GENERAL CHEMISTRY

Principles and Modern Applications

TENTH EDITION

PETRUCCI HERRING MADURA BISSONNETTE

Principles of Chemical

Equilibrium

General Chemistry: Chapter 15

Principles of Chemical Equilibrium

CONTENTS

- 15-1 Dynamic Equilibrium
- 15-2 The Equilibrium Constant Expression
- 15-3 Relationships Involving Equilibrium Constants
- 15-4 The Magnitude of an Equilibrium Constant
- 15-5 The Reaction Quotient A: Predicting the Direction of Net Change
- 15-6 Altering Equilibrium Conditions: Le Châtelier's Principle
- 15-7 Equilibrium Calculations: Some Illustrative Examples

15-1 Dynamic Equilibrium

Equilibrium –opposing processes taking place at equal rates.

 $H_2O(l) \rightleftharpoons H_2O(g)$

 $NaCl(s) \stackrel{H_2O}{\Longrightarrow} NaCl(aq)$

 $\stackrel{(a)}{I_2(H_2O)} \stackrel{(b)}{\Longrightarrow} \stackrel{(b)}{I_2(CCl_4)}$

 $CO(g) + 2 H_2(g) \rightleftharpoons CH_3OH(g)$

Dynamic equilibrium in a physical process

Slide 3 of 32

General Chemistry: Chapter 15

15-2 The Equilibrium Constant Expression

The oxidation-reduction reaction of copper(II) and tin(II) in aqueous solution is reversible.

$$2 \operatorname{Cu}^{2+}(\operatorname{aq}) + \operatorname{Sn}^{2+}(\operatorname{aq}) \xrightarrow{k_1} 2 \operatorname{Cu}^{+}(\operatorname{aq}) + \operatorname{Sn}^{4+}(\operatorname{aq})$$

$$2 \operatorname{Cu}^{+}(\operatorname{aq}) + \operatorname{Sn}^{4+}(\operatorname{aq}) \xrightarrow{k_{-1}} 2 \operatorname{Cu}^{2+}(\operatorname{aq}) + \operatorname{Sn}^{2+}(\operatorname{aq})$$

$$2 \operatorname{Cu}^{2+}(\operatorname{aq}) + \operatorname{Sn}^{2+}(\operatorname{aq}) \quad \rightleftharpoons_{k_{-1}}^{k_{1}} \quad 2 \operatorname{Cu}^{+}(\operatorname{aq}) + \operatorname{Sn}^{4+}(\operatorname{aq})$$

Slide 4 of 32

General Chemistry: Chapter 15

TABLE 15.1 Three Approaches to Equilibrium in the Reaction^a 2 Cu²⁺(aq) + Sn²⁺(aq) \implies 2 Cu⁺(aq) + Sn⁴⁺(aq)

	Cu ²⁺ (aq)	Sn ²⁺ (aq)	Cu ⁺ (aq)	Sn ⁴⁺ (aq)
Experiment 1				
Initial amounts, mol	0.100	0.100	0.000	0.000
Equilibrium amounts, mol	0.0360	0.0680	0.0640	0.0320
Equilibrium concentrations, mol/L	0.0360	0.0680	0.0640	0.0320
Experiment 2				
Initial amounts, mol	0.000	0.000	0.100	0.100
Equilibrium amounts, mol	0.0567	0.0283	0.0433	0.0717
Equilibrium concentrations, mol/L	0.0567	0.0283	0.0433	0.0717
Experiment 3				
Initial amounts, mol	0.100	0.100	0.100	0.100
Equilibrium amounts, mol	0.0922	0.0961	0.1078	0.1039
Equilibrium concentrations, mol/L	0.0922	0.0961	0.1078	0.1039

The concentrations printed in blue are used in the calculations in Table 15.2. ^a Reaction carried out in 1.00 L of solution at 298 K.

