& K_{\mathrm{c}}=\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}\right]\left[\mathrm{O}_{2}\right]^{1 / 2}}=\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]} \frac{\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]^{1 / 2}}{\left[\mathrm{~N}_{2} \mathrm{O}\right]}=K_{\mathrm{c}(3)} \frac{1}{K_{\mathrm{c}(2)}}=1.7 \times 10^{-13}
\end{aligned}
$$

Gases: The Equilibrium Constant, K_{P}

Mixtures of gases are solutions just as liquids are.
Use K_{P}, based upon activities of gases.

$$
\begin{gathered}
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad K_{\mathrm{P}}=\frac{\left(\mathrm{a}_{\mathrm{SO}_{3}}\right)^{2}}{\left(\mathrm{a}_{\mathrm{SO}_{2}}\right)^{2}\left(\mathrm{a}_{\mathrm{O}_{2}}\right)} \\
\mathrm{a}_{\mathrm{SO}_{3}}=\frac{P_{\mathrm{SO}_{3}}}{P^{o}} \quad \mathrm{a}_{\mathrm{SO}_{2}}=\frac{P_{\mathrm{SO}_{2}}}{P^{o}} \quad \mathrm{a}_{\mathrm{SO}_{3}}=\frac{P_{\mathrm{O}_{2}}}{P^{o}} \\
K_{\mathrm{P}}=\left(\frac{\left(P_{\left.\mathrm{SO}_{O_{2}}\right)^{2}}^{\left(P_{\mathrm{SO}_{2}}\right)^{2}\left(P_{\mathrm{O}_{2}}\right)}\right) P^{o}}{}\right.
\end{gathered}
$$

Gases: The Equilibrium Constant, K_{C}

In concentration we can do another substitution

$$
\begin{gathered}
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) \\
{\left[\mathrm{SO}_{3}\right]=\frac{n_{\mathrm{SO}_{3}}}{V}=\frac{P_{\mathrm{SO}_{3}}}{R T} \quad\left[\mathrm{SO}_{2}\right]=\frac{P_{\mathrm{SO}_{2}}}{R T} \quad\left[\mathrm{O}_{2}\right]=\frac{P_{\mathrm{O}_{2}}}{R T}} \\
\left(\mathrm{a}_{\mathrm{X}}\right)=\frac{[\mathrm{X}]}{c^{\circ}}=\frac{\frac{P_{\mathrm{X}}}{R T}}{c^{\circ}} \quad P_{\mathrm{X}}=[\mathrm{X}] R T
\end{gathered}
$$

Gases: The Equilibrium Constant, K_{C}

$$
\begin{gathered}
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) \\
K_{\mathrm{P}}=\frac{\left(\mathrm{a}_{\mathrm{SO}_{3}}\right)^{2}}{\left(\mathrm{a}_{\mathrm{SO}_{2}}\right)^{2}\left(\mathrm{a}_{\mathrm{O}_{2}}\right)}=P^{o}\left(\frac{\left(P_{\mathrm{SO}_{3}}\right)^{2}}{\left(P_{\mathrm{SO}_{2}{ }^{2}\left(P_{\mathrm{Q}}\right)}\right)}\right) \quad P_{\mathrm{X}}=[\mathrm{X}] R T \\
=\left(\frac{\left(\left[\mathrm{SO}_{3}\right] R T\right)^{2}}{\left(\left[\mathrm{SO}_{2}\right] R T\right)^{2}\left(\left[\mathrm{O}_{2}\right] R T\right)}\right) P^{\circ} \\
=\frac{P^{0}}{R T}\left(\frac{\left(\left[\mathrm{SO}_{3}\right]\right)^{2}}{\left(\left[\mathrm{SO}_{2}\right]\right)^{2}\left(\left[\mathrm{O}_{2}\right]\right)}\right)=\frac{K_{\mathrm{C}}}{R T} \quad \text { Where } P^{\circ}=1 \text { bar }
\end{gathered}
$$

