Introduction to Fluid Mechanics

Chapter 7

Dimensional Analysis and Similitude

Prof. Dr. Ali PINARBAŞI

Vildiz Technical University
Mechanical Engineering Department
Besiktas, ISTANBUL

Main Topics

\checkmark Nondimensionalizing the Basic Differential Equations
\checkmark Nature of Dimensional Analysis
\checkmark Buckingham Pi Theorem
\checkmark Significant Dimensionless Groups in Fluid Mechanics
\checkmark Flow Similarity and Model Studies

Nondimensionalizing the Basic Differential Equations

Example:
\checkmark Steady
\checkmark Incompressible
\checkmark Two-dimensional
\checkmark Newtonian Fluid

Nondimensionalizing the Basic Differential Equations

$$
\begin{gathered}
\rho\left(u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right)=-\frac{\partial p}{\partial x}+\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) \\
\rho\left(u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}\right)=-\rho g-\frac{\partial p}{\partial y}+\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right) \\
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0
\end{gathered}
$$

Nondimensionalizing the Basic Differential Equations

$$
\begin{aligned}
& u^{*} \frac{\partial u^{*}}{\partial x^{*}}+v^{*} \frac{\partial u^{*}}{\partial y^{*}}=\frac{\partial p^{*}}{\partial x^{*}}+\frac{\mu^{2}}{\rho V_{\infty} L}\left(\frac{\partial^{2} u^{*}}{\partial x^{*}}+\frac{\partial^{2} u^{*}}{\partial y^{*}}\right) \\
& \left.u^{*} \frac{\partial v^{*}}{\partial x^{*}}+v^{*} \frac{\partial v^{*}}{\partial y^{*}}=\frac{\rho L}{V_{\infty}^{2}}-\frac{\partial p^{*}}{\partial y^{*}}+\frac{\mu}{\rho} \|_{\infty} L\left(\frac{\partial^{2} v^{*}}{\partial x^{*}}+\frac{\partial^{2} v^{*}}{\partial y^{*}}\right)^{2}\right) \\
& \frac{\partial u^{*}}{\partial x^{*}}+\frac{\partial v^{*}}{\partial y^{*}}=0
\end{aligned}
$$

Nature of Dimensional Analysis

Example: Drag on a Sphere

$$
F=f(D, V, \rho, \mu)
$$

\checkmark Drag depends on FOUR parameters: sphere size (D); speed (V); fluid density (ρ); fluid viscosity (μ)
\checkmark Difficult to know how to set up experiments to determine dependencies
\checkmark Difficult to know how to present results (four graphs?)

Nature of Dimensional Analysis

Example: Drag on a Sphere

$$
\frac{F}{\rho V^{2} D^{2}}=f\left(\frac{\rho V D}{\mu}\right)
$$

\checkmark Only one dependent and one independent variable
\checkmark Easy to set up experiments to determine dependency
\checkmark Easy to present results (one graph)

Nature of Dimensional Analysis

Fig 7 , Experimentally derived relation between the nondimensional parameters $[4]$

Buckingham Pi Theorem

\checkmark Step 1:
List all the dimensional parameters involved
Let n be the number of parameters
Example: For drag on a sphere, F, V, D, ρ, μ, and $n=5$

Buckingham Pi Theorem

\checkmark Step 2
Select a set of fundamental (primary) dimensions

For example MLt, or FLt
Example: For drag on a sphere choose MLt

Buckingham Pi Theorem

\checkmark Step 3
List the dimensions of all parameters in terms of primary dimensions

Let r be the number of primary dimensions
Example: For drag on a sphere $r=3$

$$
\begin{array}{lllll}
F & V & D & \rho & \mu \\
\frac{M L}{t^{2}} & \frac{L}{t} & L & \frac{M}{L^{3}} & \frac{M}{L t} \\
\hline
\end{array}
$$

Buckingham Pi Theorem

\checkmark Step 4
Select a set of r dimensional parameters that includes all the primary dimensions

> Example: For drag on a sphere $(m=r=3)$ select ρ, V, D

Buckingham Pi Theorem

\checkmark Step 5

Set up dimensional equations, combining the parameters selected in Step 4 with each of the other parameters in turn, to form dimensionless groups

There will be $\boldsymbol{n} \boldsymbol{- m}$ equations
Example: For drag on a sphere

$$
\Pi_{1}=\rho^{a} V^{b} D^{c} F
$$

Buckingham Pi Theorem

\checkmark Step 5 (Continued)

Example: For drag on a sphere

$$
\begin{aligned}
& \left(\frac{M}{L^{3}}\right)^{a}\left(\frac{L}{t}\right)^{b}(L)^{c}\left(\frac{M L}{t^{2}}\right)=M^{0} L^{0} t^{0} \\
& =\Pi_{1}=\frac{F}{\rho V^{2} D^{2}} \\
& =1
\end{aligned}
$$

Buckingham Pi Theorem

\checkmark Step 6
Check to see that each group obtained is dimensionless

Example: For drag on a sphere

$$
\left[\Pi_{1}\right]=\left[\frac{F}{\rho V^{2} D^{2}}\right] \quad F \frac{L^{4}}{F t^{2}}\left(\frac{t}{L}\right)^{2} \frac{1}{L^{2}}=1
$$

The drag force, F, on a smooth sphere depends on the relative speed, V, the sphere diameter, D, the fluid density, ρ, and the fluid viscosity, μ. Obtain a set of dimensionless groups that can be used to correlate experimental data.
(1) $F \quad V \quad D \quad \rho \quad \mu \quad n=5$ dimensional parameters
(2) Select primary dimensions M, L, and t.
(3) $F \quad V \quad D \quad \rho \quad \mu$
$\frac{M L}{t^{2}} \quad \frac{L}{t} \quad L \quad \frac{M}{L^{3}} \quad \frac{M}{L t} \quad r=3$ primary dimensions
(4) Select repeating parameters $\rho, V, D . \quad m=r=3$ repeating parameters
(5) Then $n-m=2$ dimensionless groups will result.

$$
\Pi_{1}=\rho^{a} V^{b} D^{c} F \quad \text { and } \quad\left(\frac{M}{L^{3}}\right)^{a}\left(\frac{L}{t}\right)^{b}(L)^{c}\left(\frac{M L}{t^{2}}\right)=M^{0} L^{0} t^{0}
$$

$$
\left.\begin{array}{rcc}
M: & a+1=0 & a=-1 \\
L: & -3 a+b+c+1=0 & c=-2 \\
t: & -b-2=0 & b=-2
\end{array}\right\} \quad \text { Therefore, } \Pi_{1}=\frac{F}{\rho V^{2} D^{2}}
$$

$$
\Pi_{2}=\rho^{d} V^{e} D^{f} \mu \quad \text { and }\left(\frac{M}{L^{3}}\right)^{d}\left(\frac{L}{t}\right)^{e}(L)^{f}\left(\frac{M}{L t}\right)=M^{0} L^{0} t^{0}
$$

$$
\left.\begin{array}{ccc}
M: & d+1=0 & d=-1 \\
L: & -3 d+e+f-1=0 & f=-1 \\
t: & -e-1=0 & e=-1
\end{array}\right\} \quad \text { Therefore, } \Pi_{2}=\frac{\mu}{\rho V D}
$$

