URBAN INFASTRUCTURE HYDRAULIC SYSTEMS

Assignment II

Student ID	xxxxxxba

QUESTION 1: The water network in the figure below supplies the water demand of a town with a population of $8 a b 0$. Estimate the main and primary pipe diameters. Estimate the minimum and maximum reservoir elevations. The water depth in the reservoir is 2 m . Design the pipe network by using both Dead End and Hardy-Cross Methods and compare the results.Pipe lengths and population density coefficients are given on the figure. $\left(\operatorname{maxq}_{\text {day. }}=2 \mathrm{ba} \mathrm{I} /\right.$ day/capita, Minimum allowable pressure $(\mathrm{P} / \gamma)_{\text {min,network }}=20 \mathrm{mwc}$, $\lambda=0.017$, Standard Pipe Diameters are; $80 \mathrm{~mm}, 100 \mathrm{~mm}, 125 \mathrm{~mm}, 175 \mathrm{~mm}, 200 \mathrm{~mm}, 250 \mathrm{~mm}, 300 \mathrm{~mm}, \ldots$. . .

QUESTION 2: The following water network supplies the water demand of a town with a population of 2ab00. Estimate the main and primary pipe diameters by using Dead End method. Use Colebrook-White Tables in the calculations. . Pipe lengths and population density coefficients are given on the figure. (meanq $_{\text {day }}=1$ ba I/day/capita, Minimum allowable pressure $(P / \gamma)_{\min }=30 \mathrm{mwc}$, Maximum allowable pressure $\left.(P / \gamma)_{\max }=80 \mathrm{mwc}\right)$.

QUESTION 3: The following water network supplies the water demand of a town with a population of 5abO. Design the network by using Hardy-Cross Balancing Method based on Darcy-Weisbach relation. Pipe lengths and population density coefficients are given on the figure. (maxq $_{\text {day }}=200 \mathrm{I} /$ day $/$ capita, $\lambda=0.02$, Standard Pipe Diameters are; $80 \mathrm{~mm}, 100 \mathrm{~mm}, 125 \mathrm{~mm}, 175 \mathrm{~mm}, 200 \mathrm{~mm}, 250 \mathrm{~mm}, 300 \mathrm{~mm}, \ldots$.$) .$

QUESTION 4: Design the main and primary pipes of the network by using Dead End Method for the water network supplying the water demand of a town with a population of 2 ba00 given in the figure below. Use Hazen-Williams equation ($V=0.85 C R^{0.63} J^{0.54}$) with a coefficient of $\mathrm{C}=130$ (for cast iron pipes). (Standard Pipe Diameters are; $80 \mathrm{~m}, 100 \mathrm{~mm}, 125 \mathrm{~mm}, 175 \mathrm{~mm}, 200 \mathrm{~mm}, 250 \mathrm{~mm}, 300 \mathrm{~mm}, \ldots$. .).