An Alternative Derivation

$$
\begin{gathered}
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) \\
K_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{3}\right]}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}=\frac{\left(\frac{P_{\mathrm{SO}_{3}}}{R T}\right)^{2}}{\left(\frac{P_{\mathrm{SO}_{2}}}{R T}\right)^{2} \frac{P_{\mathrm{O}_{2}}}{R T}}=\frac{P_{\mathrm{SO}_{3}}^{2}}{P_{\mathrm{SO}_{2}}^{2} P_{\mathrm{O}_{2}}} R T \\
K_{\mathrm{c}}=K_{\mathrm{P}}(R T) \\
\text { Where } \\
K_{\mathrm{P}}=K_{\mathrm{c}}(R T)^{-1} \\
\text { In general terms: } \quad K_{\mathrm{P}}=K_{\mathrm{c}}(R T)^{\Delta \mathrm{n}}
\end{gathered}
$$

EXAMPLE 15-3 Illustrating the Dependence of K on the Reference State

Complete the calculation of K_{p} for reaction (15.11) knowing that $K_{\mathrm{c}}=2.8 \times 10^{2}$ (at 1000 K).

Analyze

We use equation (15.16), with $R=0.08314 \mathrm{bar} \mathrm{L} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$. For reasons outlined on page 666 , units are omitted from our calculations.

Solve

Write the equation relating the two equilibrium constants with different reference states.

$$
\begin{aligned}
& K_{\mathrm{c}}=R T \times K_{\mathrm{p}} \\
& K_{\mathrm{p}}=\frac{K_{\mathrm{c}}}{R T} \\
& K_{\mathrm{p}}=\frac{2.8 \times 10^{2}}{0.08314 \times 1000}=3.4
\end{aligned}
$$

Pure Liquids and Solids

Equilibrium constant expressions do not contain concentration terms for solid or liquid phases of a single component (that is, pure solids or liquids).

$$
\begin{aligned}
& \mathrm{C}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \\
& K_{\mathrm{c}}=\frac{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}=\frac{P_{\mathrm{CO}} P_{\mathrm{H}_{2}}}{P_{\mathrm{H}_{2} \mathrm{O}^{2}}^{2}}(R T)^{1}
\end{aligned}
$$

EXAMPLE 15-4 Writing Equilibrium Constant Expressions for Reactions Involving Pure Solids or Liquids

At equilibrium in the following reaction at $60^{\circ} \mathrm{C}$, the partial pressures of the gases are found to be $P_{\mathrm{HI}}=3.70 \times 10^{-3}$ bar and $P_{\mathrm{H}_{2} \mathrm{~S}}=1.01$ bar. What is the value of K for the reaction?

$$
\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})+\mathrm{S}(\mathrm{~s}) \quad K=?
$$

Analyze
We need to first write the equilibrium constant expression in terms of activities, and then eliminate the activities of pure solids and pure liquids by setting their activities to 1 .

Solve

Write the equilibrium constant expression in terms of activities. Note that activities for the iodine and sulfur are not included, since the activity of a pure solid is 1 .

$$
\begin{aligned}
K & =\frac{\left(a_{\mathrm{HI}}\right)^{2}}{\left(a_{\mathrm{H}_{2} \mathrm{~S}}\right)} \\
a_{\mathrm{HI}} & =3.70 \times 10^{-3} \text { and } a_{\mathrm{H}_{2} \mathrm{~S}}=1.01
\end{aligned}
$$ gas is equal to the numerical value of its partial pressure.

Substitute the given equilibrium data into the equilibrium constant expression.

$$
K=\frac{\left(3.70 \times 10^{-3}\right)^{2}}{1.01}=1.36 \times 10^{-5}
$$

Burnt Lime

$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$

$K_{\mathrm{c}}=\left[\mathrm{CO}_{2}\right]$

$$
K_{\mathrm{P}}=P_{\mathrm{CO}_{2}}(R T)
$$

(a)

(b)

15-4 The Significance of the Magnitude of the Equilibrium Constant.

TABLE $15.3 \quad$ Equilibrium Constants of Some Common Reactions	
Reaction	Equilibrium constant, K_{p}
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	1.4×10^{83} at 298 K
$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$	1.9×10^{-23} at 298 K
	1.0 at about 1200 K
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$	3.4 at 1000 K
$\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$	1.6×10^{-21} at 298 K
	10.0 at about 1100 K

15-5 The Reaction Quotient, Q: Predicting the Direction of Net Change.

