Antigen Recognition and Humoral Immunity

Assoc. Prof. Dr. Emrah Sefik Abamor

LYMPHOID ORGANS

Primary lymphoid organs:

- Bone marrow
- Thymus

the cells of the immune system originate in and mature here

Secondary lymphoid organs:

- Spleen

- Lymphatic vessels
- Lymph nodes
- Adenoids and tonsils
- MALT (Mucosal Associated Lymphoid Tissue)

GALT (Gut Associated Lymphoid Tissue) BALT (Bronchus Associated Lymphoid Tissue) SALT (Skin Associated Lymphoid Tissue) NALT (Nasal Associated Lymphoid Tissue)

not for cell development. (final differentiation, activation may be performed) The cells of the adaptive immune system recognize here the pathogens

Lymphocyte maturation

Abbas & Lichtman: Basic Immunology, 3rd Edition. Copyright © 2008 by Saunders, an imprint of Elsevier, Inc. All rights reserved.

B cell activation and antibody production

<u>B lymphocytes can recognize</u>

- Proteins
- Polysaccharides
- Lipids
- Nucleic acids
- Toxins

- B cells <u>differentiate into antibody producing cells</u> <u>in response to antigen and other signals.</u>
- Secreted antibodies can pass into the circulation and mucosal fluids and bind antigens, leading to their neutralization and elimination.

- B cell receptors and secreted antibodies <u>recognize</u> antigens in their natural form.
- It is not necessary to have a specialized ASH group
 - to present antigens to naive B cells.

- A population of cells called follicular dendritic cells
 (FDC) is found in the lymphoid follicles rich in B cells of the lymph nodes and spleen.
- The function of these cells is to show antigens to the activated B lymphocytes.

• FDCs take antibody-coated antigens using Fc receptors and it binds antigens covered by complement using C3d complement receptors.

- Specific antigen recognition is the task of two structurally similar surface proteins of lymphocytes:
- 1.Membrane-bound antibodies of B cells
- 2. T cell receptors (TCR) on T lymphocytes

•Cell receptors in the immune system have two functions:

- 1. detecting external stimuli
- 2. Triggering the immune response

- Antigen receptors of lymphocytes can simultaneously recognize large amounts of different antigens.
- For this, <u>these receptors must have the ability to bind</u> <u>and distinguish very similar chemical structures.</u>

- The antigen recognition regions of the receptors consist of 2 parts.;
- Variable (V) region
- Constant (C) region

T-cell Receptor (TCR) vs. Ab

	T cell receptor (TCR)	Immunoglobulin (Ig)
Components	a and b chains	Heavy and light chains
Number of Ig domains	One V domain and one C domain in each chain	Heavy chain; one V domain, three or four C domains Light chain; one V domain and one C domain
Number of CDRs	Three in each chain for antigen binding; fourth hypervariable region in b chain (of unknown function)	Three in each chain
Associated signaling molecules	CD3 and z	lga and lgb
Affinity for antigen (K _d)	10 ⁻⁵ -10 ⁻⁷ M	10 ⁻⁷ -10 ⁻¹¹ M (secreted Ig)
Changes after cellular activation Production of secreted form	No	Yes
Isotype switching	No	Yes
Somatic mutations	No	Yes

Abbreviations: C, constant; CDR, complementarity-determining region; K_d, dissociation constant; V, variable.

Feature	Antigen-binding molecule		
	Immunoglobulin (Ig)	T cell receptor (TCR)	
	Antigen Ig	CD4-Peptide TCR	
Antigen binding	Made up of three CDRs in $V_{\rm H}$ and three CDRs in $V_{\rm L}$	Made up of three CDRs in V α and three CDRs in V β	
Changes in constant regions	Heavy-chain class switching and change from membrane to secretory Ig	None	
Affinity of antigen binding	K _d 10 ⁻⁷ -10 ⁻¹¹ M; average affinity of Igs increases during immune responses to protein antigens	K _d 10 ⁻⁵ -10 ⁻⁷ M; No change during immune responses	
On-rate and off-rate	Rapid on-rate, variable off-rate	Slow on-rate, slow off-rate	

BCR

TCR

- Recognition without requirement for co-receptor molecules
- Co-receptor molecules (CD4/CD8) required