(6) Check using F, L, t dimensions

$$
\begin{aligned}
& {\left[\Pi_{1}\right]=\left[\frac{F}{\rho V^{2} D^{2}}\right] \text { and } F \frac{L^{4}}{F t^{2}}\left(\frac{t}{L}\right)^{2} \frac{1}{L^{2}}=1} \\
& {\left[\Pi_{2}\right]=\left[\frac{\mu}{\rho V D}\right] \text { and } \frac{F t}{L^{2}} \frac{L^{4}}{F t^{2}} \frac{t}{L} \frac{1}{L}=1} \\
& \begin{array}{r}
\frac{F}{\rho V^{2} D^{2}}=f\left(\frac{\mu}{\rho V D}\right) \\
\end{array}
\end{aligned}
$$

Significant Dimensionless Groups in Fluid Mechanics

Viscous force $\sim \quad \tau A=\mu \frac{d u}{d y} A \propto \mu \frac{V}{L} L^{2}=\mu V L$
Pressure force \sim
$$
\Delta p A \propto \Delta p L^{2}
$$
Gravity force \sim
Surface tension \sim
$$
m g \propto g \rho L^{3}
$$
$$
\sigma L
$$
Compressibility
$$
E_{v} A \propto E_{v} L^{2}
$$
force ~

$$
\begin{aligned}
& \text { Compressibility } \\
& \text { force } \sim
\end{aligned} \quad \frac{\text { compressibility force }}{\text { inertia }} \sim \frac{E_{v} L^{2}}{\rho V^{2} L^{2}}=\frac{E_{v}}{\rho V^{2}}
$$

$$
\begin{aligned}
& \text { Viscous force } \sim \text {, } \sim \text { K, } \frac{\mathrm{viscous}}{\text { inertia }} \sim \quad \frac{\mu V L}{\rho V^{2} L^{2}}=\frac{\mu}{\rho V L} \\
& \text { Pressure force } \sim \text {, } \quad \frac{\text { pressure }}{\text { inertia }} \sim \sim \frac{\Delta p L^{2}}{\rho V^{2} L^{2}}=\frac{\Delta p}{\rho V^{2}} \\
& \text { Gravity force } \sim \text {, } \frac{\text { gravitia }}{\text { inertia }} \sim \frac{g \rho L}{\rho V^{2} L^{2}}=\frac{g L}{V^{2}} \\
& \text { Surface tension } \sim \text { surface tension } \quad \sim \quad \frac{\sigma L}{\rho V^{2} L^{2}}=\frac{\sigma}{\rho V^{2} L}
\end{aligned}
$$

Significant Dimensionless Groups in Fluid Mechanics

\checkmark Reynolds Number $R e=\frac{\rho V L}{\mu}=\frac{V L}{\nu}$
\checkmark Mach Number

$$
M=\frac{V}{c}
$$

Significant Dimensionless Groups in Fluid Mechanics

\checkmark Froude Number

$$
F r=\frac{V}{\sqrt{g L}}
$$

\checkmark Weber Number

$$
W e=\frac{\rho V^{2} L}{\sigma}
$$

Significant Dimensionless Groups in Fluid Mechanics

\checkmark Euler Number

$$
E u=\frac{\Delta p}{\frac{1}{2} \rho V^{2}}
$$

\checkmark Cavitation Number $C a=\frac{p-p_{v}}{\frac{1}{2} \rho V^{2}}$

Flow Similarity and Model Studies

\checkmark Geometric Similarity

- Model and prototype have same shape
- Linear dimensions on model and prototype correspond within constant scale factor
\checkmark Kinematic Similarity
- Velocities at corresponding points on model and prototype differ only by a constant scale factor
\checkmark Dynamic Similarity
- Forces on model and prototype differ only by a constant scale factor

Flow Similarity and Model Studies

\checkmark Example: Drag on a Sphere

$$
\begin{aligned}
& F=f(D, V, \rho, \mu) \\
& \frac{F}{\rho V^{2} D^{2}}=f_{1}\left(\frac{\rho V D}{\mu}\right)
\end{aligned}
$$

Flow Similarity and Model Studies

\checkmark Example: Drag on a Sphere

For dynamic similarity ...

$$
\left(\frac{\rho V D}{\mu}\right)_{\text {model }}=\left(\frac{\rho V D}{\mu}\right)_{\text {prototype }}
$$

... then ...

$$
\left(\frac{F}{\rho V^{2} D^{2}}\right)_{\text {model }}=\left(\frac{F}{\rho V^{2} D^{2}}\right)_{\text {prototype }}
$$

Flow Similarity and Model Studies

\checkmark Incomplete Similarity

Sometimes (e.g., in aerodynamics) complete similarity cannot be obtained, but phenomena may still be successfully modelled

Flow Similarity and Model Studies

\checkmark Scaling with Multiple Dependent Parameters

Example: Centrifugal Pump

Pump Head $\quad h=g_{1}(Q, \rho, \omega, D, \mu)$

Pump Power $\mathscr{P}=g_{2}(Q, \rho, \omega, D, \mu)$

Flow Similarity and Model Studies

\checkmark Scaling with Multiple Dependent Parameters
Example: Centrifugal Pump
Head Coefficient $\frac{h}{\omega^{2} D^{2}}=f_{1}\left(\frac{Q}{\omega D^{3}}, \frac{\rho \omega D^{2}}{\mu}\right)$
Power Coefficient $\frac{\mathscr{P}}{\rho \omega^{3} D^{5}}=f_{2}\left(\frac{Q}{\omega D^{3}}, \frac{\rho \omega D^{2}}{\mu}\right)$

Flow Similarity and Model Studies

\checkmark Scaling with Multiple Dependent Parameters
Example: Centrifugal Pump
(Negligible Viscous Effects)

$$
\begin{aligned}
& \text { If } \ldots \frac{Q_{1}}{\omega_{1} D_{1}^{3}}=\frac{Q_{2}}{\omega_{2} D_{2}^{3}} \ldots \text { then } \ldots \\
& \frac{h_{1}}{\omega_{1}^{2} D_{1}^{2}}=\frac{h_{2}}{\omega_{2}^{2} D_{2}^{2}} \text { 㐌1 } \\
& \rho_{1} \omega_{1}^{3} D_{1}^{5}
\end{aligned}=\frac{\mathscr{P}_{2}}{\rho_{2} \omega_{2}^{3} D_{2}^{5}}
$$