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftharpoons}} \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

Equilibrium can be approached various ways.
Qualitative determination of change of initial conditions as equilibrium is approached is needed.

$$
Q_{c}=\frac{[\mathrm{G}]_{\mathrm{t}}^{g}[\mathrm{H}]_{\mathrm{t}}^{h}}{[\mathrm{~A}]_{\mathrm{t}}^{m}[\mathrm{~B}]_{\mathrm{t}}^{n}} \quad \text { At equilibrium } Q_{c}=K_{\mathrm{c}}
$$

Reaction Quotient

EXAMPLE 15-5 Predicting the Direction of a Net Chemical Change in Establishing Equilibrium

To increase the yield of $\mathrm{H}_{2}(\mathrm{~g})$ in the water-gas reaction-the reaction of $\mathrm{C}(\mathrm{g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ to form $\mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2}(\mathrm{~g})$-a follow-up reaction called the "water-gas shift reaction" is generally used. In this reaction, some of the $\mathrm{CO}(\mathrm{g})$ of the water gas is replaced by $\mathrm{H}_{2}(\mathrm{~g})$.

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

$K_{c}=1.00$ at about 1100 K . The following amounts of substances are brought together and allowed to react at this temperature: $1.00 \mathrm{~mol} \mathrm{CO}, 1.00 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}, 2.00 \mathrm{~mol} \mathrm{CO}_{2}$, and $2.00 \mathrm{~mol} \mathrm{H}_{2}$. Compared with their initial amounts, which of the substances will be present in a greater amount and which in a lesser amount when equilibrium is established?

Analyze

Our task is to determine the direction of net change by evaluating Q_{c} and comparing it to K_{c}.

Solve

Write down the expression for Q_{c}.

$$
\begin{aligned}
& Q_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]} \\
& Q_{\mathrm{c}}=\frac{(2.00 / V)(2.00 / V)}{(1.00 / V)(1.00 / V)}=4.00
\end{aligned}
$$

Substitute concentrations into the expression for Q_{c}, by assuming an arbitrary volume V (which cancels out in the calculation).
Compare Q_{c} to K_{c}.
Because $Q_{\mathrm{c}}>K_{\mathrm{c}}$ (that is, $4.00>1.00$), a net change occurs to the lef. When equilibrium is established, the amounts of CO and $\mathrm{H}_{2} \mathrm{O}$ will be greater than the initial quantities and the amounts of CO_{2} and H_{2} will be less.

15-6 Altering Equilibrium Conditions:

Le Châtelier's Principle
When an equilibrium system is subjected to a change in temperature, pressure, or concentration of a reacting species, the system responds by attaining a new equilibrium that partially offsets the impact of the change.

What happens if we add SO_{3} to this equilibrium?

Le Châtelier's Principle

Effect of Condition Changes

Adding a gaseous reactant or product changes $P_{\text {gas }}$.
Adding an inert gas changes the total pressure.
Relative partial pressures are unchanged.
Changing the volume of the system causes a change in the equilibrium position.

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{3}\right]}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}=\frac{\left(\frac{n_{\mathrm{SO}_{3}}}{V}\right)^{2}}{\left(\frac{n_{\mathrm{SO}_{2}}}{V}\right)^{2} \frac{n_{\mathrm{O}_{2}}}{V}}=\frac{n_{\mathrm{SO}_{3}}^{2}}{n_{\mathrm{SO}_{2}}^{2} n_{\mathrm{O}_{2}}} V
$$

Effect of Change in Volume

$$
\begin{aligned}
K_{\mathrm{c}}=\frac{[\mathrm{G}]^{\mathrm{g}}[\mathrm{H}]^{\mathrm{h}}}{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}} & =\frac{n_{\mathrm{G}}^{\mathrm{g}} n_{\mathrm{H}}^{\mathrm{h}}}{n_{\mathrm{A}}^{\mathrm{a}} n_{\mathrm{B}}^{\mathrm{a}}} V^{(a+b)-(g+h)} \\
& =\frac{n_{\mathrm{G}}^{\mathrm{g}} n_{\mathrm{H}}^{\mathrm{h}}}{n_{\mathrm{A}}^{\mathrm{a}} n_{\mathrm{B}}^{\mathrm{a}}} V^{-\Delta n}
\end{aligned}
$$

When the volume of an equilibrium mixture of gases is reduced, a net change occurs in the direction that produces fewer moles of gas. When the volume is increased, a net change occurs in the direction that produces more moles of gas.

Effect of the Change of Volume

EXAMPLE 15-7 Applying Le Châtelier's Principle: The Effect of Changing Volume

An equilibrium mixture of $\mathrm{N}_{2}(\mathrm{~g}), \mathrm{H}_{2}(\mathrm{~g})$, and $\mathrm{NH}_{3}(\mathrm{~g})$ is transferred from a 1.50 L flask to a 5.00 L flask. In which direction does a net change occur to restore equilibrium?

