MATRICES

DEFINITION 1 A matrix is a rectangular array of numbers. The numbers in the array
are called the enfries in the matrix.

Some examples of matrices are

1 2 e T —+2 |
30, 2 1 0 =31, |0 1, H [4] 4
-1 4 0 0 0 )

A matrix with only one row, such as the second in Example 1, is called a row vector
(or a row matrix), and a matrix with only one column, such as the fourth in that example,
15 called a column vector (or a column matrix). The fifth matrix in that example is both
a row vector and a column vector.

The entry that occurs in row i and column j of a matrix A will be denoted by a;;.
Thus a general 3 x 4 matrix might be written as

thyy iz iz g
A= |dy dan dpn duy

ta iz iz (3

and a general m x n matrix as

apy  dyg ay

dy dy oy
A= ;

iy s = i

[aij]nrxu or [ar'j]

The entry in row i and column j of a matrix A is also commonly denoted by the
symbol (A);;. Thus, for matrix (1) above, we have

(A)ij = ayj

f ]

we have (A)y =2, (A);; = —3,(A)y; =7, and (A)» = 0.

and for the matrix



[ |

A matrix A with n rows and n columns is called a square matrix of order n, and the
shaded entries a4, a2, . .., @ In (2) are said to be on the main diagonal of A.

ay ay2 --- din
ay axp --- ay

; ; . (2)
anpl dp2 -+ dpn

DEFINITION 3 If A and B are matrices of the same size, then the sum A + B is the
matrix obtained by adding the entries of B to the corresponding entries of A, and
the difference A — B is the matrix obtained by subtracting the entries of B from the
corresponding entries of A. Matrices of different sizes cannot be added or subtracted.

(A+ B)ij = (A)j + (B)y =a;; + by and (A — B)i; = (A)y; — (B)y; = a;; — by

Consider the matrices

2 1 0 3 —4 3 5 1
A=|-1 0 2 4|, B=| 2 2 0 -1
4 =2 7 0 302 —4 5
—2 4 5 4 6 -2 -5 2
A+B=| 1 2 2 3| and A—B=|-3 -2 2 5
7 0 3 5 1 —4 11 =5

P EXAMPLE 4 Scalar Multiples

For the matrices

2 3 4 0o 2 7 9 —6 3
A_I:l 3 1]’ B_[—l 3 —5]‘ C_[:% 0 12}
we have

4 6 8 0 -2 -7 32 1
M‘[z 6 z]’ [_1}3_[1 -3 5]’ E‘C_[l 0 4}

It is common practice to denote (—1)B by —B.

DEFINITION 5 If A 1s an m x r matrix and B is an r x n matrix, then the product
AB is the m x n matrix whose entries are determined as follows: To find the entry in
row i and column j of AB, single out row i from the matrix A and column j from
the matrix B. Multiply the corresponding entries from the row and column together,

and then add up the resulting products.




A B AB

m = r F X n = mx n
| Inside
Dutside

P EXAMPLE 5 Multiplying Matrices
Consider the matrices

In general, if A = [a;;] isanm x r matrix and B = [b;;] isanr x n matrix, then, as

illustrated by the shading in the following display,

[ay ap - ay ]
ay an - axy ||[bn b - by - by
: : : byy by oo by - by
AB=| °~ ) . : . J 7 (4)
a4 app e G : : : :
: by b2 - brj o by
| @ml Gm2 - g
the entry (AB);; in row i and column j of AB is given by
(AB)ij = anbyj +aixbzj +apsbsj + - - - + airby;j (3)
Formula (5) 1s called the row-column rule for matrix multiplication.
DEFINITION 6 If A;, As, ..., A, are matrices of the same size, and if ¢, 3, .. ., c;

are scalars, then an expression of the form

E]A[ +CEA1 + e +1':r.|4.r

15 called a linear combination of A, As. ..., A, with ceefficients ;. cs. .. ., Cr.