Flow Similarity and Model Studies

\checkmark Scaling with Multiple Dependent Parameters

Example: Centrifugal Pump

Specific Speed

$$
N_{s}=\frac{\omega Q^{1 / 2}}{h^{3 / 4}} \text { t t } N_{s_{c u}}=\frac{\omega Q^{1 / 2}}{H^{3 / 4}}
$$

Introduction to Fluid Mechanics

Chapter 8 Internal Incompressible Viscous Flow

Prof. Dr. Ali PINARBAŞI

Vildiz Technical University
Mechanical Engineering Department
Besiktas, ISTANBUL

Main Topics

\checkmark Entrance Region
\checkmark Fully Developed Laminar Flow Between Infinite Parallel Plates
\checkmark Fully Developed Laminar Flow in a Pipe
\checkmark Turbulent Velocity Profiles in Fully Developed Pipe Flow
\checkmark Energy Considerations in Pipe Flow
\checkmark Calculation of Head Loss
\checkmark Solution of Pipe Flow Problems
\checkmark Flow Measurement

Entrance Region

Fig. 8.1 Flow in the entrance region of a pipe.
The entrance length for laminar pipe flow

$$
\begin{aligned}
& \text { I } \frac{L}{D} \simeq 0.06 \frac{\rho \bar{v} D}{\mu} \\
& L \simeq 0.06 \mathrm{Re} D \leq(0.06)(2300) D=138 D
\end{aligned}
$$

Fully Developed Laminar Flow Between Infinite Parallel Plates

\checkmark Both Plates Stationary

$$
u=\frac{a^{2}}{2 \mu}\left(\frac{\partial p}{\partial x}\right)\left[\left(\frac{y}{a}\right)^{2}-\left(\frac{y}{a}\right)\right]
$$

Piston-cylinder approximated as parallel plates.

Fig. 8.3 Control volume for analysis of laminar flow between stationary infinite parallel plates.

$$
\begin{array}{lll}
\text { at } & y=0 & u=0 \\
\text { at } & y=a & u=0
\end{array}
$$

Basic equation:

$$
\left.\begin{array}{rl}
=0(3) & =0(1) \\
F_{S_{x}} & +F / /_{B_{x}}
\end{array}=\frac{\partial f}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}\right)
$$

Assumptions: (1) Steady flow (given)
(2) Fully developed flow (given)
(3) $F_{B_{x}}=0$ (given)
the pressure force

$$
F_{S_{x}}=0
$$

$$
d F_{L}=\left(p-\frac{\partial p}{\partial x} \frac{d x}{2}\right) d y d z \underset{\sigma_{R}}{\square} d F_{R}=-\left(p+\frac{\partial p}{\partial x} \frac{d x}{2}\right) d y d z
$$

the shear force

$$
\begin{aligned}
& d F_{T}=\left(\tau_{y x}+\frac{d \tau_{y x}}{d y} \frac{d y}{2}\right) d x d z \\
& \frac{d \tau_{y x}}{d y}=\frac{\partial p}{\partial x}=\mathrm{constant} \\
& \tau_{y x}=\left(\frac{\partial p}{\partial x}\right) y+c_{1} \\
& \tau_{y x}=\mu \frac{d u}{d y} \\
& \mu \frac{d u}{d y}=\left(\frac{\partial p}{\partial x}\right) y+c_{1} \\
& u=\frac{1}{2 \mu}\left(\frac{\partial p}{\partial x}\right) y^{2}+\frac{c_{1}}{\mu} y+c_{2}
\end{aligned}
$$

$y=a, u=0$.

$$
0=\frac{1}{2 \mu}\left(\frac{\partial p}{\partial x}\right) a^{2}+\frac{c_{1}}{\mu} a, c_{1}=-\frac{1}{2}\left(\frac{\partial p}{\partial x}\right) a
$$

$$
u=\frac{1}{2 \mu}\left(\frac{\partial p}{\partial x}\right) y^{2}-\frac{1}{2 \mu}\left(\frac{\partial p}{\partial x}\right) a y=\frac{a^{2}}{2 \mu}\left(\frac{\partial p}{\partial x}\right)\left[\left(\frac{y}{a}\right)^{2}-\left(\frac{y}{a}\right)\right]
$$

The shear stress distribution

$$
\tau_{y x}=\left(\frac{\partial p}{\partial x}\right) y+c_{1}=\left(\frac{\partial p}{\partial x}\right) y-\frac{1}{2}\left(\frac{\partial p}{\partial x}\right) a=a\left(\frac{\partial p}{\partial x}\right)\left[\frac{y}{a}-\frac{1}{2}\right]
$$

Volume Flow Rate

$$
\begin{aligned}
& Q=\int_{0}^{a} u l d y \quad \text { or } \quad \frac{Q}{l}=\int_{0}^{a} \frac{1}{2 \mu}\left(\frac{\partial p}{\partial x}\right)\left(y^{2}-a y\right) d y \\
& \frac{Q}{l}=-\frac{1}{12 \mu}\left(\frac{\partial p}{\partial x}\right) a^{3}+\frac{\square}{2}+1
\end{aligned}
$$

Flow Rate as a Function of Pressure Drop

$$
\begin{aligned}
& \frac{\partial p}{\partial x}=\frac{p_{2}-p_{1}}{L}=\frac{-\Delta p}{L} \\
& \frac{Q}{l}=-\frac{1}{12 \mu}\left[\frac{-\Delta p}{L}\right] a^{3}=\frac{a^{3} \Delta p}{12 \mu L}
\end{aligned}
$$

Average Velocity

$$
\bar{V}=\frac{Q}{A}=-\frac{1}{12 \mu}\left(\frac{\partial p}{\partial x}\right) \frac{a^{3} l}{l a}=-\frac{1}{12 \mu}\left(\frac{\partial p}{\partial x}\right) a^{2}
$$

Point of Maximum Velocity

$$
\begin{gathered}
\frac{d u}{d y}=\frac{a^{2}}{2 \mu}\left(\frac{\partial p}{\partial x}\right)\left[\frac{2 y}{a^{2}}-\frac{1}{a}\right] \quad \frac{d u}{d y}=0 \quad \text { at } \quad y=\frac{a}{2} \\
y=\frac{a}{2}, \quad u=u_{\max }=-\frac{1}{8 \mu}\left(\frac{\partial p}{\partial x}\right) a^{2}=\frac{3}{2} \bar{V} \quad \\
\quad, \quad
\end{gathered}
$$

$$
u=\frac{a^{2}}{2 \mu}\left(\frac{\partial p}{\partial x}\right)\left[\left(\frac{y^{\prime}}{a}\right)^{2}-\frac{1}{4}\right]
$$

Fully Developed Laminar Flow Between Infinite Parallel Plates

\checkmark Both Plates Stationary

- Transformation of Coordinates

E xample 8.1 LEAKAGE FLOW PAST A PISTON

A hydraulic system operates at a gage pressure of 20 MPa and 55 C . The hydraulic fluid is SAE 10 W oil. A control valve consists of a piston 25 mm in diameter, fitted to a cylinder with a mean radial clearance of 0.005 mm . Determine the leakage flow rate if the gage pressure on the low-pressure side of the piston is 1.0 MPa . (The piston is 15 mm long.)