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Analyze
Because the volume has increased, the reaction will move in the direction that increases the number of moles of gas.

Solve

When the gaseous mixture is transferred to the larger flask, the partial pressure of each gas and the total pressure drop. Whether we think in terms of a decrease in pressure or an increase in volume, we reach the same conclusion. Equilibrium shifts in such a way as to produce a larger number of moles of gas. Some of the NH_{3} originally present decomposes back to N_{2} and H_{2}. A net change occurs in the direction of the reverse reactionto the left-in restoring equilibrium.

Effect of Temperature on Equilibrium

Raising the temperature of an equilibrium mixture shifts the equilibrium condition in the direction of the endothermic reaction.

Lowering the temperature causes a shift in the direction of the exothermic reaction.

EXAMPLE 15-8 Applying Le Châtelier's Principle: Effect of Temperature on Equilibrium

Consider the reaction

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta H^{\circ}=-197.8 \mathrm{~kJ}
$$

Will the amount of $\mathrm{SO}_{3}(\mathrm{~g})$ formed from given amounts of $\mathrm{SO}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ be greater at high or low temperatures?

Analyze

We must think of the impact made by changing the temperature. In general, an increase in temperature causes a shift in the direction of the endothermic reaction.

Solve

The sign of ΔH° tells us that the forward reaction is exothermic. Thus, the reverse reaction is endothermic. In this case, increasing the temperature will favor the reverse reaction and lowering the temperature will favor the forward reaction. The conversion of SO_{2} to SO_{3} is favored at low temperatures.

Effect of a Catalyst on Equilibrium

A catalyst changes the mechanism of a reaction to one with a lower activation energy.
A catalyst has no effect on the condition of equilibrium.
But does affect the rate at which equilibrium is attained.

EXAMPLE 15-9 Determining a Value of K_{c} from the Equilibrium Quantities of Substances

Dinitrogen tetroxide, $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{l})$, is an important component of rocket fuels-for example, as an oxidizer of liquid hydrazine in the Titan rocket. At $25^{\circ} \mathrm{C}, \mathrm{N}_{2} \mathrm{O}_{4}$ is a colorless gas that partially dissociates into NO_{2}, a red-brown gas. The color of an equilibrium mixture of these two gases depends on their relative proportions, which in turn depends on the temperature (Fig. 15-8).

Equilibrium is established in the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$. The quantities of the two gases present in a 3.00 L vessel are $7.64 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}$ and $1.56 \mathrm{~g} \mathrm{NO}_{2}$. What is the value of K_{c} for this reaction?

Analyze

We are given the equilibrium amounts (in terms of mass) of the reactants and products, along with the volume of the reaction vessel. We use these values to determine the equilibrium concentrations and plug them into the equilibrium constant expression.

Solve

Convert the mass of $\mathrm{N}_{2} \mathrm{O}_{4}$ to moles.

Convert moles of $\mathrm{N}_{2} \mathrm{O}_{4}$ to $\mathrm{mol} / \mathrm{L}$.

Convert the mass of NO_{2} to moles.

Convert moles of NO_{2} to $\mathrm{mol} / \mathrm{L}$.
Write the equilibrium constant expression, substitute the equilibrium concentrations, and solve for K_{c}.

$$
\begin{aligned}
& \mathrm{mol} \mathrm{~N}_{2} \mathrm{O}_{4}=7.64 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}}{92.01 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}}=8.303 \times 10^{-2} \mathrm{~mol} \\
& {\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]=\frac{8.303 \times 10^{2} \mathrm{~mol}}{3.00 \mathrm{~L}}=0.0277 \mathrm{M}} \\
& \mathrm{~mol} \mathrm{NO}_{2}=1.56 \mathrm{~g} \mathrm{NO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{NO}_{2}}{46.01 \mathrm{~g} \mathrm{NO}_{2}}=3.391 \times 10^{-2} \mathrm{~mol} \\
& {\left[\mathrm{NO}_{2}\right]=\frac{3.391 \times 10^{-2}}{3.00 \mathrm{~L}}=0.0113 \mathrm{M}} \\
& K_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{(0.0113)^{2}}{(0.0277)}=4.61 \times 10^{-3}
\end{aligned}
$$

