

Yildiz Technical University Faculty of Civil Engineering Department of Geomatic Engineering



# TOPOGRAPHY (HRT3351)

Lecture Notes

Prof. Dr. Burak AKPINAR

| Title      | Code    | Local<br>Credit | ECTS | Lecture<br>(hour/week) | Practical<br>(hour/week) | Laboratory<br>(hour/week) |
|------------|---------|-----------------|------|------------------------|--------------------------|---------------------------|
| Topography | HRT3351 | 3               | 4    | 3                      | 0                        | 0                         |

| Course Objectives | The aim of this course, gains required skills of basic of surveying techniques, mathematical definitions using for large scale map production. |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                                                                                                                                                |

### Prof. Dr. Burak AKPINAR

http://www.avesis.yildiz.edu.tr/bakpinar bakpinar@yildiz.edu.tr

| Week | Subject                                             |
|------|-----------------------------------------------------|
| 1    | Introduction to Topography                          |
| 2    | Measurement Units and Sources of Measurement Errors |
| 3    | Types of Errors                                     |
| 4    | Coordinate Systems and Map Projections              |
| 5    | Geodetic Network Points and Distance Measurements   |
| 6    | Direction Measurements                              |
| 7    | Traverse Computations                               |
| 8    | Height Measurements                                 |
| 9    | Midterm exam 1                                      |
| 10   | Area and Volume Computations                        |
| 11   | Field work                                          |
| 12   | Field work                                          |
| 13   | Geographic Information System, GIS                  |
| 14   | Midterm exam 2                                      |
| 15   | GNSS Global Positioning Systems                     |
| 16   | Final exam                                          |

# WEEK-1 INTRODUCTION TO TOPOGRAPHY

# **Geomatics Engineering**

- Geomatics Engineering, is a rapidly developing discipline that focuses on spatial information (i.e. information that has a location).
- The location is the primary factor used to integrate a very wide range of data for spatial analysis and visualization.
- Geomatics engineers apply engineering principles to spatial information and implement relational data structures involving measurement sciences.
- Geomatics engineers manage local, regional, national and global spatial data infrastructures.

http://en.wikipedia.org/wiki/Geomatics\_engineering













TOPOGRAPHY (HRT3351)

Prof. Dr. Burak AKPINAR



Topography is a field of geoscience and planetary science comprising the study of surface shape and features of the Earth and other observable astronomical objects including planets, moons, and asteroids.

It is also the description of such surface shapes and features (especially their depiction in maps).

The topography of an area could also mean the surface shape and features themselves.



Topographic Map

# Surveying

It is the art of measuring horizontal and vertical distances between objects, of measuring angles between lines, of determining the direction of lines, and of establishing points by predetermined angular and linear measurements.



# Surveying

Distances, angles, directions, locations, elevations, areas, and volumes are thus determined from the data of the survey.



# **Types of Surveying**

### **Geodetic Surveying**

It is the type of surveying that takes into account the true shape of the earth. These surveys are of high precision and extend overlarge areas.







# **Types of Surveying**

### **Plane Surveying**

It is the type of surveying in which the mean surface of the earth is considered as a plane, or in which its spheroidal shape is neglected, with regard to horizontal distances and directions.







### **Control Surveys**

Establishing a network of horizontal and vertical monuments that serve as a reference framework for initiating other surveys.







### **Topographic Surveys**

Determining the locations of natural and artificial features and elevations used in map making.







### Hydrographic Surveys

The surveys of bodies of water made for the purpose of navigation, water supply, or subaqueous construction.







### **Mining Surveys**

Made to control, locate, and map underground and surface works related to mining operations.







### **Construction Surveys**

Made to lay out, locate and monitor public and private engineering works.







### **Route Surveys**

Necessary for the location and construction of highways, railroads, canals, transmission lines, and pipelines.







### **Photogrammetric Surveys**

Made to utilize the principle of aerial photogrammetry, in which measurements made on photographs are used to determine the positions of photographed objects.



### Satellite Surveys

They include the determination of ground locations from measurements made to satellites using GPS receivers, or the use of satellite images for mapping and monitoring large region of the earth.







Map scale is the ratio of the length of an object or feature on a map to the true length of the object and feature.

Map scales can be expressed as,

1. <u>representative fraction or ratio</u>: 1/2000 or 1: 2000

2. graphical scale :



### 1/1000

In giving scale by ratio or representative fraction, the same units are used for the map distance and corresponding object distance.

 $\frac{B}{N} = \frac{1}{M}$  B = Distance on map N = Distance on ground M = Scale Module

Area of objects and features on the map and true area of objects and features can be calculated via the scale of map.

f = area on the map F = true area on the ground  $\frac{f}{F} = \frac{1}{M^2}$   $M = \sqrt{\frac{F}{f}}$ 

### Example -1

Please determine the scale of the map on which the length of a 125 m channel is represented as 6.25 cm.



### Example -2

The body of a dam is represented with an area of  $345 \text{ mm}^2$  on a 1/5000 scaled map. Please calculate the real area of the dam body.

$$\frac{f}{F} = \frac{1}{M^2}$$

 $F = f \cdot M^2 = 345mm^2 x 5000^2 = 345mm^2 x 2500000 = 8625000000mm^2$ 

$$F = 8625m^2$$

Scales may be classified as large, medium and small. Their respective scale ranges are as follows;

Medium Scale Small Scale

Large Scale : 1/200 - 1/5000 : 1/10000 - 1/50000 : smaller than 1/100000

<u>Large Scale</u> maps are applied where relatively high accuracy is needed over limits areas; for example, in subdivision design and the design of engineering projects like roads, dams, airport, and water sewage system.



- <u>Medium scales</u> are often used for applications such as general preliminary planning where larger areas are covered, but only moderate accuracy is needed. Applications include mapping general layout of potential construction sites, proposed transportation system, and existing facilities.



- <u>Small scale</u> maps are commonly used for mapping large areas where a lower order of accuracy will suffice. They are suitable for general topographic coverage, applications in site suitability analysis, preliminary lay out of expansive proposed construction project, and for special applications in forestry, geology, etc.



| Large Scale Map                                           | Small Scale Map                                    |
|-----------------------------------------------------------|----------------------------------------------------|
| Shows more details                                        | Fewer details are shown                            |
| Error rate is low                                         | The error rate is high.                            |
| Narrow spaces are shown in reality                        | In reality large areas are shown.                  |
| The denominator of the scale is small.                    | The denominator of the scale is large.             |
| The difference in elevation between the isohips is small. | The difference in height between isohips is large. |
| It takes up too much space on paper.                      | It takes up less space on paper.                   |





INTRODUCTION TO TOPOGRAPHY







# INTRODUCTION TO TOPOGRAPHY

TOPOGRAPHY (HRT3351) Prof. Dr. Burak AKPINAR

# Map Scales





### TÜRKİYE JEOTERMAL KAYNAKLAR DAĞILIMI VE UYGULAMA HARİTASI





INTRODUCTION TO TOPOGRAPHY

# Week-2 Measurement Units and Sources of Measurement Errors