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 Articles

 Learning Curves in Manufacturing

 LINDA ARGOTE AND DENNIS EPPLE

 Large increases in productivity are typically realized as
 organizations gain experience in production. These
 "learning curves" have been found in many organizations.
 Organizations vary considerably in the rates at which they
 learn. Some organizations show remarkable productivity
 gains, whereas others show little or no learming. Reasons
 for the variation observed in organizational learning
 curves include organizational "forgetting," employee
 turnover, transfer of knowledge from other products and
 other organizations, and economies of scale.

 A S ORGANIZATIONS PRODUCE MORE OF A PRODUCT, THE

 unit cost of production typically decreases at a decreasing
 rate. This phenomenon is referred to as a learning curve, a

 progress curve, an experience curve, or learning by doing. A learning
 curve for the production of an advanced military jet built in the
 1970s and 1980s (Fig. 1) illustrates the two salient properties of
 learning. The number of direct labor hours required to assemble an
 aircraft decreased significantly as experience was gained in produc-
 tion, and the rate of reduction of assembly hours declined with
 rising cumulative output.

 Learning curves have been documented in many organizations, in
 both the manufacturing and service sectors. The unit costs of
 producing aircraft (1, 2), ships (3), refined petroleum products (4),
 and power plants (5, 6) have been shown to follow the characteristic
 learning-curve pattern. Learning curves have also been found to
 characterize outcomes as diverse as success rates of new surgical
 procedures (7), productivity in kibbutz farming (8), and nuclear

 plant operating reliability (9).
 The productivity gains associated with organizational learning

 curves are often quite large. For example, during the first year of
 production of Liberty ships during World War II, the average
 number of hours of labor required to produce a ship decreased by
 45%, and the average time it took to build a ship decreased by 75%
 (10). A recent study of a truck plant reported a remarkable growth in
 productivity of approximately 190% over the first year of the plant's
 operation (11).

 Organizations vary considerably in the rates at which they learn
 (12-14). Whereas some organizations show extraordinary rates of
 productivity growth as cumulative output increases, others fail to
 show expected productivity gains from learning. Lockheed's pro-
 duction of the L-1011 Tri-Star in the 1970s is an example of a
 program with little evidence of learning (15, 16). Lockheed lost over
 $1 billion on the Tri-Star program in the 1970s (16).

 L. Argote is associate professor of industrial administration and D. Epple is professor of
 economics at the Graduate School of Industrial Administration, Carnegie Mellon
 University, Pittsburgh, PA 15213.

 Why did little or no productivity growth occur in production of
 the Lockheed Tri-Star while the truck plant mentioned earlier
 showed impressive growth in productivity? For U.S. manufacturing
 and other organizations to compete effectively, we need to under-
 stand why some organizations show rapid rates of learning and
 others fail to learn. Thus, we need to identify factors affecting
 organizational learning curves and use this knowledge to improve
 manufacturing performance.

 Understanding factors affecting learning can enable managers to
 improve the performance of a firm in many areas. Applications
 include formulating manufacturing strategy (17), production sched-

 uling (12), pricing and marketing (18), training (19), subcontracting
 production (20), and predicting competitors' costs (21). The rate
 and transfer of learning are also important issues for antitrust policy
 (22) and trade policy (23).

 We examine evidence from several disciplines on organizational
 learning curves, particularly in manufacturing. Our focus is primari-
 ly on empirical studies that analyzed organizations or work groups.
 We show that organizations vary considerably in the rate at which
 they learn and identify factors responsible for the variation.

 Research on Organizational Learning Curves

 The first documentation of an organizational learning curve was
 published in 1936 by Wright (1), who reported that unit labor costs
 in air-frame production declined with cumulative output (24).
 Further interest in learning was stimulated by Alchian's 1948 study
 of learning in 22 aircraft production programs (2).

 The conventional form of the learning curve is a power function:

 y = ax-b (1)

 where y is the number of direct labor hours required to produce the
 xth unit; a is the number of direct labor hours required to produce
 the first unit; x is the cumulative number of units produced; and b is
 a parameter measuring the rate labor hours are reduced as cumula-

 tive output increases.
 As this expression shows, the standard measure of organizational

 experience in the learning-curve formulation is the cumulative
 number of units produced, a proxy variable for knowledge acquired
 through production. If unit costs decrease as a function of this
 knowledge, other variables being equal, organizational learning is
 said to occur.