$p_{1}=20 \mathrm{MPa}$ (gage)

Assumptions: (1) Laminar flow.
(2) Steady flow.
(3) Incompressible flow.
(4) Fully developed flow. (Note $\mathrm{L}=\mathrm{a} 5$ 15=0:005 5 3000!)

$$
Q=\frac{\pi D a^{3} \Delta p}{12 \mu L}
$$

For SAE 10 W oil at $55^{\circ} \mathrm{C}, \mu=0.018 \mathrm{~kg} /(\mathrm{m} \cdot \mathrm{s})$

$$
Q=\frac{\pi}{12} \times 25 \mathrm{~mm} \times(0.005)^{3} \mathrm{~mm}^{3} \times(20-1) 10^{6} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m} \cdot \mathrm{~s}}{0.018 \mathrm{~kg}} \times \frac{1}{15 \mathrm{~mm}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}
$$

$$
Q=57.6 \mathrm{~mm}^{3} / \mathrm{s}
$$

$$
\bar{V}=\frac{Q}{A}=\frac{Q}{\pi D a}=57.6 \frac{\mathrm{~mm}^{3}}{\mathrm{~s}} \times \frac{1}{\pi} \times \frac{1}{25 \mathrm{~mm}} \times \frac{1}{0.005 \mathrm{~mm}} \times \frac{\mathrm{m}}{10^{3} \mathrm{~mm}}=0.147 \mathrm{~m} / \mathrm{s}
$$

$$
R e=\frac{\rho \bar{V} a}{\mu}=\frac{\mathrm{SG} \rho_{\mathrm{H}_{2} \mathrm{O}} \bar{V} a}{\mu}
$$

$$
\text { For SAE } 10 \mathrm{~W} \text { oil, } \mathrm{SG}=0.92,
$$

$$
R e=0.92 \times 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.147 \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.005 \mathrm{~mm} \times \frac{\mathrm{m} \cdot \mathrm{~s}}{0.018 \mathrm{~kg}} \times \frac{\mathrm{m}}{10^{3} \mathrm{~mm}}=0.0375
$$

Thus flow is surely laminar, since $R e \ll 1400$.

Fully Developed Laminar Flow Between Infinite Parallel Plates

\checkmark Both Plates Stationary

- Shear Stress Distribution

$$
\tau_{y x}=a\left(\frac{\partial p}{\partial x}\right)\left[\frac{y}{a}-\frac{1}{2}\right]
$$

- Volume Flow Rate

$$
\frac{Q}{l}=-\frac{1}{12 \mu}\left(\frac{\partial p}{\partial x}\right) a^{3}
$$

Fully Developed Laminar Flow Between Infinite Parallel Plates

\checkmark Both Plates Stationary

- Flow Rate as a Function of Pressure Drop

$$
\frac{Q}{l}=\frac{a^{3} \Delta p}{12 \mu L}
$$

- Average and Maximum Velocities

$$
\bar{V}=-\frac{1}{12 \mu}\left(\frac{\partial p}{\partial x}\right) a^{2} \quad u_{\max }=-\frac{1}{8 \mu}\left(\frac{\partial p}{\partial x}\right) a^{2}=\frac{3}{2} \bar{V}
$$

Fully Developed Laminar Flow Between Infinite Parallel Plates

\checkmark Upper Plate Moving with Constant Speed, U

Fig. 8.6 Dimensionless velocity profile for fully developed laminar flow between infinite parallel plates upper plate moving with constant speed U

Fully Developed Laminar Flow in a Pipe

\checkmark Velocity Distribution

$$
u=-\frac{R^{2}}{4 \mu}\left(\frac{\partial p}{\partial x}\right)\left[1-\left(\frac{r}{R}\right)^{2}\right]
$$

\checkmark Shear Stress Distribution

$$
\tau_{r x}=\frac{r}{2}\left(\frac{\partial p}{\partial x}\right)
$$

Fully Developed Laminar Flow in a Pipe

\checkmark Volume Flow Rate

$$
Q=-\frac{\pi R^{4}}{8 \mu}\left(\frac{\partial p}{\partial x}\right)
$$

\checkmark Flow Rate as a Function of Pressure Drop

$$
Q=\frac{\pi \Delta p D^{4}}{128 \mu L}
$$

Fully Developed Laminar Flow in a Pipe

\checkmark Average Velocity

$$
\bar{V}=-\frac{R^{2}}{8 \mu}\left(\frac{\partial p}{\partial x}\right)
$$

\checkmark Maximum Velocity

$$
u_{\max }=-\frac{R^{2}}{4 \mu}\left(\frac{\partial p}{\partial x}\right)=2 \bar{V}
$$

Turbulent Velocity Profiles in Fully Developed Pipe Flow

Fig 8.9 Turbulent velocity profile for fully developed flow in a smooth pipe, (Data from [5].)

Turbulent Velocity Profiles in Fully Developed Pipe Flow

Fig 8.11 Velocity profiles for fully developed pipe flow.
power-law equation

$$
\frac{\bar{u}}{U}=\left(\frac{y}{R}\right)^{1 / n}=\left(1-\frac{r}{R}\right)^{1 / n}
$$

As a representative value, 7 often is used for fully developed turbulent flow:

Energy Considerations in Pipe Flow

\checkmark Energy Equation

$$
Q=m\left(u_{2}-u_{1}\right)+m\left(\frac{p_{2}}{\rho}-\frac{p_{1}}{\rho}\right)+m g\left(z_{2}-z_{1}\right)+m\left(\frac{\alpha_{2} V_{2}^{2}}{2}-\frac{\alpha_{1} V_{1}^{2}}{2}\right.
$$

Fig. 8.12 Control volume and coordinates for energy analysis of flow through a 90° reducing elbow.

Assumptions:

(1) $\mathrm{W}_{\mathrm{s}}=0 ; \mathrm{W}_{\text {other }}=0$.
(2) $W_{\text {shear }}=0$
(3) Steady flow.
(4) Incompressible flow.
(5) Internal energy and pressure uniform across sections 1 and 2 .

