URBAN INFASTRUCTURE HYDRAULIC SYSTEMS

Assignment II

xxxxxba

QUESTION 1: The water network in the figure below supplies the water demand of a town with a population of 8ab0. Estimate the main and primary pipe diameters. Estimate the minimum and maximum reservoir elevations. The water depth in the reservoir is 2 m. Design the pipe network by using both Dead End and Hardy-Cross Methods and compare the results.Pipe lengths and population density coefficients are given on the figure. (maxq_{day}.= 2ba l/day/capita, Minimum allowable pressure (P/ γ)_{min,network}=20 mwc, λ =0.017, Standard Pipe Diameters are; 80mm, 100mm, 125mm, 175mm, 200mm, 250mm, 300mm,...).

QUESTION 2: The following water network supplies the water demand of a town with a population of 2ab00. Estimate the main and primary pipe diameters by using Dead End method. Use Colebrook-White Tables in the calculations. Pipe lengths and population density coefficients are given on the figure. (meanq_{day}= 1ba l/day/capita, Minimum allowable pressure (P/ γ)_{min}=30 mwc, Maximum allowable pressure (P/ γ)_{max}=80 mwc).

$$\begin{array}{c|ccccc} E(17) & A(20) & B(18) \\ \hline k=2,b \\ L=50m. \\ \hline k=1,a & L=100m. \\ \hline k=2 & L=50m. \\ \hline k=1,a & L=100m. \\ \hline k=1,b & L=100m. \\ \hline F(15) & D(17) & C(15) \\ \end{array}$$

QUESTION 3: The following water network supplies the water demand of a town with a population of 5ab0. Design the network by using Hardy-Cross Balancing Method based on Darcy-Weisbach relation. Pipe lengths and population density coefficients are given on the figure. (maxq_{day}= 200 l/day/capita, λ =0.02, Standard Pipe Diameters are; 80mm, 100mm, 125mm, 175mm, 200mm, 250mm, 300mm,).

QUESTION 4: Design the main and primary pipes of the network by using Dead End Method for the water network supplying the water demand of a town with a population of 2ba00 given in the figure below. Use Hazen-Williams equation ($V = 0.85CR^{0.63}J^{0.54}$) with a coefficient of C=130 (for cast iron pipes). (Standard Pipe Diameters are; 80m, 100mm, 125mm, 175mm, 200mm, 250mm, 300mm,).