Feature or function	Antibody (Immunoglobulin)	T cell receptor (TCR)
	Membrane Ig Antigen Igα Igβ Igα Igβ Signal Isgnal transduction Isgnal Secreted Effector Antigen Isgnal Final Isgnal Secreted Isgnal Antigen Isgnal Isgnal Isgnal	Antigen-presenting cell HHC Antigen TCR CD3 CD3 CD3 CD3 CD3 CD3 CD3 CD3
Forms of antigens recognized	Macromolecules (proteins, polysaccharides, lipids, nucleic acids), small chemicals Conformational and linear epitopes	Peptides displayed by MHC molecules on APCs Linear epitopes
Diversity	Each clone has a unique specificity; potential for >10 ⁹ distinct specificities	Each clone has a unique specificity; potential for >10 ¹¹ distinct specificities
Antigen recognition is mediated by:	Variable (V) regions of heavy and light chains of membrane Ig	Variable (V) regions of α and β chains
Signaling functions are mediated by:	Proteins (Ig α and Ig β) associated with membrane Ig	Proteins (CD3 and ζ) associated with TCR
Effector functions are mediated by:	Constant (C) regions of secreted Ig	TCR does not perform effector functions

- When the antigen receptors of B lymphocytes bind to the antigen at the same time, the receptors cluster together.
- This process is called <u>cross-linking</u> and it keeps the respective signal proteins of the receptor complex in close link.

• Thus, enzymes attached to the cytoplasmic parts of the signal

proteins provide **phosphorylation** of other proteins.

 Phosphorylation results in the production of many molecules that mediate lymphocyte responses by triggering complex signal cascades.

- Antibodies are active molecules of humoral immunity.
- They are also called immunoglobins.
- Secreted antibodies recognize microbial antigens and toxins by their variable regions, just like membranebound B lymphocyte antigen receptors.

• The constant regions of some secreted antibodies have the ability

to bind to other molecules and thus serve to remove the antigen.

• These molecules include receptors of phagocytes and proteins

of the complement system.

Antibodies

- An antibody molecule consists of two heavy (H) and two light (L) polypeptide chains
- Each chain contains a variable (V) and a constant
 (C) region
- These 4 chains combine to form a Y-shaped molecule

Crystal structure of secreted IgG

Figure 4–2 The structure of antibodies. Schematic diagrams of a secreted IgG (A) and a membrane form of IgM (B) are shown, illustrating the domains of the heavy and light chains and the regions of the proteins that participate in antigen recognition and effector functions. N and C refer to the amino-terminal and carboxy-terminal ends of the polypeptide chains, respectively. The crystal structure of a secreted IgG molecule (C) illustrates the domains and their spatial orientation. In the crystal structure, the heavy chains are colored *blue* and *red*, and the light chains are colored *blue* and *red*, and the light chains are colored *green*; carbohydrates are shown in *gray*. (Courtesy of Dr. Alex McPherson, University of California, Irvine.)

Functions of Antibodies

Nature Reviews | Immunology

Functions of Antibodies

- Binding specific antigens
- Complement activation (Ig G and Ig M)
- Opsonization (lg G)
- Toxin and virüs neutralization (Ig G)
- Antigen-dependent cellular toxicity (Ig G and Ig E)
- Histamin secretion from mast cells (Ig E)
Structures of Antibodies

Two main parts:

- 1. Fragment antigen binding (Fab)
- 2. Fragment crystaline

Antibodies are heterodimeric molecules. It consists of four

peptide chains.

- 2 identical heavy chains (50kDa)
- 2 similar light chains (25kDa)

- Each light chain is attached to a heavy chain by disulfide bonds
- Each heavy chain is linked to each other by disulfide bonds
- One light chain: one V and one C regions,
- One heavy chain: one V and three or four C regions

- Each variable region of heavy and light chains carries 3 hypervariable regions or CDRs.
- The most variable of these triads is the **CDR3** region located at

the junction of the V and C regions.

- CDR3 is the part of the immunoglobulin molecule most involved in antigen binding.
- The V regions of the heavy and light chain form the antibody region required to recognize the antigen and is called the Fab (fragment antigen binding).

• The remaining C regions of the heavy chain are called

crystalline fragment Fc (fragment crystaline).

• Because this region tends to form crystals in solution.

Antikorlar

- Most antibody molecules have an elastic region between the Fab and Fc regions.
- This region is called the hinger region.
- The hinge allows each antibody molecule to move the antigen-binding Fab region and <u>freely capture the</u>
 <u>antigen epitopes</u> that stand apart.

Antibodies are named according to their heavy chain

type (IgM, IgG, IgD, IgE, IgA)

Type of heavy chain in each lg class					
Immunoglobulin class	Heavy chain type				
IgG	γ (gamma)				
IgA	α (alpha)				
IgM	μ (mu)				
IgD	δ (delta)				
IgE	ε (epsilon)				

- The physical and biological properties of different isotypes are different from each other. The antigen receptors of naive B
 Iymphocytes are in the structure of IgM and IgD.
- As a result of exposure to antigen or stimulation with T helper cells, the antigen-specific B-lymphocyte clone expands and differentiates into plasma cells that secrete antibodies.