Energy Considerations in Pipe Flow

\checkmark Head Loss

$$
\begin{aligned}
& \left(\frac{p_{1}}{\rho}+\alpha_{1} \frac{\bar{V}_{1}^{2}}{2}+g z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \frac{\bar{V}_{2}^{2}}{2}+g z_{2}\right)=h_{l_{T}} \\
& \left(\frac{p_{1}}{\rho g}+\alpha_{1} \frac{\bar{V}_{1}^{2}}{2 g}+z_{1}\right)-\left(\frac{p_{2}}{\rho g}+\alpha_{2} \frac{\bar{V}_{2}^{2}}{2 g}+z_{2}\right)=\frac{h_{l_{T}}}{g}=H_{l_{T}}
\end{aligned}
$$

Calculation of Head Loss

\checkmark Major Losses: Friction Factor

$$
\begin{aligned}
& h_{l}=f \frac{L}{D} \frac{\bar{V}^{2}}{2} \\
& H_{l}=f \frac{L}{D} \frac{\bar{V}^{2}}{2 g}
\end{aligned}
$$

Calculation of Head Loss

\checkmark Laminar Friction Factor

$$
\begin{aligned}
& f=\frac{64}{R e} \text { 再 } \\
& \checkmark \text { Turbulent Friction Factor }
\end{aligned}
$$

Colebrook equation

$$
\frac{1}{f^{0.5}}=-2.0 \log \left(\frac{e / D}{3.7}+\frac{2.51}{\operatorname{Re} f^{0.5}}\right) \quad \operatorname{Re} \geq 2300
$$

Calculation of Head Loss

Fig. 8.13 Friction factor for fully developed flow in circular pipes (Data from [8] used by permission)

Table 8.1	
	Roughness for Pipes of Common Engineering Materials
	Roughness, e
Pipe	Millimeters
Riveted steel	$0.9-9$
Concrete	$0.3-3$
Wood stave	$0.2-0.9$
Cast iron	0.26
Galvanized iron	0.15
Asphalted cast iron	0.12
Commercial steel or wrought iron	0.046
Drawn tubing	0.0015

Calculation of Head Loss

\checkmark Minor Loss: Loss Coefficient, K

$$
h_{l_{m}}=K \frac{\bar{V}^{2}}{2}
$$

\checkmark Minor Loss: Equivalent Length, L_{e}

$$
h_{l_{m}}=f \frac{L_{e}}{D} \frac{\bar{V}^{2}}{2}
$$

Calculation of Head Loss

\checkmark Minor Losses

- Examples: Inlets and Exits; Enlargements and Contractions; Pipe Bends; Valves and Fittings

Contraction

Uinor Loss Coefficients for Pipe Entrances

$$
\text { Pressure recovery coefficient, } \mathrm{C}_{\mathrm{p}} \text {, }, \text {, } C_{p} \equiv \frac{p_{2}-p_{1}}{\frac{1}{2} \rho \bar{V}_{1}^{2}}
$$

Loss Coefficients (K) for Gradual Contractions: Round and Rectangular Ducts

	Included Angle, θ, Degrees							
	A_{2} / A_{1}	10	$15-40$	$50-60$	90	120	150	180
	0.50	0.05	0.05	0.06	0.12	0.18	0.24	0.26

Fig. 8.15 Loss coefficients for flow through sudden area changes.

Fig. 8.16 Pressure recovery for conical diffusers with fully developed turbulent pipe flow at inlet. (Data from Cockrell and Bradley [13].)

$$
h_{l_{m}}=\frac{\bar{V}_{1}^{2}}{2}\left[\left(1-\frac{1}{(A R)^{2}}\right)-C_{p}\right]
$$

Calculation of Head Loss

\checkmark Pumps, Fans, and Blowers

$$
\begin{aligned}
& \Delta h_{\text {pump }}=\frac{\Delta p_{\text {pump }}}{\rho} \quad \ddot{W}_{\text {pump }}=Q \Delta p_{\text {pump }} \text {, } \quad \eta=\frac{\dot{W}_{\text {pump }}}{\dot{W}_{\text {in }}} \\
& \left(\frac{p_{1}}{\rho}+\alpha_{1} \frac{\bar{V}_{1}^{2}}{2}+g z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \frac{\bar{V}_{2}^{2}}{2}+g z_{2}\right)=h_{l_{T}}-\Delta h_{\text {pump }}
\end{aligned}
$$

Calculation of Head Loss

\checkmark Noncircular Ducts

$$
D_{h}=\frac{4 A}{P}
$$

Example: Rectangular Duct

$$
D_{h}=\frac{4 b h}{2(b+h)}
$$

Solution of Pipe Flow Problems

\checkmark Energy Equation

$$
\begin{array}{r}
\left(\frac{p_{1}}{\rho}+\alpha_{1} \frac{\bar{V}_{1}^{2}}{2}+g z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \frac{\bar{V}_{2}^{2}}{2}+g z_{2}\right) \\
=h_{l_{T}}=\Sigma h_{l}+\Sigma h_{l_{m}}
\end{array}
$$

Solution of Pipe Flow Problems

\checkmark Major Losses

$$
\begin{aligned}
& h_{l}=f \frac{L}{D} \frac{\bar{V}^{2}}{2} \\
& f=\frac{64}{R e} \quad \text { for laminar flow }(R e<2300) \\
& \frac{1}{f^{0.5}}=-2.0 \log \left(\frac{e / D}{3.7}+\frac{2.51}{R e f^{0.5}}\right) \quad \text { for turbulent flow }(R e \geq 2300)
\end{aligned}
$$

Solution of Pipe Flow Problems

\checkmark Minor Losses

$$
\begin{aligned}
& h_{l_{m}}=K \frac{\bar{V}^{2}}{2} \\
& h_{l_{m}}=f \frac{L_{e}}{D} \frac{\bar{V}^{2}}{2}
\end{aligned}
$$

Solution of Pipe Flow Problems

Single Path

- Find Δp for a given L, D, and Q

Use energy equation directly

- Find L for a given $\Delta p, D$, and Q

Use energy equation directly

Solution of Pipe Flow Problems

Single Path (Continued)

- Find Q for a given $\Delta p, L$, and D

1. Manually iterate energy equation and friction factor formula to find V (or Q), or
2. Directly solve, simultaneously, energy equation and friction factor formula using (for example) Excel

- Find D for a given $\Delta p, L$, and Q

1. Manually iterate energy equation and friction factor formula to find D, or
2. Directly solve, simultaneously, energy equation and friction factor formula using (for example) Excel

Crude oil flows through a level section of the Alaskan pipeline at a rate of $2.944 \mathrm{~m}^{3} / \mathrm{s}$. The pipe inside diameter is 1.22 m ; its roughness is equivalent to galvanized iron. The maximum allowable pressure is 8.27 MPa ; the minimum pressure required to keep dissolved gases in solution in the crude oil is 344.5 kPa . The crude oil has $\mathrm{SG}=0.93$; its viscosity at the pumping temperature of $60^{\circ} \mathrm{C}$ is $\mu=10.0168 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$. For these conditions, determine the maximum possible spacing between pumping stations. If the pump efficiency is 85 percent, determine the power that must be supplied at each pumping station.