To see how matrix products can be viewed as linear combinations, let Abeanm x n
matrix and x an n x | column vector. say

ay o - Xy
fy dxp -+ dy X2
A=| ] ] and x =
iy hya = lyn -xrr_
Then
anx; + aipxa +---+ digXp iy ap fdip
anxy + anxa +---+ dypiy 2] a2z (5]
Ax=| : =] T A T [
AmX1 + AmaX2 +-- -+ Amnkn dmi ﬂmi_ tmn

THEOREM 1.3.1 If Aisanm x n matrix, and if X is an n x | column vector, then the
product AX can be expressed as a linear combination of the column vectors of A in which
the coefficients are the entries of X.

P EXAMPLE 8 Matrix Products as Linear Combinations
The matrix product

—1 3 2 2 1
1 2 3| -1]l=]-9
2 1 =2 3 -3
can be written as the following linear combination of column vectors:
—1 3 2 1
2 L —=1[{2|+3|-3]|=|—9

2 1 —2 -3



DEFINITION 7 If A is any m x n matrix, then the transpose of A, denoted by A7 is
defined to be the n x m matrix that results by interchanging the rows and columns
of A: that is. the first column of AT is the first row of A, the second column of A7 is
the second row of A, and so forth.

> EXAMPLE 11 SomeTransposes

The following are some examples of matrices and their transposes.

ap diz diy dig 2 3
A= 2 yy 3 g |, B = | 4 . O = [] 3 5].. D= [4]
ay dyp dy dy 5 6

) dy dy

1
AT — apy dn  dip . BT = 20 cT=13]. D" =[4] 4
diy dn dwn | 4 1 5 |

g dx  dy

Properties of the Transpose  The following theorem lists the main properties of the transpose.

THEOREM 1.4.8 [f the sizes of the matrices are such that the stated operations can be
performed, then:

@ (AH7 =4

() (A+B)T =AT +BT
() (A—B)T =AT — BT
(d) (kA)T = kAT

() (AB)T = BTAT

(AT)i; = (A);i

2 4 D @ 1 3 =5
A=| 3 7 ﬂﬁo“;{,@e,ﬁ":—z 7 8
-5 8 6 &5 ® 6 4 0 6

TR




DEFINITION 8 If A is a square matrix, then the trace of A, denoted by tr( A), is defined
to be the sum of the entries on the main diagonal of A. The trace of A is undefined
if A 1s not a square matrix.

> EXAMPLE 12 Trace

The following are examples of matrices and their traces.

—1 2 7 0

ayp iz s 3 5 _8 4
A=|ay a»n an|. B=

a de a 1 2 7 =3

31 Ay amn 4 2 1 0

tl'{A} =y +£123 +ﬂ33

Exercise
30 -
4 —1 1 4 2
A=|-1 2], B = [ . C = j|
0 2 i1 5
11 d
1 5 2 6 1 3
D=|-1 0 1|, E=|-1 1 2
3 2 4 413
3.(a) D+E (by D—E (c) 5A
(dy —7C (e) 2B —C (f) 4E — 2D
(g) —3D+2E) (M A—A (i) tr(D)
(j) tr(D — 3E) (k) 4 tr(7B) () tr(A)
5. (a) AB (b) BA (c) (3E\D
(d) (ABYC (e) A(BC) iy cc’
(g) (DAY (h) (CTB)AT (i) tr(DDT)
What is the value of k?
B o] [k
15. [k 1 1]t 0 20|1|=0
02 3|1
1 2 o] [2]
16.[2 2 k]|2 0 3||2]=0
0 3 k

tr(B)=—1+54+7+0=11



32. Find a 4 = 4 matrix A = [a;;] whose entries satisfy the stated
condition.

(a) @ =i+ j (b) a; =i/

© 1 if Ji—j]=1
C) dj = . . .
! -1 if Ji—jl=1

True-False Exercises

TF. In parts (a)-(o) determine whether the statement is true or
false, and justify your answer.

.. |1, 2 e
(a) The matrix [4 s 6] has no main diagonal.

(b) Anm x n matrix has m column vectors and n row vectors.
(c) If A and B are 2 x 2 matrices, then AB = BA.

(d) The ith row vector of a matrix product AB can be computed
by multiplying A by the ith row vector of B.