 Learning curves are often characterized in terms of a progress
 ratio, p. With the learning curve in Eq. 1, each doubling of
 cumulative output leads to a reduction in unit cost to a percentage,
 p, of its former value (25). Thus, an 80% progress ratio means that
 each doubling of cumulative output leads to a 20% reduction in unit
 cost.

 Before the discovery of learning curves in organizations, the
 learning-curve pattern had been found to characterize the perform-
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 ance of individual subjects as they gained experience with a task (26).
 For example, an early study of individual learning curves focused on
 the number of errors individual students made as they progressed
 through a typing course (27). Organizational learning curves, by
 contrast, focus on the performance of entire organizations or
 organizational subunits (for example, manufacturing plants). Al-
 though the productivity of an organization may be affected by
 individuals learning how to perform their jobs better, it is also
 affected by many additional factors such as technological develop-
 ments and improved coordination of the production process. Thus,
 organizational learning involves more than individuals becoming
 better at their particular jobs.

 Much of the work on organizational learning curves has focused
 on specifying the functional form of the relation between unit costs
 and cumulative output and on studying the phenomenon in differ-
 ent industries (12, 13). Several new trends in research on organiza-
 tional learning curves are apparent. The set of outcome measures has
 been broadened to include, for example, industrial accidents per unit
 of output (28) and defects or complaints to quality control per unit
 of output (29). The transfer of productivity gains acquired through
 learning by doing across organizations is also being studied (5, 6,
 30). Increasing attention is being given to disentangling the various
 factors that contribute to organizational learning (30, 31).

 Variation in Organizational Learning Rates

 The frequency distribution of progress ratios found in more than
 100 studies in different industries is presented in Fig. 2 (13). Note
 that the progress ratios vary a great deal, reflecting the variation in
 the rate productivity grows with increasing cumulative output. Also,
 the modal progress ratio falls at 81 to 82%-giving rise to the
 general assumption of an "80% learning curve" (32).

 Understanding the reasons why learning rates vary is a major
 challenge for research. The different rates of learning (Fig. 2) are not
 simply a function of the different products studied, although
 differences in products are, of course, a source of variation. There is
 often more variation across organizations or organizational units
 producing the same product than within organizations producing
 different products. For example, productivity gains varied more
 within shipbuilding production programs than between production
 programs during World War 11 (10). Similarly, Hayes and Clark
 (14) found considerable variation in the rate of learning across plants
 in the same firm producing the same product with similar equip-
 ment and materials.

 Different plants producing the same product that have different
 rates of learning are shown in Fig. 3. The data are from three truck
 plants producing the same product within the same company. The
 cumulative number of trucks produced is plotted against the number
 of direct labor hours required to assemble each truck. Although each
 plant shows the characteristic learning-curve pattern, the pattern is
 different for each plant. Thus, there is considerable variation in
 productivity among these plants that is not explained by the
 conventional learning-curve model (33).

 This variation in the rate that organizations learn may be due to
 organizational "forgetting," employee turnover, transfer of knowl-
 edge, and the failure to control for other factors, such as economies
 of scale, when estimating learning curves.

 Organizational forgetting. When production is resumed after an
 interruption such as a strike, unit cost is often higher than the level
 achieved before the interruption (34). Similarly, there is evidence
 that knowledge acquired through learning by doing depreciates:
 recent output rates may be a more important predictor of current
 production than cumulative output (30). Theoretical research and

 simulation results have also indicated that forgetting has implica-
 tions for planning and scheduling (35).