Assumptions: (1) $\alpha_{1}=\alpha_{2}$
(2) Horizontal pipe, $z_{1}=z_{2}$.
(3) Neglect minor losses.
(4) Constant viscosity.

$$
\begin{aligned}
& \Delta p=p_{2}-p_{1}=f \frac{L}{D} \rho \frac{\bar{V}^{2}}{2} \\
& L=\frac{2 D}{f} \frac{\Delta p}{\rho \bar{V}^{2}} \text { where } f=f(R e, e / D)
\end{aligned}
$$

$$
\bar{V}=\frac{Q}{A}=2.944 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{4}{\pi(1.22)^{2} \mathrm{~m}^{2}}=2.52 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
R e & =\frac{\rho \bar{V} D}{\mu}=0.93 \times 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 2.52 \frac{\mathrm{~m}}{\mathrm{~s}} \times 1.22 \mathrm{~m} \times \frac{1}{0.0168 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}} \times \frac{\mathrm{N} . \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
R e & =1.71 \times 10^{5}
\end{aligned}
$$

Table 8.1, $e=0.00015 \mathrm{~m}$ and hence $e / D=0.00012$. (If $f=0.017$

$$
\begin{aligned}
& L=\frac{2}{0.017} \times 1.22 \mathrm{~m} \times\left(8.27 \times 10^{6}-3.445 \times 10^{5}\right) \mathrm{Pa} \times \frac{1}{0.93 \times 1000 \times \mathrm{kg} / \mathrm{m}^{3}} \\
& \times \frac{1}{(2.52)^{2}} \frac{\mathrm{~s}^{2}}{\mathrm{~m}^{2}} \times \frac{\mathrm{N}}{\mathrm{~m}^{2} \cdot \mathrm{~Pa}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}=192,612 \mathrm{~m} \\
& L=192,612 \mathrm{~m}
\end{aligned}
$$

$$
\dot{W}_{\text {pump }}=Q \Delta p_{\text {pump }}
$$

$$
\eta=\frac{\dot{W}_{\text {pump }}}{\dot{W}_{\text {in }}}
$$

$$
\Delta p_{\mathrm{pump}}=\Delta p
$$

$$
\begin{aligned}
\dot{W}_{\text {pump }}=Q \Delta p_{\text {pump }}= & 2.944 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times\left(8.27 \times 10^{6}-3.445 \times 10^{5}\right) \mathrm{Pa} \\
& \times \frac{\mathrm{N}}{\mathrm{~m}^{2} \cdot \mathrm{~Pa}} \times \frac{\mathrm{j}}{\mathrm{~N} \cdot \mathrm{~m}} \times \frac{\mathrm{W} \cdot \mathrm{~S}}{\mathrm{j}} \approx 23.13 \mathrm{MW}
\end{aligned}
$$

the required power input

$$
\dot{W}_{\text {in. }}=\frac{\dot{W}_{\text {pump }}}{\eta}=\frac{23.13}{0.85}=27.21 \mathrm{MW}
$$

E xample 8.9 calculation of entrance loss coefficient

Hamilton reports results of measurements made to determine entrance losses for flow from a reservoir to a pipe with various degrees of entrance rounding. A copper pipe 3 m long, with 38 mm i.d., was used for the tests. The pipe discharged to atmosphere. For a squareedged entrance, a discharge of $0.016 \mathrm{~m}^{3} / \mathrm{s}$ was measured when the reservoir level was 25.9 m
 above the pipe centerline. From these data, evaluate the loss coefficient for a square-edged entrance.

$$
\begin{gathered}
\approx 0(2) \\
\frac{p_{\chi}}{\rho}+\alpha_{1} / \frac{\bar{V}_{1}^{\prime}}{2}+g z_{1}=\frac{p_{\chi}}{\rho}+\alpha_{2} \frac{\bar{V}_{2}^{2}}{2}+g /_{2}+h_{l_{T}} \\
\frac{h_{l}}{D}=f \frac{L}{D} \frac{\bar{V}_{2}^{2}}{2}+K_{\text {entrance }} \frac{\bar{V}_{2}^{2}}{2} \\
\frac{\pi}{2} \quad
\end{gathered}
$$

Solution of Pipe Flow Problems

Multiple-Path Systems

Example:

Fig. 8.18 Schematic of part of a pipe network

$$
z_{1}=h=\alpha_{2} \frac{\bar{V}_{2}^{2}}{2 g}+f \frac{L}{D} \frac{\bar{V}_{2}^{2}}{2 g}+K_{\text {entrance }} \frac{\bar{V}_{2}^{2}}{2 g}
$$

$$
K_{\text {entrance }}=\frac{2 g h}{\bar{V}_{2}^{2}}-f \frac{L}{D}-\alpha_{2}
$$

$$
\begin{aligned}
& \bar{V}_{2}=\frac{Q}{A}=\frac{4 Q}{\pi D^{2}} \\
& \bar{V}_{2}=\frac{4}{\pi} \times 0.016 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{1}{(38)^{2} \mathrm{~mm}^{2}} \times 10^{6} \frac{\mathrm{~mm}^{2}}{\mathrm{~m}^{2}}=14.1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Assume $T=21^{\circ} \mathrm{C}$, so $\nu=9.75 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}$

$$
R e=\frac{\bar{V} D}{\nu}=14.1 \frac{\mathrm{~m}}{\mathrm{~s}} \times 38 \mathrm{~mm} \times \frac{\mathrm{m}}{1000 \mathrm{~mm}} \times \frac{\mathrm{s}}{9.75 \times 10^{-7} \mathrm{~m}^{2}}
$$

For drawn tubing, $\mathrm{e}=0.0015 \mathrm{~mm}$, so $\mathrm{e} / \mathrm{D}=0.000,04$ and $\mathrm{f}=0.0135$.

$$
\alpha=\left(\frac{U}{\bar{V}}\right)^{3} \frac{2 n^{2}}{(3+n)(3+2 n)} \quad \begin{gathered}
\quad n \quad, \quad n, 1.7+1.8 \log \left(R e_{U}\right) \approx 8.63
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\bar{V}}{U}=\frac{2 n^{2}}{(n+1)(2 n+1)}=0.847 \\
& K_{\text {entrance }}=2 \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 25.9 \mathrm{~m} \times \frac{\mathrm{s}^{2}}{(14.1)^{2} \mathrm{~m}^{2}}-0.0135 \frac{3 \mathrm{~m}}{38 \mathrm{~mm}} \times 1000 \frac{\mathrm{~mm}}{\mathrm{~m}}-1.04
\end{aligned}
$$

$$
K_{\text {entrance }}=0.45
$$

Solution of Pipe Flow Problems

Multiple-Path Systems

- Solve each branch as for single path
- Two additional rules

1. The net flow out of any node (junction) is zero
2. Each node has a unique pressure head (HGL)

- To complete solution of problem

1. Manually iterate energy equation and friction factor for each branch to satisfy all constraints, or
2. Directly solve, simultaneously, complete set of equations using (for example) Excel

E
xample 8.11 FLOW RATES IN A PIPE NETWORK
In the section of a cast-iron water pipe network shown in Figure, the static pressure head (gage) available at point 1 is 30 m of water, and point 5 is a drain (atmospheric pressure). Find the flow rates (L/min) in
 each pipe.