▲ FIGURE 15-3
Three approaches to equilibrium in the reaction
2 Cu²⁺(aq) + Sn²⁺(aq)
2 Cu⁺(aq) + Sn⁴⁺(aq)

The Equilibrium Constant and Activities

TABLE 15.2

Expt	Trial 1: [Cu ⁺] [Sn ⁴⁺] [Cu ²⁺] [Sn ²⁺]	Trial 2: $\frac{(2 \times [Cu^+]) [Sn^{4+}]}{(2 \times [Cu^{2+}]) [Sn^{2+}]}$	Trial 3: $\frac{[Cu^+]^2[Sn^{4+}]}{[Cu^{2+}]^2[Sn^{2+}]}$
1	$\frac{0.0640 \times 0.0320}{0.0360 \times 0.0680} = 0.837$	$\frac{(2 \times 0.0640) \times 0.0320}{(2 \times 0.0360) \times 0.0680} = 0.837$	$\frac{0.0640^2 \times 0.0320}{0.0360^2 \times 0.0680} = 1.49$
2	$\frac{0.0433 \times 0.0717}{0.0567 \times 0.0283} = 1.93$	$\frac{(2 \times 0.0433) \times 0.0717}{(2 \times 0.0567) \times 0.0283} = 1.93$	$\frac{0.0433^2 \times 0.0717}{0.0567^2 \times 0.0283} = 1.48$
3	$\frac{0.1078 \times 0.1039}{0.0922 \times 0.0961} = 1.26$	$\frac{(2 \times 0.1078) \times 0.1039}{(2 \times 0.0922) \times 0.0961} = 1.26$	$\frac{0.1078^2 \times 0.1039}{0.0922^2 \times 0.0961} = 1.48$

Equilibrium concentration data are from Table 15.1. In Trial 1, the equilibrium concentration of Cu^+ and Sn^{2+} are placed in the numerator and the equilibrium concentration of Cu^{2+} and Sn^{4+} , in the denominator. In Trial 2, each concentration is multiplied by its stoichiometric coefficient. In Trial 3, each concentration is raised to a power equal to its stoichiometric coefficient. Trial 3 has essentially the same value for each experiment. This value is the equilibrium constant *K*.

*G. N. Lewis and M. Randall, Thermodynamics, McGraw Hill, New York, 1923.

Activity

Thermodynamic concept introduced by Lewis. Dimensionless ratio referred to a chosen reference state.

$$a_{B} = \frac{\gamma_{B}[B]}{c_{B}^{0}} = \gamma_{B}[B]$$
 c_{B}^{0} is a standard reference state
= 1 mol L⁻¹ (ideal conditions)

Accounts for non-ideal behaviour in solutions and gases.
An *effective* concentration.

Activity A similar expression applies to gases

$$a_{B} = \frac{\gamma_{B}P_{B}}{P_{B}^{0}} = \gamma_{B}P_{B}$$
 P_{B}^{0} is a standard reference state
= 1 bar (ideal conditions)

Reconsider the equilibrium between Cu²⁺ and Sn²⁺

$$K = \frac{a_{\rm Cu}^2 + a_{\rm Sn^{4+}}}{a_{\rm Cu}^2 + a_{\rm Sn^{2+}}} = 1.48$$
(15.5)

$$a_{Cu^{+}} = \frac{\gamma_{Cu^{+}}[Cu^{+}]}{c^{\circ}}; \qquad a_{Sn^{4+}} = \frac{\gamma_{Sn^{4+}}[Sn^{4+}]}{c^{\circ}}$$
$$a_{Cu^{2+}} = \frac{\gamma_{Cu^{2+}}[Cu^{2+}]}{c^{\circ}}; \qquad a_{Sn^{2+}} = \frac{\gamma_{Sn^{2+}}[Sn^{2+}]}{c^{\circ}}$$

General Chemistry: Chapter 15

Reconsider the equilibrium between Cu²⁺ and Sn²⁺

$$K = \frac{\left(\frac{\gamma_{Cu^{+}}[Cu^{+}]_{eq}}{c^{\circ}}\right)^{2} \frac{\gamma_{Sn^{4+}}[Sn^{4+}]_{eq}}{c^{\circ}}}{\left(\frac{\gamma_{Cu^{2+}}[Cu^{2+}]_{eq}}{c^{\circ}}\right)^{2} \frac{\gamma_{Sn^{2+}}[Sn^{2+}]_{eq}}{c^{\circ}}} \approx \frac{\left[Cu^{+}\right]_{eq}^{2}[Sn^{4+}]_{eq}}{\left[Cu^{2+}\right]_{eq}^{2}[Sn^{2+}]_{eq}} = 1.48$$
(15.6)