 Organizational forgetting may explain why Lockheed's costs for
 the L-1011 Tri-Star did not follow the learning-curve pattern. The
 production of the L-1011 Tri-Star was characterized by wide
 variations in the rate of output (Table 1). Lockheed estimated that
 its production costs would fall below price in mid-1974 (36). The
 conventional learning-curve formulation applied to the Tri-Star
 yielded a prediction that costs would fall below price about the time
 the 50th plane was built, sometime in 1973 (37). In November
 1975, Lockheed reported that unit costs at that time were less than
 the price at which planes were being sold (38). Planes were sold for
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 Fig. 1. Relation between assembly hours per aircraft and cumulative number
 produced. Units omitted.
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 Fig. 2. Distribution of progress ratios observed in 22 field studies (n = 108)
 (13).
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 $20 million in 1975. Cuts in production occurred in late 1975.
 Costs rose to exceed price and, apparently, remained above price for
 the rest of the production program (39). In 1982, the L-1011 was
 sold for $50 to $60 million per plane. This corresponds to $29 to
 $35 million in 1975 dollars. Thus, production cost per plane was
 less than $20 million in real terms in 1975 but greater than $29
 million in real terms in 1982.

 In the conventional learning-curve model, unit costs decrease as a
 function of cumulative output. This model does not explain the
 Lockheed data, however, since costs rose as cumulative output
 continued to increase. A model in which knowledge depreciates and
 recent output is more important than cumulative output in predict-
 ing costs can explain the Lockheed data. Lockheed's costs rose when
 production was cut and recent output was relatively low. Even
 though a detailed analysis of the L-101 1 data would be required to
 test the hypothesis that depreciation of knowledge occurred, the
 pattern of costs reported by Lockheed is consistent with the
 depreciation hypothesis.

 Why might knowledge acquired through learning by doing
 depreciate? Knowledge could depreciate because individual employ-
 ees forget how to perform their tasks or because individuals leave the
 organization and are replaced by others with less experience. For
 example, it would not be surprising if many managerial and line
 employees who worked on the L-1011 during its early period of
 high annual output (1973 to 1975) were no longer on the project
 when the company resumed comparatively high output levels later
 in the program (1979 to 1980). Depreciation could also be due to
 changes in products or processes that make previously acquired
 knowledge obsolete.

 Depreciation can also result if organizational records or routines
 are lost or become difficult to access. An example, recently described
 in Science, is provided by the difficulty in accessing data collected by
 Landsat, an earth surveillance program. It is estimated that 90% of
 the data collected before 1979 is inaccessible because the data were
 recorded by equipment that no longer exists or cannot be operated
 and "bleeding" of magnetic images occurred over time (40).

 Thus, forgetting or depreciation of-organizational knowledge can
 cause organizational learning rates to vary. When depreciation

 * Plant A
 C Plant B
 nbPlant C

 0.

 0

 0D

 Table 1. Lockheed's production of the L-1011 Tri-Star (15, 38, 53).

 Year L-1O11 production
 Annual units Cumulative units

 1972 17 17
 1973 39 56
 1974 41 97
 1975 25 122
 1976 16 138
 1977 6 144
 1978 8 152
 1979 24 176
 1980 25 201
 1981 18 219

 occurs and the conventional learning curve is used, two organiza-
 tions that have achieved the same level of cumulative output will be
 at different points on the learning curve if the recent output level of
 one is different from that of the other. Such differences in recent
 output levels may arise for a host of reasons including strikes,
 materials shortages, and fluctuations in product demand that lead to
 temporary shutdown of some plants but not others. A method for

 extending the analysis of learning to encompass depreciation is
 provided in Argote, Beckman, and Epple (30).

 Tumover. When organizational knowledge is possessed by indi-
 vidual employees, employee turnover can be expected to have an
 impact on learning and forgetting in organizations. Thus, differing
 rates of turnover across organizations could explain the differences
 observed in organizational learning curves.

 Does turnover affect the rate of learning and forgetting in firms?
 Research indicates that turnover of direct production workers did
 not have a significant effect on the rate of learning or forgetting in
 World War II shipyards (30). This result is striking, given that
 turnover in these organizations averaged more than 10% per month.
 The result is consistent, however, with results from several labora-
 tory studies that found increases in the performance of groups over
 successive trials in the face of turnover (41).

 Why did turnover not matter in these production environments?
 The jobs of production workers in the shipyards were standardized
 and designed so that a new employee could become proficient with
 minimal training (42). Procedures existed for training and transmit-
 ting knowledge to new members.