Inverses; Algebraic Properties of Matrices

THEOREM 1.4.1 Properties of Matrix Arithmetic

Assuming that the sizes of the matrices are such that the indicated operations can be
performed, the following rules of matrix arithmetic are valid,

(@) A+B=B+A | Commutative law for mairix addition]
() A+(B+C)=(A+ B)+ C [Associative law for matrix addition]

(c) A(BC)=(AB)C | Associative law for matrix multiplication]
(d) A(B+C)=AB + AC | Left distributive law]

(¢) (B4+C)A=BA+CA [ Right distributive law]

(f) A(B—C)=AB — AC
(g) (B—C)A=BA—-CA
(hy a(B+C)=aB +aC

(i)y a(lB—-—C)=aB —aC

(/) a+b)C=aC+bC

(k) (a—b)C=aC —bC

(/) a(bC)=(ab)C

(m) a(BC) = (aB)C = B(aC)

A matrix whose entries are all zero is called a zere matrix. Some examples are

& U

0 0 0 0 0 [0]
00 0 0] jo]°
0

[ e e
e e Y
[ e e



THEOREM 1.4.2 Properties of Zero Matrices

If ¢ is a scalar, and if the sizes of the matrices are such that the operations can be
perfomed, then:

@) A+0=0+A=A

b A—0=A
() A—A=A+(—A)=0
(d) 0A=0

(€) IfcA=0,thenc=00r A=1.

A square matrix with 1’s on the main diagonal and zeros elsewhere is called an identity
matrix. Some examples are

1 00

1 0
[1], L} ]} 01 0
00 1

An identity matrix is denoted by the letter 7. If it is important to emphasize the size, we
will write [, for the n x n identity matrix.

[ =T = =
== ]
[T = =
—_— o o =

DEFINITION 1 If A is a square matrix, and if a matrix B of the same size can be
found such that AB = BA = I, then A is said to be invertible (or nonsingular) and
B 1s called an inverse of A. If no such matrix B can be found, then A 1s said to be
singular.

Remark The relationship AB = BA = [ is not changed by interchanging A and B, so if A is
invertible and B is an inverse of A, then it 1% also true that B is invertible, and A is an inverse of
B. Thus, when

AB=FA=1

we say that A and B are inverses of ohe another,

P EXAMPLE 5 An Invertible Matrix

Let
2 5 35
A=[_l :J and H:[l 2:|
Then
T2 =513 51 1 0]
AB:_—I 3][1 2|7 |0 1H=I
3 51T 2 =51 [1 0]
BA:_] 2][—1 37 |o 1d=f

Thus, A and B are invertible and each is an inverse of the other.



AA'=T and A7'A=1

P EXAMPLE 6 A Class of Singular Matrices

A square matrix with a row or column of zeros is singular. To help understand why this
1s so, consider the matrix

e
|
W R -
= R R N
oo o

THEOREM 1.4.4 If B and C are both inverses of the matrix A, then B = C.

[

is invertible if and only if ad — be £ 0, in which case the inverse is given by the formula
1 d —
Al = (2)
ad —bc |—c a

P EXAMPLE 7 Calculating the Inverse of a 2 x 2 Matrix

THEOREM 1.4.5 The matrix

In each part, determine whether the matrix is invertible. If so, find its inverse.

6 1 12
{“A=L J (mﬂ=[3-4}

Solution (a) The determinant of A i1s det(A) = (6)(2) — (1)(5) = 7, which is nonzero.
Thus, A is invertible, and its inverse is

w=i[d )L

We leave it for you to confirm that AA~!' = A~'A =TI

N [ [
|- | P
| —

Solution (b) The matrix is not invertible since det(A) = (—1){(—6) — (2)(3) = 0.

THEOREM 1.4.6 If A and B are invertible matrices with the same size, then AB is
invertible and

(AB)"' = B~'A™!

Powers of a Matrix  If A is a Square matrix, then we define the nonnegative integer powers of A to be

A’=1 and A"=AA-.-A |nfactors]
and if’ A is invertible, then we define the negative integer powers of A to be

A =AY = A7'AT AT [wfactors]



THEOREM 1.4.7 If A is invertible and n is a honnegative integer, then:
(@) A~'isinvertible and (A=")~' = A.

(by A" is invertible and (A")~' = A" = (A~")".

(¢) kA is invertible for any nonzero scalar k, and (kA)™' = k—'A~".