A general expression for K

$$a A + b B \dots \rightarrow g G + h H \dots$$

Equilibrium constant = $K_c = \frac{[G]^g [H]^h \dots}{[A]^a [B]^{b \dots}}$

Thermodynamic Equilibrium constant

$$K_{\text{eq}} = \frac{(\mathbf{a}_{\text{G}})^{g}(\mathbf{a}_{\text{H}})^{h} \dots}{(\mathbf{a}_{\text{A}})^{a}(\mathbf{a}_{\text{B}})^{b} \dots} \approx \left(\frac{1}{c^{\circ}}\right)^{\Delta n} \left(\frac{[\mathbf{G}]^{g}[\mathbf{H}]^{h} \dots}{[\mathbf{A}]^{m}[\mathbf{B}]^{n} \dots}\right) = \left(\frac{1}{c^{\circ}}\right)^{\Delta n} K_{\text{eq}}$$

Slide 12 of 32

15-3 Relationships Involving the Equilibrium Constant

Relationship of K to the Balanced Chemical Equation

Reversing an equation causes inversion of *K*.

- Multiplying by coefficients by a common factor raises the equilibrium constant to the corresponding power.
- Dividing the coefficients by a common factor causes the equilibrium constant to be taken to that root.

EXAMPLE 15-2 Relating K to the Balanced Chemical Equation

The following *K* value is given at 298 K for the synthesis of NH₃(g) from its elements.

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g) \qquad K = 5.8 \times 10^5$$

What is the value of *K* at 298 *K* for the following reaction?

$$\mathrm{NH}_3(\mathbf{g}) \rightleftharpoons \frac{1}{2}\mathrm{N}_2(\mathbf{g}) + \frac{3}{2}\mathrm{H}_2(\mathbf{g}) \qquad K = ?$$

Analyze

The solution to this problem lies in recognizing that the reaction is the reverse and one-half of the given reaction. In this example we apply two of the rules given above that relate *K* to balanced chemical reactions.

Solve

First, reverse the given equation. This puts $NH_3(g)$ on $2NH_3(g) \implies N_2(g) + 3H_2(g)$ the left side of the equation, where we need it.

The equilibrium constant K' becomes

Then, to base the equation on 1 mol $NH_3(g)$, divide all coefficients by 2.

This requires the square root of K'.

$$NH_3(g) \rightleftharpoons \frac{1}{2}N_2(g) + \frac{3}{2}H_2(g)$$
$$K = \sqrt{1.7 \times 10^{-6}} = 1.3 \times 10^{-3}$$

 $K' = 1/(5.8 \times 10^5) = 1.7 \times 10^{-6}$

Slide 14 of 32

General Chemistry: Chapter 15

3/22/2020Copyright © 2011 Pearson Canada Inc. Combining Equilibrium Constant Expressions

$$N_{2}O(g) + \frac{1}{2}O_{2} \rightleftharpoons 2 \operatorname{NO}(g) \quad K_{c} = ?$$

$$N_{2}(g) + \frac{1}{2}O_{2} \rightleftharpoons N_{2}O(g) \quad K_{c(2)} = 2.7 \times 10^{+18} = \frac{[N_{2}O]}{[N_{2}][O_{2}]^{\frac{1}{2}}}$$

$$N_{2}(g) + O_{2} \rightleftharpoons 2 \operatorname{NO}(g) \quad K_{c(3)} = 4.7 \times 10^{-31} = \frac{[\operatorname{NO}]^{2}}{[N_{2}][O_{2}]}$$

$$K_{\rm c} = \frac{[{\rm NO}]^2}{[{\rm N}_2{\rm O}][{\rm O}_2]^{\frac{1}{2}}} = \frac{[{\rm NO}]^2}{[{\rm N}_2][{\rm O}_2]} \frac{[{\rm N}_2][{\rm O}_2]^{\frac{1}{2}}}{[{\rm N}_2{\rm O}]} = K_{\rm c(3)} \frac{1}{K_{\rm c(2)}} = 1.7 \times 10^{-13}$$

Slide 15 of 32

General Chemistry: Chapter 15

Gases: The Equilibrium Constant, K_P

- Mixtures of gases are solutions just as liquids are.
- Use K_P, based upon *activities* of gases. $2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{SO}_3(g)$ $K_P = \frac{(a_{\operatorname{SO}_3})^2}{(a_{\operatorname{SO}_2})^2(a_{\operatorname{O}_2})}$

Gases: The Equilibrium Constant, K_C

In *concentration* we can do another substitution

$$2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{SO}_3(g)$$

$$[SO_3] = \frac{n_{SO_3}}{V} = \frac{P_{SO_3}}{RT} \qquad [SO_2] = \frac{P_{SO_2}}{RT} \qquad [O_2] = \frac{P_{O_2}}{RT}$$
$$(a_X) = \frac{[X]}{C^\circ} = \frac{\frac{P_X}{RT}}{C^\circ} \qquad P_X = [X] RT$$