 Many production environments today also experience consider-
 able turnover. For example, the corporate office required one plant
 that we studied to accept, over a 2-month period, more than 300
 employees from a neighboring plant that closed. When these new
 employees arrived, more than 300 employees left the plant and
 another 150 moved to different jobs within the plant. Thus, at the
 end of the second month, 15% of employees at the plant were either
 new to the plant or at different jobs within the plant than at the
 beginning of this 2-month period. Plant managers at this corpora-
 tion recognize that high turnover may occur and attempt to design
 their operations to mitigate its effects.

 Although results to date do not suggest that turnover affects the
 rate of organizational learning, in the limit, turnover would surely
 affect learning and forgetting in firms (43). Moreover, organizations
 confronted with high rates of turnover may insulate themselves from
 its effects by routinizing jobs and procedures. The consequence may
 be a lower rate of learning than is achieved by organizations not
 confronted with such turnover. Turnover may matter more in
 organizations where jobs are not standardized and procedures do
 not exist for transmitting knowledge to new members. Turnover of
 managers and technical support staff, such as engineers, may also
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 matter more than turnover of direct production workers (44).
 Transfer ofproductivity gains. Another possible reason for different

 rates of organizational learning is the transfer of knowledge across
 products or across organizations. Experience gained in the produc-
 tion of one product can be transferred to the production of related
 products (45). For example, suppose two organizations produce the
 same product. The first organization produces only one product
 while the second organization produces a related product using
 some of the same operations as were used to make the first product.
 The second organization should benefit from the additional cumula-
 tive output generated by the second product and have lower costs on
 the shared operations. Thus, if the two organizations have similar
 cumulative output levels for the product they both produce, the
 second organization should have lower costs and be farther down
 the learning curve than the first because of the transfer of knowledge
 from the related product.

 Similarly, an organization that produced a related product in the
 past may be able to transfer knowledge to the manufacture of a
 product currently in production. Thus, an organization with previ-
 ous experience producing a related product may appear to have a
 faster rate of learning than an organization without prior experience,
 even though their cumulative output levels for the product currently
 in production are the same.

 Transfer of knowledge across organizations might also occur (46).
 Transfer might occur through personnel movement, communica-
 tion, participation in meetings and conferences, training, improved
 supplies, modifications in technology, or "reverse-engineering" of
 products. Knowledge transferred from outside the firm is difficult to
 measure. One approach to measuring this knowledge involves
 aggregating cumulative output across all firms in the industry. This
 measure of industry experience has been found to have a significant
 effect on unit costs in some industries (5) but not in others (6).
 Organizations coming on line later have been found to begin with
 higher productivity levels than their counterparts with early
 start dates (30). Once organizations began production, however,
 they did not benefit from knowledge acquired from other organiza-
 tions.

 Another approach to measuring knowledge acquired outside the
 firm is to assume that calendar time is,an adequate proxy variable for
 knowledge acquired in the general environment. Several studies in
 which this approach was used have found that calendar time is not as
 good a predictor of an organization's productivity growth as is its
 own cumulative output (3, 11, 31). Kelsey et al. (7) found that
 calendar time was a significant predictor of surgical success rates
 only for the first 20 operations performed. For later operations,
 calendar time was not significant but experience was. The research-
 ers suggested that surgeons were more likely to learn from the
 experience of others when they first begin to perform the procedure
 but not later. Thus, there is evidence that transfer may occur across
 organizations, and it seems particularly likely to occur in the early
 phases of production.

 If transfer occurs for one organization but not another, the
 organizations will appear to have different rates of learning, even if
 their "internal" rates of learning from their own past production
 experience are the same. For example, consider two plants operated
 by the same company. One plant leads by beginning production
 first. The corporation invests in transferring knowledge acquired by
 the lead plant to the second plant. If transfer occurs, the second
 plant will have higher productivity than the first plant for the same
 level of cumulative output; the learning curve of the second plant
 will lie below that of the first.

 Differences in learning rates across plants can also arise from
 incomplete transfer across shifts within plants (11). Managers at one
 plant we studied were disappointed that incomplete transfer oc-

 curred from the first shift to the second when the second shift was
 introduced at the plant. They speculated that the incomplete transfer
 was due to inadequate documentation of lessons learned from the
 first shift.