(a)

(b)

A FIGURE 15-8
The equilibrium $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
(a) At dry ice temperatures, $\mathrm{N}_{2} \mathrm{O}_{4}$ exists as a solid. The gas in equilibrium with the solid is mostly colorless $\mathrm{N}_{2} \mathrm{O}_{4}$, with only a trace of brown NO_{2}. (b) When warmed to room temperature and above, the $\mathrm{N}_{2} \mathrm{O}_{4}$ melts and vaporizes. The proportion of $\mathrm{NO}_{2}(\mathrm{~g})$ at equilibrium increases over that at low temperatures, and the equilibrium mixture of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ and $\mathrm{NO}_{2}(\mathrm{~g})$ has a red-brown color.

Δ The Lewis structures of $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{NO}_{2}(\mathrm{~g})$ Nitrogen dioxide is a free radical that combines exothermically to form dinitrogen tetroxide.

Determining a Value of K_{p} from Initial and Equilibrium Amounts of Substances: Relating K_{c} and K_{p}

The equilibrium condition for $\mathrm{SO}_{2}(\mathrm{~g}), \mathrm{O}_{2}(\mathrm{~g})$, and $\mathrm{SO}_{3}(\mathrm{~g})$ is important in sulfuric acid production. When a 0.0200 mol sample of SO_{3} is introduced into an evacuated 1.52 L vessel at $900 \mathrm{~K}, 0.0142 \mathrm{~mol} \mathrm{SO}_{3}$ is present at equilibrium. What is the value of K_{p} for the dissociation of $\mathrm{SO}_{3}(\mathrm{~g})$ at 900 K ?

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad K_{\mathrm{p}}=?
$$

Analyze

Let's first determine K_{c} and then convert to K_{p} by using equation (15.16). In the ICE table below, the key term leading to the other data is the change in amount of SO_{3} : In progressing from $0.0200 \mathrm{~mol} \mathrm{SO}_{3}$ to 0.0142 mol $\mathrm{SO}_{3}, 0.0058 \mathrm{~mol} \mathrm{SO}_{3}$ is dissociated. The negative sign (-0.0058 mol) indicates that this amount of SO_{3} is consumed in establishing equilibrium. In the row labeled "changes," the changes in amounts of SO_{2} and O_{2} must be related to the change in amount of SO_{3}. For this, we use the stoichiometric coefficients from the balanced equation: 2,2, and 1. That is, two moles of SO_{2} and one mole of O_{2} are produced for every two moles of SO_{3} that dissociate.

Solve

The reaction:	$2 \mathrm{SO}_{3}(\mathrm{~g})$	\rightleftharpoons	$2 \mathrm{SO}_{2}(\mathrm{~g})$	+	$\mathrm{O}_{2}(\mathrm{~g})$
initial amounts:	0.0200 mol		0.00 mol		0.00 mol
changes:	$-0.0058 \mathrm{~mol}$		$+0.0058 \mathrm{~mol}$		$+0.0029 \mathrm{~mol}$
equil amounts:	0.0142 mol		0.0058 mol		0.0029 mol
equil concns:	$\left[\mathrm{SO}_{3}\right]=\frac{0.0142 \mathrm{~mol}}{1.52 \mathrm{~L}}$;		$\left[\mathrm{SO}_{2}\right]=\frac{0.0058 \mathrm{~mol}}{1.52 \mathrm{~L}} ;$		$\left[\mathrm{O}_{2}\right]=\frac{0.0029 \mathrm{~mol}}{1.52 \mathrm{~L}}$
	$\left[\mathrm{SO}_{3}\right]=9.34 \times 10^{-3} \mathrm{M}$;		$\left[\mathrm{SO}_{2}\right]=3.8 \times 10^{-3} \mathrm{M} ;$		$\left[\mathrm{O}_{2}\right]=1.9 \times 10^{-3} \mathrm{M}$
	$K_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{SO}_{3}\right]^{2}}=\frac{(3}{}$	$\frac{\times 10^{-3}}{(9.34}$	$\frac{{ }^{2}\left(1.9 \times 10^{-3}\right)}{\left.\times 10^{-3}\right)^{2}}=3.1 \times 1$		
	$\begin{aligned} K_{\mathrm{p}} & =K_{\mathrm{c}}(R T)^{\Delta n_{\text {gas }}}=3.1 \\ & =3.1 \times 10^{-4}(0.0821\end{aligned}$	$\begin{array}{r} \times 10^{-4} \\ \times 900 \end{array}$	$0.0821 \times 900)^{(2+1)-2}$ $=2.3 \times 10^{-2}$		