Slide 17 of 32

General Chemistry: Chapter 15

Gases: The Equilibrium Constant, K_C

$$2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{SO}_3(g)$$

$$K_{\rm P} = \frac{(a_{\rm SO_3})^2}{(a_{\rm SO_2})^2(a_{\rm O_2})} = P^{\circ} \left(\frac{(P_{\rm SO_3})^2}{(P_{\rm SO_2})^2(P_{\rm Q})} \right) \qquad P_{\rm X} = [{\rm X}] RT$$
$$= \left(\frac{([{\rm SO_3}] RT)^2}{([{\rm SO_2}] RT)^2([{\rm O_2}] RT)} \right) P^{\circ}$$
$$= \frac{P^{\circ}}{RT} \left(\frac{([{\rm SO_3}])^2}{([{\rm SO_2}])^2([{\rm O_2}])} \right) = \frac{K_{\rm C}}{RT} \qquad \text{Where } P^{\circ} = 1 \text{ bar}$$

An Alternative Derivation

$$2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{SO}_3(g)$$

In general terms: $K_{\rm P} = K_{\rm c} (RT)^{\Delta n}$

EXAMPLE 15-3 Illustrating the Dependence of *K* on the Reference State

Complete the calculation of K_p for reaction (15.11) knowing that $K_c = 2.8 \times 10^2$ (at 1000 K).

Analyze

We use equation (15.16), with R = 0.08314 bar L K⁻¹ mol⁻¹. For reasons outlined on page 666, units are omitted from our calculations.

Solve

Write the equation relating the two equilibrium constants $K_c = RT \times K_p$ with different reference states.

Rearrange the expression to obtain the quantity desired, K_{p} .

Substitute the given data and solve.

$$K_{\rm p} = \frac{K_{\rm c}}{RT}$$

 $K_{\rm p} = \frac{2.8 \times 10^2}{0.08314 \times 1000} = 3.4$

Pure Liquids and Solids

Equilibrium constant expressions do not contain concentration terms for solid or liquid phases of a single component (that is, pure solids or liquids).

$$C(s) + H_2O(g) \implies CO(g) + H_2(g)$$

$$K_{\rm c} = \frac{[\rm CO][\rm H_2]}{[\rm H_2O]^2} = \frac{P_{\rm CO}P_{\rm H_2}}{P_{\rm H_2O}^2} (RT)^1$$

EXAMPLE 15-4 Writing Equilibrium Constant Expressions for Reactions Involving Pure Solids or Liquids

At equilibrium in the following reaction at 60 °C, the partial pressures of the gases are found to be $P_{\rm HI} = 3.70 \times 10^{-3}$ bar and $P_{\rm H_2S} = 1.01$ bar. What is the value of *K* for the reaction?

$$H_2S(g) + I_2(s) \Longrightarrow 2 HI(g) + S(s) \qquad K = ?$$

Analyze

We need to first write the equilibrium constant expression in terms of activities, and then eliminate the activities of pure solids and pure liquids by setting their activities to 1.

Solve

Write the equilibrium constant expression in terms of activities. Note that activities for the iodine and sulfur are not included, since the activity of a pure solid is 1.

The partial pressures are given in bar. The activity of each gas is equal to the numerical value of its partial pressure.

Substitute the given equilibrium data into the equilibrium constant expression.

$$K = \frac{(a_{\rm HI})^2}{(a_{\rm H_2S})}$$

$$a_{\rm HI} = 3.70 \times 10^{-3}$$
 and $a_{\rm H_2S} = 1.01$

$$K = \frac{\left(3.70 \times 10^{-3}\right)^2}{1.01} = 1.36 \times 10^{-5}$$

General Chemistry: Chapter 15

3/22/2020Copyright © 2011 Pearson Canada Inc.

Burnt Lime

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

15-4 The Significance of the Magnitude of the Equilibrium Constant.