THEOREM 1.4.9 If A is an invertible matrix, then AT is also invertible and
Matrix Polynomials If A is a square matrix, say n x n, and if

p(x) =ao+aix +axx” + -+ - + damx"

is any polynomial, then we define the n x n matrix p(A) to be
p(A) =agl +a A+ aA* + - 4 ap A" (3)

where 7 is the n x n identity matrix; that is, p(A) is obtained by substituting A for x
and replacing the constant term a; by the matrix ay /. An expression of form (3) is called
a matrix polynomial in A.

P EXAMPLE 12 A Matrix Polynomial

Find p(A) for

. -1 2
J=x"—2x—3 d A=
pilx) X X an [{] 3]

Solution

p(A) = A —2A - 31

-1 27 , [
L 003 0
v o4 -2 4
109 0 6

or more briefly, p(A) = 0.

21, o
3 0 1
307 [o o
0 3] oo

Exercise



9, Find the inverse of
Het+e™) et —e)
et —e™) et e

10. Find the inverse of
cosf sind
—sin®  cosd
In Exercises 15-18, use the given information to find A.

—3 -3 -1
A, — . Tyl —
15. (74) [ | _j 16. (547) [ 5 2]

-1 2 2 -1
" -1 __ -1 __
17. (I +2A) " = [ 4 5] 18. A~ = [3 5]

In Exercises 21-22, compute p(A) for the given matrix 4 and
the following polynomials.

(a) plx)=x -2
(b) pix) =2x" —x + 1
() pix)y=x' —2x +1

11A—3] 21;4—2['
21 T4

True-False Exercises

TF. In parts (a)-(k) determine whether the statement is true or
false, and justify your answer.

{a) Two n = n matrices, 4 and B, are inverses of one another if
and only if AB = BA =10.

(b) Forall square matrices A and B of the same size, it is true that
(A+ B)Y = A*+2AB + B

ic) Forall square matrices A and B of the same size, it is true that
A*— B =(A— B)(A + B).

(d) If A and B are invertible matrices of the same size, then AR 15
invertible and (AB) ' = A~'B~".

(e) If A and B are matrices such that AF is defined, then it is true
that (AB)T = ATBT.



() The matrix
a b
e ]
is invertible if and only if ad — be £ (.

(g) If A and B are matrices of the same size and k is a constant,
then (kA + B)T = kAT + BT.

(h) If A is an invertible matrix, then so is AT,

(i) If p(x) = @y + ayx + a:x* + - -+ + apx™ and [ is an identity
matrix. then p(l) = a, +a, +a, + - -+ +da,,.

(j) A square matrix containing a row or column of zeros cannot
be invertible.

(k) The sum of two invertible matrices of the same size must be
invertible.

DEFINITION 1 Matrices A and B are said to be row equivalent if either (hence each)
can be obtained from the other by a sequence of elementary row operations.

DEFINITION 2 A matrix E 1s called an elementary matrix if it can be obtained from
an identity matrix by performing a single elementary row operation.

1 0 0 0
?r
[1 ﬂ} 00 0 1 El {: . {]] ? g
_3
v i 0010 0 0 1 0 0 1
0o 1 0 0
' ' T T
Multiply the Interchange the Addd 3 pimes Multiply the

second row of second and fourth the third row of first row of

I by —3. rows of Iy. I to the first row, Iy by 1. 4

THEOREM 1.5.2 Equivalent Statements

If Aisann x n matrix, then the following statemenis are equivalent, that is, all true or
all false.

(a) A is invertible.

(b)  Ax = 0 has only the trivial solution.

(¢) The reduced row echelon form of A is I,

(d) A is expressible as a product of elementary mairices.



P EXAMPLE 4 Using Row Operations to Find A1

Find the inverse of

= Lh a2
ld e

1
A=|2
1

o]

Solution 'We want to reduce A to the identity matrix by row operations and simultane-
ously apply these operations to I to produce A~'. To accomplish this we will adjoin the
identity matrix to the right side of A, thereby producing a partitioned matrix of the form

[A 1]

Then we will apply row operations to this matrix until the left side is reduced to I; these
operations will convert the right side to A™!, so the final matrix will have the form

[7]A7"]

The computations are as follows:

2 3 1 0 0
2 5 3 0 1 0
1 0 8 0 0

—

0 1 -3 -2 1 ] — We added —2 times the first
row to the second and —1 times

I:' —2 5 —1 ﬂ' 1 the first row to the thard

] 1 —3 -2 1 0 — Weadded ? times the
second row 1o the third.