 As an example of how incomplete transfer can cause differences in
 learning rates, consider two plants producing the same product.
 One plant operates with one shift per day while the other operates
 with two shifts (not an unusual occurrence). If the rate of learning
 per shift is the same in both plants but incomplete transfer occurs
 across shifts, the learning curves at the two plants will be different.
 When unit cost is plotted versus cumulative output from plant data,
 the plant operating with one shift per day will exhibit greater
 learning than the plant operating with two shifts per day. For
 example, suppose that unit costs for the two plants are compared at
 the point where both have produced 10,000 units. For the plant
 operating with two shifts per day, the cumulative output per shift
 will be only 5,000, that is, half the cumulative output per shift of the
 plant operating with only one shift. Thus, if there is no transfer
 across shifts, the plant operating with two shifts per day will have
 the productivity at a cumulative output of 10,000 units that the
 plant operating with one shift per day had at a cumulative output of
 5,000 units.

 Other factors affecting learning rates. An investigator should control
 for other variables that affect production because exclusion of such
 variables may bias the estimated rate of learning. For example,
 suppose economies of scale are present, so that a given increase in
 inputs results in a more than proportionate increase in output. If the
 scale of operation is gradually increased over time, productivity will
 rise because of increasing exploitation of economies of scale. If one
 estimates the rate of learning without controlling for the changing
 scale of operation, this increasing exploitation of scale economies
 will result in an overestimate of the amount of learning.

 Womer (47) has cogently argued for the importance of integrat-
 ing estimation of learning with production function estimation as a
 vehicle for controlling for the effects offactors other than learning. A
 production function is a relation specifying output per period as a
 function of inputs that period, the state of technical knowledge, and
 other variables that may affect output. Symbolically, this may be
 written:

 q = F(n, k, z) (2)

 where n denotes productive inputs, k denotes measures of the state
 of technical knowledge, and z denotes other variables that may affect
 production (48).

 In general, issues that must be addressed in estimating a produc-
 tion function are selection of a functional form; choice of the
 variables n, k, and z; specification of the properties of random
 factors affecting the production process; and choice of an appropri-
 ate method of estimating the parameters of interest. There is some
 evidence that a plateau occurs, especially in machine-intensive
 industries (49). The choice of functional form should be flexible
 enough to accommodate this leveling out of the learning curve. It is
 also important to correct for problems that may arise if data are
 collected on a per period basis when several periods are required to
 produce each unit (50). Other issues in choice of functional form,
 specification of error structures, and estimation methods are ad-
 dressed by others (51).

 The choice of variables to be included in the model varies
 according to the production process being studied. For example, in
 a single plant with unchanging physical facilities, labor hours may be
 the only input that varies over time. In studying multiple plants, it
 may be appropriate to include measures of capital investment and
 other inputs that differ across plants, and such measures would also
 be needed if the facilities in a given plant change over time. An early
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 example of empirical work on organizational learning that con-

 trolled for additional factors in the analysis was done by Rapping
 (3). He found both economies of scale and learning to be present in
 his study of productivity gains in shipbuilding.

 Although cumulative output is typically used as the measure of
 knowledge acquired through learning by doing, measures that place
 relatively greater weight on recent output than on output in the
 distant past are appropriate if depreciation occurs (30). When
 production occurs at several plants, additional variables such as
 cumulative output aggregated across plants may be included in
 addition to a plant's own cumulative output as measures of the
 transfer of knowledge. If the plant has the potential to benefit from
 improvements in technical knowledge in the larger environment,
 proxies for the pace of such improvements are appropriate. One
 such proxy is calendar time (52). Finally, it may be necessary to
 control for factors such as labor turnover, product mix, and
 adjustment costs associated with changing inputs.

 Conclusion

 Although learning curves have been found in many organizations,
 there is great variation in the rate at which organizations learn,
 ranging from production programs with little or no learning to
 those with impressive productivity growth. We identified reasons
 why organizational learning rates vary. These include organizational
 forgetting, employee turnover, transfer of knowledge across prod-
 ucts and across organizations, incomplete transfer within organiza-
 tions, and economies of scale. Learning is a powerful source of
 productivity growth, and better understanding of learning can
 enhance manufacturing performance.
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