TABLE 15.3 Equilibrium Constants of Some Common Reactions			
Reaction	Equilibrium constant, K _p		
$2 H_2(g) + O_2(g) \Longrightarrow 2 H_2O(l)$	$1.4 imes 10^{83}$ at 298 K		
$CaCO_3(s) \Longrightarrow CaO(s) + CO_2(g)$	1.9×10^{-23} at 298 K 1.0 at about 1200 K		
$2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \Longrightarrow 2 \operatorname{SO}_3(g)$	3.4 at 1000 K		
$C(s) + H_2O(g) \Longrightarrow CO(g) + H_2(g)$	1.6×10^{-21} at 298 K 10.0 at about 1100 K		

15-5 The Reaction Quotient, Q: Predicting the Direction of Net Change.

$$\operatorname{CO}(g) + 2 \operatorname{H}_{2}(g) \rightleftharpoons_{k_{-1}}^{k_{1}} \operatorname{CH}_{3}\operatorname{OH}(g)$$

Equilibrium can be approached various ways. Qualitative determination of change of initial conditions as equilibrium is approached is needed.

$$Q_c = \frac{[G]_t^g [H]_t^h}{[A]_t^m [B]_t^n} \qquad \text{At equilibrium } Q_c = K_c$$

Reaction Quotient

EXAMPLE 15-5 Predicting the Direction of a Net Chemical Change in Establishing Equilibrium

To increase the yield of $H_2(g)$ in the water–gas reaction—the reaction of C(g) and $H_2O(g)$ to form CO(g) and $H_2(g)$ —a follow-up reaction called the "water–gas shift reaction" is generally used. In this reaction, some of the CO(g) of the water gas is replaced by $H_2(g)$.

 $CO(g) + H_2O(g) \Longrightarrow CO_2(g) + H_2(g)$

 $K_c = 1.00$ at about 1100 K. The following amounts of substances are brought together and allowed to react at this temperature: 1.00 mol CO, 1.00 mol H₂O, 2.00 mol CO₂, and 2.00 mol H₂. Compared with their initial amounts, which of the substances will be present in a greater amount and which in a lesser amount when equilibrium is established?

Analyze

Our task is to determine the direction of net change by evaluating Q_c and comparing it to K_c .

Solve

Write down the expression for Q_c .

Substitute concentrations into the expression for Q_c , by assuming an arbitrary volume *V* (which cancels out in the calculation).

Compare Q_c to K_c .

 $Q_{\rm c} = \frac{[\rm CO_2][\rm H_2]}{[\rm CO][\rm H_2O]}$ $Q_{\rm c} = \frac{(2.00/V)(2.00/V)}{(1.00/V)(1.00/V)} = 4.00$

4.00 > 1.00

Because $Q_c > K_c$ (that is, 4.00 > 1.00), a net change occurs to the *left*. When equilibrium is established, the amounts of CO and H₂O will be greater than the initial quantities and the amounts of CO₂ and H₂ will be less.

15-6 Altering Equilibrium Conditions: Le Châtelier's Principle

When an equilibrium system is subjected to a change in temperature, pressure, or concentration of a reacting species, the system responds by attaining a new equilibrium that *partially* offsets the impact of the change.

What happens if we add SO_3 to this equilibrium?

Le Châtelier's Principle

Effect of Condition Changes

Adding a gaseous reactant or product changes P_{gas}.
Adding an inert gas changes the total pressure.
Relative partial pressures are unchanged.
Changing the volume of the system causes a change in the equilibrium position.

$$K_{\rm c} = \frac{[{\rm SO}_3]}{[{\rm SO}_2]^2[{\rm O}_2]} = \frac{\left(\frac{n_{\rm SO}_3}{V}\right)^2}{\left(\frac{n_{\rm SO}_2}{V}\right)^2 \frac{n_{\rm O}_2}{V}} = \frac{n_{\rm SO}_3^2}{n_{\rm SO}_2^2 n_{\rm O}_2} V$$

Effect of Change in Volume

$$K_{c} = \frac{[G]^{g}[H]^{h}}{[C]^{c}[D]^{d}} = \frac{n_{G}^{g} n_{H}^{h}}{n_{A}^{a} n_{B}^{a}} V^{(a+b)-(g+h)}$$
$$= \frac{n_{G}^{g} n_{H}^{h}}{n_{A}^{a} n_{B}^{a}} V^{-\Delta n}$$

When the volume of an equilibrium mixture of gases is *reduced*, a net change occurs in the direction that produces *fewer moles of gas*. When the volume is *increased*, a net change occurs in the direction that produces *more moles of gas*.

Effect of the Change of Volume

EXAMPLE 15-7 Applying Le Châtelier's Principle: The Effect of Changing Volume

An equilibrium mixture of $N_2(g)$, $H_2(g)$, and $NH_3(g)$ is transferred from a 1.50 L flask to a 5.00 L flask. In which direction does a net change occur to restore equilibrium?