D 1 —3 -2 1 ﬂ o We multiplied the

third row by —1.
0 0 1 5 =2 -1
§ 2 —14 6 3]
D 1 U 13 —5 =3 We added 3 tmes the third
row to the second and —2 times
0 0 | 5 =2 -1 the third row to the first
§ 0 —40 16 9]

0 | ] 13 —5 =3 . We added —2 times the

second row to the first




Thus,

—40 16 9
A =| 13 -5 3| «
5 -2 -1

P EXAMPLE 5 Showing That a Matrix Is Not Invertible
Consider the matrix

1 6 4
A= 2 4 -1
—1 2 5

Applying the procedure of Example 4 yields

1 6 4] 1 0 0]
2 4 —1 0 1 0
—1 2 3 0 0 1
1 6 4 0 0]
0 -8 —9)| =2 | 0 o Weadded —2 times the first
row to the second and added
0 8 9 | 0 1 the first row b the third.
1 6 4 0 0]
{} _E _9 -2 1 ﬂ a— We added the second
row to the thord.
0 0 0fl-1 1 1 |

Since we have obtained a row of zeros on the left side. A is not invertible.

Exercise

In Exercises 11-12, use the inversion algorithm to find the in-
verse of the matrix (if the inverse exists).

1 2 3 [—1 i —4
11.4a) |2 5 3 ib) 2 4 |
10 8 4 2 -9
1 r _2 1 1 _2
5 5 5 5 5 5
1 1 ! 2 3 1
12. {(a) : : o ih) R 1
1 4 ! 1 4 !
5 T % To Ls T 5 Ta




In Exercises 13-18, use the inversion algorithm to find the in-
verse of the matrix (if the inverse exists).

1 0 1 [ V2 32 0
13. /0 1 1 4. | 4.2 2 0
1 1 0 0 0 1
s 6 6 1 0 0 0
1 3 0 0
1512 7 6 16. )
J 1 3 50
13 5 7
2 —4 0 0 0 20
. 1 2 12 0 8 1 0 1
1o o 2 0 1o —1 30
0 —1 —4 -5 2 1 5 -3

True-False Exercises

TF. In parts (a)g) determine whether the statement is true or
false, and justify yvour answer.

{a) The product of two elementary matrices of the same size must
be an elementary matrix.

(b) Every elementary matrix is invertible.

ic) If A and B are row equivalent, and if & and C are row equiv-
alent, then A and C are row equivalent.

(d)y If A is an n * n matrix that is not invertible, then the linear
system Ax = 0 has infinitely many solutions.

je) If A 15 an n x n matrix that is not invertible, then the matrix
obtained by interchanging two rows of A cannot be invertible.

(fy If A is invertible and a multiple of the first row of A is added
to the second row, then the resulting matrix is invertible.

(2) An expression of an invertible matrix A as a product of ele-
mentary matrices is unique.



1.7 Diagonal, Triangular, and Symmetric Matrices

In this section we will discuss matrices that have various special forms. These matrices arise
in a wide variety of applications and will play an important role in our subsequent work.

Diagonal Matrices A square matrix in which all the entries off the main diagonal are zero is called a diagonal
matrix. Here are some examples:

2 q [P0 Jo= o o oo
. 1 L e, . '
[0—5] 0 o0 1 0000[00]
0o o o0 8
A general n x n diagonal matrix [ can be written as
d 0 ... 0
0 d --- 0
D=1 . . .
0 0 d,
1/d 0 0 df 0 0
[ 0 df 0
bl 0 1/d 0 D = h
: : . 0 0 d.:_-
0 0 - 1/dy

Triangular Matrices A square matrix in which all the entries above the main diagonal are zero is called lower
triangular, and a square matrix in which all the entries below the main diagonal are zero
is called upper triangular. A matrix that is either upper triangular or lower triangular is
called triangular.