EXAMPLE 15-11 Determining Equilibrium Partial and Total Pressures from a Value of K_{p}

Ammonium hydrogen sulfide, $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s})$, used as a photographic developer, is unstable and dissociates at room temperature.

$$
\mathrm{NH}_{4} \mathrm{HS}(\mathrm{~s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \quad K_{\mathrm{p}}=0.108 \text { at } 25^{\circ} \mathrm{C}
$$

A sample of $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s})$ is introduced into an evacuated flask at $25^{\circ} \mathrm{C}$. What is the total gas pressure at equilibrium?

Analyze

We begin by writing the equilibrium constant expression in terms of pressure. The key step is to recognize that the pressure of ammonia is equal to the pressure of hydrogen sulfide. This will then allow us to determine the pressure of ammonia and hydrogen sulfide.

Solve

K_{p} for this reaction is just the product of the equilibrium partial pressures of $\mathrm{NH}_{3}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$, each stated in atmospheres. (There is no term for $\mathrm{NH}_{4} \mathrm{HS}$ because it is a solid.) Because these gases are produced in equimolar amounts, $P_{\mathrm{NH}_{3}}=P_{\mathrm{H}_{2} \mathrm{~S}}$.
Find $P_{\mathrm{NH}_{3}}$. (Note that the unit atm appears because in the equilibrium expression the reference pressure P° was implicitly included.)
The total pressure is

$$
\begin{aligned}
& K_{\mathrm{p}}=\left(P_{\mathrm{NH}_{3}}\right)\left(P_{\mathrm{H}_{2} \mathrm{~S}}\right)=0.108 \\
& K_{\mathrm{p}}=\left(P_{\mathrm{NH}_{3}}\right)\left(P_{\mathrm{H}_{2} \mathrm{~S}}\right)=\left(P_{\mathrm{NH}_{3}}\right)\left(P_{\mathrm{NH}_{3}}\right)=\left(P_{\mathrm{NH}_{3}}\right)^{2}=0.108
\end{aligned}
$$

$$
P_{\mathrm{NH}_{3}}=\sqrt{0.108}=0.329 \mathrm{~atm} \quad P_{\mathrm{H}_{2} \mathrm{~S}}=P_{\mathrm{NH}_{3}}=0.329 \mathrm{~atm}
$$

$$
P_{\mathrm{tot}}=P_{\mathrm{NH}_{3}}+P_{\mathrm{H}_{2} \mathrm{~S}}=0.329 \mathrm{~atm}+0.329 \mathrm{~atm}=0.658 \mathrm{~atm}
$$

EXAMPLE 15-12 Calculating Equilibrium Concentrations from Initial Conditions

A 0.0240 mol sample of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is allowed to come to equilibrium with $\mathrm{NO}_{2}(\mathrm{~g})$ in a 0.372 L flask at $25^{\circ} \mathrm{C}$. Calculate the amount of $\mathrm{N}_{2} \mathrm{O}_{4}$ present at equilibrium (Fig. 15-10).

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad K_{\mathrm{c}}=4.61 \times 10^{-3} \text { at } 25^{\circ} \mathrm{C}
$$

(a)

(b)

4 FIGURE 15-10
Equilibrium in the reaction

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

at $25^{\circ} \mathrm{C}$-Example $15-12$ illustrated Each "molecule" illustrated represents 0.001 mol. (a) Initially, the bulb contains $0.024 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}$, represented by 24 "molecules." (b) At equilibrium, some "molecules" of $\mathrm{N}_{2} \mathrm{O}_{4}$ have dissociated to NO_{2}. The 21 "molecules" of $\mathrm{N}_{2} \mathrm{O}_{4}$ and 6 of NO_{2} correspond to $0.021 \mathrm{~mol}_{2} \mathrm{O}_{4}$ and $0.006 \mathrm{~mol} \mathrm{NO}_{2}$ at equilibrium.