 $N_2(g) + 3 H_2(g) \Longrightarrow 2 NH_3(g)$

Analyze

Because the volume has increased, the reaction will move in the direction that increases the number of moles of gas.

Solve

When the gaseous mixture is transferred to the larger flask, the partial pressure of each gas and the total pressure drop. Whether we think in terms of a decrease in pressure or an increase in volume, we reach the same conclusion. Equilibrium shifts in such a way as to produce a larger number of moles of gas. Some of the NH_3 originally present decomposes back to N_2 and H_2 . A net change occurs in the direction of the reverse reaction—to the left—in restoring equilibrium.

Effect of Temperature on Equilibrium

Raising the temperature of an equilibrium mixture shifts the equilibrium condition in the *direction of the endothermic* reaction.

Lowering the temperature causes a shift in the *direction of the exothermic* reaction.

EXAMPLE 15-8 Applying Le Châtelier's Principle: Effect of Temperature on Equilibrium

Consider the reaction

 $2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \Longrightarrow 2 \operatorname{SO}_3(g) \qquad \Delta H^\circ = -197.8 \text{ kJ}$

Will the amount of $SO_3(g)$ formed from given amounts of $SO_2(g)$ and $O_2(g)$ be greater at high or low temperatures?

Analyze

We must think of the impact made by changing the temperature. In general, an increase in temperature causes a shift in the direction of the endothermic reaction.

Solve

The sign of ΔH° tells us that the forward reaction is exothermic. Thus, the reverse reaction is endothermic. In this case, increasing the temperature will favor the reverse reaction and lowering the temperature will favor the forward reaction. The conversion of SO₂ to SO₃ is favored at *low* temperatures.

Effect of a Catalyst on Equilibrium

- A catalyst changes the mechanism of a reaction to one with a lower activation energy.
- A catalyst has no effect on the condition of equilibrium.
 - But does affect the *rate* at which equilibrium is attained.

EXAMPLE 15-9 Determining a Value of K_c from the Equilibrium Quantities of Substances

Dinitrogen tetroxide, $N_2O_4(l)$, is an important component of rocket fuels—for example, as an oxidizer of liquid hydrazine in the Titan rocket. At 25 °C, N_2O_4 is a colorless gas that partially dissociates into NO_2 , a red-brown gas. The color of an equilibrium mixture of these two gases depends on their relative proportions, which in turn depends on the temperature (Fig. 15-8).

Equilibrium is established in the reaction $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$ at 25 °C. The quantities of the two gases present in a 3.00 L vessel are 7.64 g N_2O_4 and 1.56 g NO_2 . What is the value of K_c for this reaction?

Analyze

We are given the equilibrium amounts (in terms of mass) of the reactants and products, along with the volume of the reaction vessel. We use these values to determine the equilibrium concentrations and plug them into the equilibrium constant expression.

Solve

Convert the mass of N2O4 to moles.mol N2O4 = 7.64 g N2O4 ×
$$\frac{1 \text{ mol N2O4}}{92.01 \text{ g N2O4}}$$
 = 8.303 × 10⁻² molConvert moles of N2O4 to mol/L. $[N_2O_4] = \frac{8.303 \times 10^2 \text{ mol}}{3.00 \text{ L}} = 0.0277 \text{ M}$ Convert the mass of NO2 to moles.mol NO2 = 1.56 g NO2 × $\frac{1 \text{ mol NO2}}{46.01 \text{ g NO2}}$ = 3.391 × 10⁻² molConvert moles of NO2 to mol/L. $[NO_2] = \frac{3.391 \times 10^{-2}}{3.00 \text{ L}} = 0.0113 \text{ M}$ Write the equilibrium constant expression, substitute the equilibrium concentrations, and a alwa for K $K_c = \frac{[NO_2]^2}{[N2O_4]} = \frac{(0.0113)^2}{(0.0277)} = 4.61 \times 10^{-3}$

Slide 37 of 32

and solve for K_c .

General Chemistry: Chapter 15

Copyright © 2011 Pearson Canada Inc.

 $1 \dots 1 N O$

(a)

▲ FIGURE 15-8

The equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$ (a) At dry ice temperatures, N_2O_4 exists as a solid. The gas in equilibrium with the solid is mostly colorless N_2O_4 , with only a trace of brown NO_2 . (b) When warmed to room temperature and above, the N_2O_4 melts and vaporizes. The proportion of $NO_2(g)$ at equilibrium increases over that at low temperatures, and the equilibrium mixture of $N_2O_4(g)$ and $NO_2(g)$ has a red-brown color.