P EXAMPLE 2 Upper and Lower Triangular Matrices

ayl a2 aiy ais a;p 0 0 0
0 a» a3z axn a; a»n 0 0 <
0 0 an ay azy ap an 0
0 0 0 ay ag) agp a3 ag
A general J x 4 upper A general -I % 4 lower
tnangular matrix triangular matrix

THEOREM 1.7.1

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose
of an upper triangular matrix is lower triangular.

(b) The product of lower triangular matrices is lower triangular, and the product of
upper triangular matrices is upper triangular.

(¢) A triangular matrix is invertible if and only if its diagonal entries are all nonzero.

(d) The inverse of an invertible lower triangular matrix is lower triangular, and the
inverse of an invertible upper triangular matrix is upper triangular.



> EXAMPLE 3 Computations with Triangular Matrices
Consider the upper triangular matrices

| 3 -1 j -2 2
A=|0 2 4|, B=|0 0 -1
0 0 5 0 0 1

It follows from part (¢) of Theorem 1.7.1 that the matrix A is invertible but the matrix
B is not. Moreover, the theorem also tells us that A=, AB, and BA must be upper
triangular. We leave it for you to confirm these three statements by showing that

1 -3 1 3 -2 =2 35—l
A'=l0 L | AB=|0 0 2|. BA=|0 —5| <
0o o i 0 0 5 0 0 5

DEFINITION 1 A square matrix A is said to be symmetric if A = A”.

> EXAMPLE 4 Symmetric Matrices

The following matrices are symmetric, since each is equal to its own transpose (verify).

d 0 0 0
1 4 5
7 -3
B PR I SR
=] I DO 0 0 d 0
0 0 ds

(A)ij = (A)ji

THEOREM 1.7.2 If A and B are symmetric matrices with the same size, and if k is any
scalar, then:

(a) AT is symmetric.
(b) A+ Band A — B are symmeiric.
(¢) KA is symmetric.

THEOREM 1.7.4 If A is an invertible symmetric matrix, then A=" is symmetric.

THEOREM 1.7.5 If A is an invertible matrix, then AAT and ATA are also invertible.

Exercise



In Exercises 7-10. find A%, A~2, and A~ (where k is any inte-
ger) by inspection.

| 0 —6 0 0
7. A= 8 A= 0o 3 0
o -2
i 3
L 0 0 [—2 0 0 0
: . —4 0 0
9.A=10 3 0 10. A =
: 0 0 -3 0
0o 0 i
| 0 0 0 2

True-False Exercises

TF. In parts (a)-(m) determine whether the statement is true or
false, and justify your answer.

(a) The transpose of a diagonal matrix is a diagonal matrix.

(b) The transpose of an upper triangular matrix is an upper tri-
angular matrix.

(c) The sum of an upper triangular matrix and a lower triangular
matrix is a diagonal matrix.

(d) Allentries of a symmetric matrix are determined by the entries
occurring on and above the main diagonal.

(e) All entries of an upper triangular matrix are determined by
the entries occurring on and above the main diagonal.

(f) The inverse of an invertible lower triangular matrix is an upper
triangular matrix.

(g) A diagonal matrix is invertible if and only if all of its diagonal
entries are positive.

(h) The sum of a diagonal matrix and a lower triangular matrix is
a lower triangular matrix.

(i) A matrix that is both symmetric and upper triangular must be
a diagonal matrix.

(j) If Aand B are n x n matrices such that A 4+ B is symmetric,
then A and B are symmetric.

(k) If Aand B are n x n matrices such that A + B is upper trian-
gular, then A and B are upper triangular.

(I) If A®is a symmetric matrix. then A is a symmetric matrix.

(m) If kA is a symmetric matrix for some k 7 0, then A is a sym-
metric matrix.



DEFINITION 1 If A is a complex matrix, then the conjugate transpose of A, denoted
by A*, is defined by

A* = AT (1)
DEFINITION 2 A square matrix A is said to be unitary if
AA*=AA =1 (2)
or, equivalently, if
At =A"" (3)
and it is said to be Hermitian if
Af=A (4)

THEOREM 7.5.1 Ifk is a complex scalar, and if A and B are complex matrices whose
sizes are Such that the stated operations can be performed, then:

() (A")'=A

() (A+ B)* = A* + B*
(¢) (A—B)*=A*—B*
(d) (kA)* =kA*

(¢) (AB)* = B*A*

for example, we can tell by inspection that

1 I I +i
A=| —i -5 2—i
I1—i 2+i 3

15 Hermitian.

Skew-Symmetric and  We will now consider two more classes of matrices that play a role in the analysis of
Skew-Hermitian Matrices  the diagonalization problem. A square real matrix A is said to be skew-symmetric if
AT = —A, and a square complex matrix A is said to be skew-Hermitian if A* = —A.
We leave it as an exercise to show that a skew-symmetric matrix must have zeros on
the main diagonal, and a skew-Hermitian matrix must have zeros or pure imaginary

numbers on the main diagonal. Here are two examples:

0 I —2 i F—i 5
A==l 0 4 A=|=k=d 2 i
2 -4 0 -5 i 0
| skew-symmetric] [ skew-Hermitian|
Idempotent Matrix

An idempotent matrix, P, is one that is equal to its square, that is, P°'=PP=P.



An involutory matrix is a square and invertible matrix whose inverse matrix is the matrix
itself.

Exercise

In Exercises 1-2, find A*.

% 1—i _

LA=| 4 3+i 2a=|F L0 T

i : A=l os—T -
54i 0

In Exercises 3—4, substitute numbers for the ='s so that A is
Hermitian.

1 i 2—-3i 2 0 3+5
I A=|x =3 1 4 A=|x -4 —i
W ® 2 ® * [

In Exercises 1920, substitute numbers for the =S so that A4 is
skew-Hermitian.

0 i 2-3i 0 0 3-5
19. A=|x= D 1 W A== 0O —i
* 4 ® 0

Echelon Forms In Example 6 of the last section, we solved a linear system in the unknowns x, y, and z
by reducing the augmented matrix to the form

1 0 0 1
01 0 2
001 3

from which the solution x = 1, y = 2, z = 3 became evident. This is an example of a
matrix that is in reduced row echelon form. To be of this form, a matrix must have the
following properties:

1. If'a row does not consist entirely of zeros, then the first nonzero number in the row
isa 1. We call this a leading 1.

If there are any rows that consist entirely of zeros, then they are grouped together at
the bottom of the matrix.

(=]

3. In any two successive rows that do not consist entirely of zeros, the leading 1 in the
lower row occurs farther to the right than the leading 1 in the higher row.

4. Each column that contains a leading 1 has zeros everywhere else in that column.
A matrix that has the first three properties is said to be in rew echelon form. (Thus,

a matrix in reduced row echelon form is of necessity in row echelon form, but not
conversely.)



P EXAMPLE 1 Row Echelon and Reduced Row Echelon Form

The following matrices are in reduced row echelon form.

1 0 0 4 100 o= v
o 1 0 7 010 e s 8 a o i
0 0 1 , ’ 00 I o 0 0 0 o0 0 0
0O 0 0 0 0
The following matrices are in row echelon form but not reduced row echelon form.
1 4 =3 7 1 1 0 0 1 2 6 0
o 1 6 2 o1 0}, (0 0 1T =1 0
0 0 1 5 0 0 0 o 0 0 0 1

Some Facts About Echelon  There are three facts about row echelon forms and reduced row echelon forms that are
Forms important to know but we will not prove:
1. Every matrix has a unique reduced row echelon form; that is, regardless of whether
you use Gauss—Jordan elimination or some other sequence of elementary row oper-
ations, the same reduced row echelon form will result in the end.

Row echelon forms are not unique: that is, different sequences of elementary row
operations can result in different row echelon forms.

3. Although row echelon forms are not unique, the reduced row echelon form and all
row echelon forms of a matrix A have the same number of zero rows, and the leading
I's always occur in the same positions. Those are called the pivot positions of A. A
column that contains a pivot position is called a pivot column of A.

!\J

P EXAMPLE 9 Pivot Positions and Columns
Earlier in this section (immediately after Definition 1) we found a row echelon form of

0o 0 -2 o0 7 12]

A=|2 4 —-10 6 12 28

2 4 =5 6 =5 -1
to be _
1 2 -5 3 6 14

0 0 1 0 —3 —6

o 0 0 0 1 2

The leading 1's occur in positions (row 1, column 1), (row 2—. column 3), and (row 3,
column 5). These are the pivot positions. The pivot columns are columns 1, 3, and 5.



