WATER RESOURCES ENGINEERING

ASSIGNMENT-1

DEADLINE: DAY OF MIDTERM 1

Student ID	060410ba
If \boldsymbol{b} or/and \boldsymbol{a} is 0 take 5 to use in solving problems below. l	

Question 1. Write the characteristic properties of non-cohesive materials.
Question 2. Classify sediments (solid particles) transported by river. Give brief explanation.
Question 3. Find the total amount of suspended sediment per unit width of a river according to the velocity profile and suspended sediment concentration given in the following table.

Depth (m)	0.05	0.5	1.0	1.5	2.0	2.2
Velocity $(\mathbf{m} / \mathbf{s})$	1.2 a	1.5 b	1.7 b	1.4 a	0.7 a	0.3 a
Concentration $\left(\mathbf{m}^{\mathbf{3}} \mathbf{1 0}^{\mathbf{6}} \mathbf{m}^{\mathbf{3}}\right)$	11 a	11 b	21 a	31 b	41 a	61 a

Question 4. A river conveys $7 \mathrm{a} \mathrm{m}^{3} / \mathrm{s}$ flowrate observed 150 days in a year. The river bed slope, hydraulic radius and base width of the river are $0.006 \mathrm{~m} / \mathrm{m}, 0.85 \mathrm{~m}$, and $\mathbf{5 b} \mathbf{m}$, respectively. The critical shear stress and parameter of rolling and traction is given as $\mathbf{0 . 2 a} \mathrm{kg} / \mathrm{m}^{2}, \psi=0.5 \mathrm{~m}^{3} /(\mathrm{kg} \mathrm{s})$. According to given information, find the rate of the rolling and traction load and annual total amount of the load.

Question 5. Flowrate in a rectangular channel is $\mathbf{1 8} \mathrm{a}^{3} / \mathrm{s}$. Water depth, base width of the channel, bed slope, mean particle diameter, specific weight, and kinematic viscosity are 3.b $\mathrm{m}, \mathbf{3 a} \mathrm{m}$, $0.003 \mathrm{~m} / \mathrm{m}, 8 \times 10^{-4}, 2650 \mathrm{~kg} / \mathrm{m}^{3}, 1 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$, respectively (Assume channel is wide enough). Determine the amount of rolling and traction load using Schoklitsch, Meyer-Peter Müller and Einstein-Brown formulas.

Question 6. Explain the river contraction structures with drawing schematic views.
Question 7. Draw the schematic view of cut-off channel and discuss effects of cut-off channels on river.

Question 8. Write the general equation used for the determination of flood mitigation. Explain how it changes during a flood.

Question 9. River training with embankments (or levees) for flood control is planned. The width of the river bed and water depth for the main channel are given as 25 m and 4.a, respectively. The width and depth of the flood plain are $\mathbf{1 0 a} \mathrm{m}$ and $\mathbf{1 . 5 b} \mathrm{m}$, respectively. Water surface slope before and after the training is $0.004 \mathrm{~m} / \mathrm{m}$. The manning roughness coefficients for main channel $\mathrm{n}_{\text {main }}$ channrel $=\mathbf{0 . 0 3 b}$, for flood plain $\mathrm{n}_{\text {flood plain }}=0.045$.
a) Determine the increase of the water depth if the width of the flood plain decreases $\mathbf{6 a} \mathrm{m}$ with embankments.
b) Find required width of the flood plains if the maximum water depth increment is only $\mathbf{0 . 4 b}$ m after the construction of embankments.

Question 10. A triangular shape of a flood hydrograph is given in the following table. The net width of spillway and spillway coefficient are $\mathbf{3 a} \mathrm{m}$ and $\mathbf{2 . 3 b}$, respectively. The rating curve equation is given as a function of spillway head $\left(V=\mathbf{3} \boldsymbol{x 1 0} \boldsymbol{x} \boldsymbol{H}^{0.5}\right)$. Consider the reservoir is full at the beginning of the flood. Find the maximum spillway head, spillway discharge and amount of water retained at the reservoir.

Hours	2	4	6	8	10	12
$\mathbf{Q}\left(\mathbf{m}^{3} / \mathbf{s e c}\right)$	140	280	210	140	70	0

Question 11. Constant incoming flowrate to a flood detention dam is $10 \mathrm{~m}^{3} / \mathrm{s}$. The length and diameter of bottom outlet are 80 m and 1.a m , respectively. The reservoir surfaces areas obtained from the area-elevation curve are given the following Table. Determine the time which is needed to raise water level from 6 m to 8 m .

$\mathrm{h}(\mathrm{m})$	6.0	6.5	7.0	7.5	8.0
$\mathrm{~A}\left(\mathrm{~m}^{2}\right)$	95 ab	104 ab	112 ba	121 ba	142 ba

Question 12. River training is going to be planned for 1000 m length of river course with sills that decreases the bed slope from 0.0015 to 0.00006 . Top width of the rectangular river channel of $\mathbf{3 0 b} \mathrm{m}$ that is to convey $\mathbf{1 5 a b} \mathrm{m}^{3} / \mathrm{s}$ discharge. The water depth is 3.a meter. Determine the height of the sill over which normal water depth is 1.5 times of the critical depth.