▲ The Lewis structures of N_2O_4 and $NO_2(g)$ Nitrogen dioxide is a free radical that combines exothermically to form dinitrogen tetroxide.

General Chemistry: Chapter 15

EXAMPLE 15-10 Determining a Value of K_p from Initial and Equilibrium Amounts of Substances: Relating K_c and K_p

The equilibrium condition for $SO_2(g)$, $O_2(g)$, and $SO_3(g)$ is important in sulfuric acid production. When a 0.0200 mol sample of SO_3 is introduced into an evacuated 1.52 L vessel at 900 K, 0.0142 mol SO_3 is present at equilibrium. What is the value of K_p for the dissociation of $SO_3(g)$ at 900 K?

 $2 \operatorname{SO}_3(g) \rightleftharpoons 2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \qquad K_p = ?$

Analyze

Let's first determine K_c and then convert to K_p by using equation (15.16). In the ICE table below, the key term leading to the other data is the change in amount of SO₃: In progressing from 0.0200 mol SO₃ to 0.0142 mol SO₃, 0.0058 mol SO₃ is dissociated. The *negative sign* (-0.0058 mol) indicates that this amount of SO₃ is consumed in establishing equilibrium. In the row labeled "changes," the changes in amounts of SO₂ and O₂ must be related to the change in amount of SO₃. For this, we use the stoichiometric coefficients from the balanced equation: 2, 2, and 1. That is, *two* moles of SO₂ and *one* mole of O₂ are produced for every *two* moles of SO₃ that dissociate.

Solve

The reaction:	2 SO ₃ (g)	\rightleftharpoons	2 SO ₂ (g)	+	O ₂ (g)
initial amounts:	0.0200 mol		0.00 mol		0.00 mol
changes:	-0.0058 mol		+0.0058 mol		+0.0029 mol
equil amounts:	0.0142 mol		0.0058 mol		0.0029 mol
equil concns:	$[SO_3] = \frac{0.0142 \text{ mol}}{1.52 \text{ L}};$		$[SO_2] = \frac{0.0058 \text{ mol}}{1.52 \text{ L}};$		$[O_2] = \frac{0.0029 \text{ mol}}{1.52 \text{ L}}$
	$[SO_3] = 9.34 \times 10^{-3} \text{ M};$		$[SO_2] = 3.8 \times 10^{-3} \text{ M}$;	$[O_2] = 1.9 \times 10^{-3} M$
$K_{\rm c} = \frac{[\rm SO_2]^2[\rm O_2]}{[\rm SO_3]^2} = \frac{(3.8 \times 10^{-3})^2(1.9 \times 10^{-3})}{(9.34 \times 10^{-3})^2} = 3.1 \times 10^{-4}$ $K_{\rm p} = K_{\rm c}(RT)^{\Delta n_{\rm gas}} = 3.1 \times 10^{-4} (0.0821 \times 900)^{(2+1)-2}$ $= 3.1 \times 10^{-4} (0.0821 \times 900)^1 = 2.3 \times 10^{-2}$					

Slide 39 of 32

General Chemistry: Chapter 15

EXAMPLE 15-11 Determining Equilibrium Partial and Total Pressures from a Value of K_p

Ammonium hydrogen sulfide, $NH_4HS(s)$, used as a photographic developer, is unstable and dissociates at room temperature.

$$NH_4HS(s) \implies NH_3(g) + H_2S(g)$$
 $K_p = 0.108 \text{ at } 25 \text{ °C}$

A sample of NH₄HS(s) is introduced into an evacuated flask at 25 °C. What is the total gas pressure at equilibrium?

Analyze

We begin by writing the equilibrium constant expression in terms of pressure. The key step is to recognize that the pressure of ammonia is equal to the pressure of hydrogen sulfide. This will then allow us to determine the pressure of ammonia and hydrogen sulfide.

Solve

 $K_{\rm p}$ for this reaction is just the product of the equilibrium partial pressures of NH₃(g) and H₂S(g), each stated in atmospheres. (There is no term for NH₄HS because it is a solid.) Because these gases are produced in equimolar amounts, $P_{\rm NH_3} = P_{\rm H_2S}$.

Find P_{NH_3} . (Note that the unit atm appears because in the equilibrium expression the reference pressure P° was implicitly included.)