$$
\begin{aligned}
& \begin{array}{cc}
=0(1) & =0(1) \\
\left(\frac{p_{1}}{\rho}+\alpha_{1} \frac{\bar{V}_{1}^{2}}{2}+g q z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \frac{\bar{V}_{2}^{2}}{2}+g \ell_{2}\right)=h_{l_{T}}=h_{l}+\sum / h_{l_{m}}
\end{array} \\
& \begin{array}{l}
h_{l}=f \frac{L}{D} \frac{\bar{V}^{2}}{2} \\
=
\end{array}
\end{aligned}
$$

Node 2: $\quad Q_{\mathrm{A}}=Q_{\mathrm{B}}+Q_{\mathrm{E}}$

Node 6: $\quad Q_{\mathrm{E}}=Q_{\mathrm{F}}+Q_{\mathrm{G}}$

$$
Q_{\mathrm{A}}=Q_{\mathrm{C}} \quad Q_{\mathrm{A}}=Q_{\mathrm{D}} \quad Q_{\mathrm{E}}=Q_{\mathrm{H}}
$$

$$
h_{1-5}: h=h_{\mathrm{A}}+h_{\mathrm{B}}+h_{\mathrm{C}}+h_{\mathrm{D}}
$$

$$
\begin{aligned}
& h_{2-3}: h_{\mathrm{B}}=h_{\mathrm{E}}+h_{\mathrm{F}}+h_{\mathrm{H}} \\
& \quad h_{6-7}: h_{\mathrm{F}}=h_{\mathrm{G}} \\
& \quad, \quad \\
& \quad Q_{\mathrm{A}}=Q_{\mathrm{C}}=Q_{\mathrm{D}}=625.6 \mathrm{~L} / \mathrm{min} \\
& Q_{\mathrm{B}}(\mathrm{~L} / \mathrm{min})=272.0 \mathrm{~L} / \mathrm{min} \\
& Q_{\mathrm{E}}(\mathrm{~L} / \mathrm{min})=Q_{\mathrm{H}}(\mathrm{~L} / \mathrm{min})=353.6 \mathrm{~L} / \mathrm{min} \\
& Q_{\mathrm{F}}(\mathrm{~L} / \mathrm{min}) \\
& Q_{\mathrm{G}}(\mathrm{~L} / \mathrm{min})=87.1 \mathrm{~L} / \mathrm{min} \\
& =266.5 \mathrm{~L} / \mathrm{min}
\end{aligned}
$$

Flow Measurement

\checkmark Direct Methods

- Examples: Accumulation in a Container; Positive Displacement Flowmeter
\checkmark Restriction Flow Meters for Internal Flows
- Examples: Orifice Plate; Flow Nozzle; Venturi; Laminar Flow Element

Fig. 8.19 Internal flow through a generalized nozzle, showing control volume used for analysis.
mass-conservation,

$$
\sum_{\mathrm{CS}} \vec{V} \cdot \vec{A}=0
$$

Assumptions: \quad (1) Steady flow.
(2) Incompressible flow.
(3) Flow along a streamline.
(4) No friction.
(5) Uniform velocity at sections 1 and 2.
(6) No streamline curvature at sections 1 or 2 , so pressure is uniform across those sections.
(7) $\mathrm{Z}_{1}=\mathrm{z}_{2}$.

$$
\begin{aligned}
& p_{1}-p_{2}=\frac{\rho}{2}\left(V_{2}^{2}-V_{1}^{2}\right)=\frac{\rho V_{2}^{2}}{2}\left[1-\left(\frac{V_{1}}{V_{2}}\right)^{2}\right] \\
& \left(-\rho V_{1} A_{1}\right)+\left(\rho V_{2} A_{2}\right)=0 \\
& V_{1} A_{1}=V_{2} A_{2} \quad \text { so } \quad\left(\frac{V_{1}}{V_{2}}\right)^{2}=\left(\frac{A_{2}}{A_{1}}\right)^{2} \\
& p_{1}-p_{2}=\frac{\rho V_{2}^{2}}{2}\left[1-\left(\frac{A_{2}}{A_{1}}\right)^{2}\right] \quad \text { KT } \quad+\quad V_{2}=\sqrt{\frac{2\left(p_{1}-p_{2}\right)}{\rho\left[1-\left(A_{2} / A_{1}\right)^{2}\right]}} \\
& \dot{m}_{\text {theoretical }}=\rho V_{2} A_{2} \\
& =\rho \sqrt{\frac{2\left(p_{1}-p_{2}\right)}{\rho\left[1-\left(A_{2} / A_{1}\right)^{2}\right]}} A_{2}
\end{aligned}
$$

$$
\beta=D_{t} / D_{1}, \text { then }\left(A_{t} / A_{1}\right)^{2}=\left(D_{t} / D_{1}\right)^{4}=\beta^{4}
$$

$$
\dot{m}_{\text {actual }}=\frac{C A_{t}}{\sqrt{1-\beta^{4}}} \sqrt{2 \rho\left(p_{1}-p_{2}\right)}
$$

$$
\begin{aligned}
& \text { flow coefficient } \quad \text {, } \quad \text {, } K \text { K } \equiv \frac{C}{\sqrt{1-\beta^{4}}} \\
& \dot{m}_{\text {actual }}=K A_{t} \sqrt{2 \rho\left(p_{1}-p_{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{m}_{\text {theoretical }}=\frac{A_{2}}{\sqrt{1-\left(A_{2} / A_{1}\right)^{2}}} \sqrt{2 \rho\left(p_{1}-p_{2}\right)} \\
& \dot{m}_{\text {theoretical }} \propto \sqrt{\Delta p} \\
& \dot{m}_{\text {actual }}=\frac{C A_{t}}{\sqrt{1-\left(A_{t} / A_{1}\right)^{2}}} \sqrt{2 \rho\left(p_{1}-p_{2}\right)},
\end{aligned}
$$

Flow Measurement

\checkmark Linear Flow Meters

- Examples: Float Meter (Rotameter); Turbine; Vortex; Electromagnetic; Magnetic; Ultrasonic

Fig. 8.25 Float-type variable-area flow meter (Courtesy of Dwyer Instrument Co, Michigan City, Indiana.)

Fig. 826 Turbine flow meter (Courtesy of Potter Aeronautical Corp Union New Jersey.