Solve

$$
\begin{aligned}
& \text { The reaction: } \\
& \text { initial amounts: } \\
& \text { changes: } \\
& \text { equil amounts: } \\
& \text { equil conens: } \\
& \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \\
& 0.0240 \mathrm{~mol} \\
& -x \mathrm{~mol} \\
& (0.0240-x) \mathrm{mol} \\
& {\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]=(0.0240-x) \mathrm{mol} / 0.372 \mathrm{~L}} \\
& \rightleftharpoons \\
& 2 \mathrm{NO}_{2}(\mathrm{~g}) \\
& 0.00 \mathrm{~mol} \\
& +2 x \mathrm{~mol} \\
& 2 x \mathrm{~mol} \\
& {\left[\mathrm{NO}_{2}\right]=2 x \mathrm{~mol} / 0.372 \mathrm{~L}} \\
& K_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{\left(\frac{2 x}{0.372}\right)^{2}}{\left(\frac{0.0240-x}{0.372}\right)}=\frac{4 x^{2}}{0.372(0.0240-x)}=4.61 \times 10^{-3} \\
& 4 x^{2}=4.12 \times 10^{-5}-\left(1.71 \times 10^{-3}\right) x \\
& x^{2}+\left(4.28 \times 10^{-4}\right) x-1.03 \times 10^{-5}=0 \\
& x=\frac{-4.28 \times 10^{-4} \pm \sqrt{\left(4.28 \times 10^{-4}\right)^{2}+4 \times 1.03 \times 10^{-5}}}{2} \\
& =\frac{-4.28 \times 10^{-4} \pm \sqrt{\left(1.83 \times 10^{-7}\right)+4.12 \times 10^{-5}}}{2} \\
& x=\frac{-4.28 \times 10^{-4} \pm \sqrt{4.14 \times 10^{-5}}}{2} \\
& =\frac{-4.28 \times 10^{-4} \pm 6.43 \times 10^{-3}}{2} \\
& =3.00 \times 10^{-3} \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}
\end{aligned}
$$

The amount of $\mathrm{N}_{2} \mathrm{O}_{4}$ at equilibrium is $(0.0240-x)=(0.0240-0.0030)=0.0210 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}$.

EXAMPLE 15-13 Using the Reaction Quotient, \mathbf{Q}_{c}, in an Equilibrium Calculation

Solid silver is added to a solution with these initial concentrations: $\left[\mathrm{Ag}^{+}\right]=0.200 \mathrm{M},\left[\mathrm{Fe}^{2+}\right]=0.100 \mathrm{M}$, and $\left[\mathrm{Fe}^{3+}\right]=0.300 \mathrm{M}$. The following reversible reaction occurs.

$$
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Fe}^{2+}(\mathrm{aq}) \rightleftharpoons \mathrm{Ag}(\mathrm{~s})+\mathrm{Fe}^{3+}(\mathrm{aq}) \quad K_{\mathrm{c}}=2.98
$$

What are the ion concentrations when equilibrium is established?

Analyze

Because all reactants and products are present initially, we need to use the reaction quotient Q_{c} to determine the direction in which a net change occurs.

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{Fe}^{3+}\right]}{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Fe}^{2+}\right]}=\frac{0.300}{(0.200)(0.100)}=15.0
$$

Because $Q_{c}(15.0)$ is larger than $K_{c}(2.98)$, a net change must occur in the direction of the reverse reaction, to the lef. Let's define x as the change in molarity of Fe^{3+}. Because the net change occurs to the lef, we designate the changes for the species on the left side of the equation as positive and those on the right side as negative.

Solve

$$
\begin{array}{lrrr}
\text { The reaction: } & \mathrm{Ag}^{+}(\mathrm{aq}) & + & \mathrm{Fe}^{2+}(\mathrm{aq})
\end{array} \rightleftharpoons \mathrm{Ag}(\mathrm{~s})+\mathrm{Fe}^{3+}(\mathrm{aq})
$$

This equation, which is solved in Appendix A-3, is a quadratic equation for which the acceptable root is $x=0.11$. To obtain the equilibrium concentrations, we substitute this value of x into the terms shown in the table of data.

$$
\begin{aligned}
{\left[\mathrm{Ag}^{+}\right]_{\text {equil }} } & =0.200+0.11=0.31 \mathrm{M} \\
{\left[\mathrm{Fe}^{2+}\right]_{\text {equil }} } & =0.100+0.11=0.21 \mathrm{M} \\
{\left[\mathrm{Fe}^{3+}\right]_{\text {equil }} } & =0.300-0.11=0.19 \mathrm{M}
\end{aligned}
$$