The total pressure is

$$K_{\rm p} = (P_{\rm NH_3})(P_{\rm H_2S}) = 0.108$$

$$K_{\rm p} = (P_{\rm NH_3})(P_{\rm H_2S}) = (P_{\rm NH_3})(P_{\rm NH_3}) = (P_{\rm NH_3})^2 = 0.108$$

$$P_{\rm NH_3} = \sqrt{0.108} = 0.329 \text{ atm} \qquad P_{\rm H_2S} = P_{\rm NH_3} = 0.329 \text{ atm}$$

$$P_{\text{tot}} = P_{\text{NH}_3} + P_{\text{H}_2\text{S}} = 0.329 \text{ atm} + 0.329 \text{ atm} = 0.658 \text{ atm}$$

Slide 40 of 32

General Chemistry: Chapter 15

EXAMPLE 15-12 Calculating Equilibrium Concentrations from Initial Conditions

A 0.0240 mol sample of $N_2O_4(g)$ is allowed to come to equilibrium with $NO_2(g)$ in a 0.372 L flask at 25 °C. Calculate the amount of N_2O_4 present at equilibrium (Fig. 15-10).

 $N_2O_4(g) \Longrightarrow 2 NO_2(g)$ $K_c = 4.61 \times 10^{-3} at 25 °C$

◄ FIGURE 15-10 Equilibrium in the reaction

 $N_2O_4(g) \Longrightarrow 2 NO_2(g)$

at 25 °C—Example 15-12 illustrated Each "molecule" illustrated represents 0.001 mol. (a) Initially, the bulb contains 0.024 mol N₂O₄, represented by 24 "molecules." (b) At equilibrium, some "molecules" of N₂O₄ have dissociated to NO₂. The 21 "molecules" of N₂O₄ and 6 of NO₂ correspond to 0.021 mol N₂O₄ and 0.006 mol NO₂ at equilibrium.

Solve

The amount of N₂O₄ at equilibrium is $(0.0240 - x) = (0.0240 - 0.0030) = 0.0210 \text{ mol N}_2O_4$.

Slide 42 of 32

General Chemistry: Chapter 15

EXAMPLE 15-13 Using the Reaction Quotient, Q_c, in an Equilibrium Calculation

Solid silver is added to a solution with these initial concentrations: $[Ag^+] = 0.200 \text{ M}, [Fe^{2+}] = 0.100 \text{ M}$, and $[Fe^{3+}] = 0.300 \text{ M}$. The following reversible reaction occurs.

$$Ag^{+}(aq) + Fe^{2+}(aq) \Longrightarrow Ag(s) + Fe^{3+}(aq) \qquad K_c = 2.98$$

What are the ion concentrations when equilibrium is established?

Analyze

Because all reactants and products are present initially, we need to use the reaction quotient Q_c to determine the direction in which a net change occurs.

$$Q_{\rm c} = \frac{[{\rm Fe}^{3+}]}{[{\rm Ag}^+][{\rm Fe}^{2+}]} = \frac{0.300}{(0.200)(0.100)} = 15.0$$

Because Q_c (15.0) is larger than K_c (2.98), a net change must occur in the direction of the reverse reaction, to the *left*. Let's define *x* as the change in molarity of Fe³⁺. Because the net change occurs to the *left*, we designate the changes for the species on the left side of the equation as positive and those on the right side as negative.

Solve

The reaction:	Ag ⁺ (aq)	+	Fe ²⁺ (aq)	\implies Ag(s) + Fe ³⁺ (aq)
initial concns:	0.200 M		0.100 M	0.300 M
changes:	+x M		+x M	$-x \mathbf{M}$
equil concns:	(0.200 + x) M		(0.100 + x) M	(0.300 - x) M
$K_{\rm c} = \frac{[{\rm Fe}^{3+}]}{[{\rm Ag}^+][{\rm Fe}^{2+}]} = \frac{(0.300 - x)}{(0.200 + x)(0.100 + x)} = 2.98$				

This equation, which is solved in Appendix A-3, is a quadratic equation for which the acceptable root is x = 0.11. To obtain the equilibrium concentrations, we substitute this value of x into the terms shown in the table of data.

[Ag⁺]_{equil} = 0.200 + 0.11 = 0.31 M[Fe²⁺]_{equil} = 0.100 + 0.11 = 0.21 M [Fe³⁺]_{equil} = 0.300 - 0.11 = 0.19 M

General Chemistry: Chapter 15