Flow Measurement

\checkmark Traversing Methods

- Examples: Pitot (or Pitot Static) Tube; Laser Doppler Anemometer

Useful Equations

Velocity profile for pressure-driven laminar flow between stationary parallel plates:	$u=\frac{a^{2}}{2 \mu}\left(\frac{\partial p}{\partial x}\right)\left[\left(\frac{y}{a}\right)^{2}-\left(\frac{y}{a}\right)\right]$
Flow rate for pressure-driven laminar flow between stationary parallel plates:	$\frac{Q}{l}=-\frac{1}{12 \mu}\left[\frac{-\Delta p}{L}\right] a^{3}=\frac{a^{3} \Delta p}{12 \mu L}$
Velocity profile for pressure-driven laminar flow between stationary parallel plates (centered coordinates):	$u=\frac{a^{2}}{2 \mu}\left(\frac{\partial p}{\partial x}\right)\left[\left(\frac{y^{\prime}}{a}\right)^{2}-\frac{1}{4}\right]$
Velocity profile for pressure-driven laminar flow between parallel plates (upper plate moving):	$u=\frac{U y}{a}+\frac{a^{2}}{2 \mu}\left(\frac{\partial p}{\partial x}\right)\left[\left(\frac{y}{a}\right)^{2}-\left(\frac{y}{a}\right)\right]$
Flow rate for pressure-driven laminar flow between parallel plates (upper plate moving):	$\frac{Q}{l}=\frac{U a}{2}-\frac{1}{12 \mu}\left(\frac{\partial p}{\partial x}\right)^{3}$
Velocity profile for laminar flow in a pipe:	$u=-\frac{R^{2}}{4 \mu}\left(\frac{\partial p}{\partial x}\right)\left[1-\left(\frac{r}{R}\right)^{2}\right]$

Flow rate for laminar flow in a pipe:	$Q=-\frac{\pi R^{4}}{8 \mu}\left[\frac{-\Delta p}{L}\right]=\frac{\pi \Delta p R^{4}}{8 \mu L}=\frac{\pi \Delta p D^{4}}{128 \mu L}$
Velocity profile for laminar flow in a pipe	
(normalized form):	
Velocity profile for turbulent flow in	$\frac{u}{U}=1-\left(\frac{r}{R}\right)^{2}$
a smooth pipe (power-law equation):	$\frac{\bar{u}}{U}=\left(\frac{y}{R}\right)^{1 / n}=\left(1-\frac{r}{R}\right)^{1 / n}$
Head loss equation:	$\left(\frac{p_{1}}{\rho}+\alpha_{1} \frac{\bar{V}_{1}^{2}}{2}+g z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \frac{\bar{V}_{2}^{2}}{2}+g z_{2}\right)=h_{l_{T}}$

Minor loss using loss coefficient $K:$	$h_{l_{m}}=K \frac{\bar{V}^{2}}{2}$
Minor loss using equivalent length $L_{e}:$	$h_{l_{m}}=f \frac{L_{e}}{D} \frac{\bar{V}^{2}}{2}$
Diffuser pressure recovery coefficient:	$C_{p} \equiv \frac{p_{2}-p_{1}}{\frac{1}{2} \rho \bar{V}_{1}^{2}}$
Ideal diffuser pressure recovery	$C_{p_{1}}=1-\frac{1}{A R^{2}}$
Heoefficient:	$h_{l_{m}}=\left(C_{p 1}-C_{p}\right) \frac{\bar{V}_{1}^{2}}{2}$
recovery coefficients:	$\dot{W}_{\text {pump }}=Q \Delta p_{\mathrm{pump}}$

Pump efficiency:	$\eta=\frac{\dot{W}_{\text {pump }}}{\dot{W}_{\text {in }}}$
Hydraulic diameter:	$D_{h} \equiv \frac{4 A}{P}$
Mass flow rate equation for a flow meter (in terms of discharge coefficient C):	$\dot{m}_{\text {actual }}=\frac{C A_{t}}{\sqrt{1-\beta^{4}} \sqrt{2 \rho\left(p_{1}-p_{2}\right)}}$
Mass flow rate equation for a flow meter (in terms of flow coefficient K):	$\dot{m}_{\text {actual }}=K A_{t} \sqrt{2 \rho\left(p_{1}-p_{2}\right)}$
Discharge coefficient (as a function of $R e$):	$K=C_{\infty}+\frac{b}{R e_{D_{1}}^{n}}$
Flow coefficient (as a function of $R e$):	$\frac{1}{\sqrt{1-\beta^{4}}} \frac{b}{R e_{D_{1}}^{n}}$

$$
\begin{array}{lllll}
\tau_{w}=\mu \frac{d u}{d r} & F_{\text {shear }}=\tau_{w} A_{s} & \mathrm{~T}=F R & S G=\rho / \rho_{\mathrm{HzO}} & \rho=S G \times \rho_{\mathrm{Hz2O}}, v=\mu / \rho \\
\tau=\mu \frac{d u}{d y} & \left(\mathrm{~N} / \mathrm{m}^{2}\right) \quad F=\tau A=\mu A \frac{d u}{d y} & \text { (N) } \quad F=\mu A \frac{V}{\ell} & \text { (N) } \tag{N}
\end{array}
$$

$$
\begin{aligned}
& P_{\text {gage }}=P_{\text {abs }}-P_{\text {atm }} \quad \Delta P=P_{2}-P_{1}=\rho g \Delta z=\gamma_{s} \Delta z \\
& P_{\mathrm{vac}}=P_{\mathrm{atm}}-P_{\mathrm{abs}} \quad P=P_{\mathrm{atm}}+\rho g h \quad P_{\mathrm{gage}}=\rho g h \\
& I_{x x, O}=I_{x x, C}+y_{C}^{2} A \quad y_{P}=y_{C}+\frac{I_{x x, C}}{y_{C} A} \quad y_{P}=y_{C}+\frac{I_{x x, C}}{\left[y_{C}+P_{0} /(\rho g \sin \theta)\right] A} \\
& P_{2}-P_{1}=-\rho a_{x}\left(x_{2}-x_{1}\right)-\rho\left(g+a_{z}\right)\left(z_{2}-z_{1}\right) \quad \Delta z_{s}=z_{s 2}-z_{s 1}=-\frac{a_{x}}{g+a_{z}}\left(x_{2}-x_{1}\right) \\
& -\frac{a_{x}}{g+a_{z}}=-\tan \theta \quad z_{s}=\frac{\omega^{2}}{2 g} r^{2}+h_{c} \quad z_{s}=h_{0}-\frac{\omega^{2}}{4 g}\left(R^{2}-2 r^{2}\right) \\
& \Delta z_{s, \text { max }}=z_{s}(R)-z_{s}(0)=\frac{\omega^{2}}{2 g} R^{2} \\
& P_{2}-P_{1}=\frac{\rho \omega^{2}}{2}\left(r_{2}^{2}-r_{1}^{2}\right)-\rho g\left(z_{2}-z_{1}\right) \quad \sum \vec{F}=\sum_{\text {out }} \beta \dot{m} \vec{V}-\sum_{\text {in }} \beta \dot{m} \vec{V} \quad \vec{F}_{\text {body }}=m_{\text {body }} \vec{a}=\sum_{\text {in }} \beta \dot{m} \vec{V}-\sum_{\text {out }} \beta \dot{m} \vec{V}
\end{aligned}
$$