Heavy chain isotype switching

ISOTYPE SWITCHING

Thursday, July 19, 2012

- Activation of Complement proteins
 - IgM, IgG3, IgG1, IgG2
- Placenta transmission
 - lgG1, lgG3, lgG4, lg A
- Fc Receptor binding
 - lgG1, lgG3, lgG4, lgG2

Molecular weight nearly 150-170 kDA.
It covers 80% of the antibodies in the serum of a healthy person.
It is divided into four sub-classes: lgG1(%68), lgG2(%20), (v)
IgG3(%8), lgG4(%4).

- IgG3 is active in classical complementpathway activation.
- IgG1 and IgG3bind to Fc receptors with high affinity.

lgG

1. Molecular weight nearly 180kDa.

2.It covers 1 % of the antibodies in the

serum of a healthy person.

3.Active in B cell differentiation

- 1. Molecular weight nearly 200 kDA.
- It is found in extremely small amounts in the serum of a healthy person.
- **3.** It is seen at a high rate in those with allergies and helminth infections.

Degranulation

• Molecular weight of monomer form: 160kDa.

• Monomer, dimer, trimer and tetramer

- It constitutes 10-15% of total antibodies in healthy human serum.
- It contains J chain that stabilizes the dimeric structure.

In addition to being present in serum, it crosses the epithelial barrier with the secretory part and is found <u>in saliva, tears,</u> <u>urine, milk and intestinal secretions.</u>

lg A

lg M

- 1. Molecular weight 900kDa.
- 2. %6 of total Immunoglobulines
- 3. Effectively binding complement proteins
- 4. Pentameric structure
- 5. Monomeric IgMs are found on the surface of B-lymphocytes.

FIGURE 12-14 Ig heavy chain isotype switching. B cells activated by helper T cell signals (CD40L, cytokines) undergo switching to different Ig isotypes, which mediate distinct effector functions. Selected examples of switched isotypes are shown. The role of IFN-γ in directing specific isotype switching events has been established only in rodents.

Isotype switch

Ig isotype doesn't change the specificity of antibody binding site (i.e. variable region)
 Switch only happens once B cell meets antigen.

Process is regulated by a switch region in the DNA located upstream of the constant region of the heavy chain

Switch happens thanks to many enzymes also involved in DNA repair

Difference Between Primary Response and Secondary Response.

	Primary Response	Secondary Response	
Exposure to antigen	first exposure to a specific antigen	after second exposure to the same antigen	
Time of onset	1-week delay	Within hours	
Strength	weak potency	more potent	
Duration	Short life , for only a few weeks	forms antibodies for many months	
Type of antibody	lgM	IgG	

Isotype of antibody	Subtypes	H chain	Serum concentr. (mg/mL)	Serum half-life (days)	Secreted form	Functions
IgA	lgA1,2	α(1 or 2)	3.5	6	Monomer, dimer, trimer	Mucosal immunity, neonatal passive immunity
lgD	None	δ	Trace	3	None	Naive B cell antigen receptor
lgE	None	ε	0.05	2	Monomer	Mast cell activation (immediate hypersensitivity)
lgG	lgG1-4	γ (1,2,3 or 4)	13.5	23	Monomer IgG1	Opsonization, complement activation, antibody- dependent cell- mediated cytotoxicity, neonatal immunity, feedback inhibition of B cells
lgM	None	μ	1.5	5	Pentamer IgM	Naive B cell antigen receptor, complement activation

Figure 4–3 Features of the major isotypes (classes) of antibodies. The table summarizes some important features of the major antibody isotypes of humans. Isotypes are classified on the basis of their heavy chains; each isotype may contain either κ or λ light chain. The schematic diagrams illustrate the distinct shapes of the secreted forms of these antibodies. Note that IgA consists of two subclasses, called IgA1 and IgA2, and IgG consists of four subclasses, called IgG1, IgG2, IgG3, and IgG4. (IgG subclasses are given different names in other species, for historical reasons; in mice, they are called IgG1, IgG2a, IgG2b, and IgG3.) The serum concentrations are average values in normal individuals.

Humoral Immunity Phases

Activation and Class-switching of B-cells

Affinity Maturation

Affinity Maturation

T-dependent B Cell Response

T-dependent B Cell Response

Secondary Immune Response

 Repeated stimulation with an antigen leads to an increase in the number of helper T lymphocytes, resulting in an increase in secondary response to <u>protein-structured antigens</u>, <u>heavy chain isotype switching and affinity maturation</u>