Determinants

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

is invertible if and only if $ad - bc \neq 0$ and that the expression ad - bc is called the **determinant** of the matrix A. Recall also that this determinant is denoted by writing

$$\det(A) = ad - bc \quad \text{or} \quad \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \tag{1}$$

DEFINITION 1 If A is a square matrix, then the *minor of entry* a_{ij} is denoted by M_{ij} and is defined to be the determinant of the submatrix that remains after the *i*th row and *j*th column are deleted from A. The number $(-1)^{i+j}M_{ij}$ is denoted by C_{ij} and is called the *cofactor of entry* a_{ij} .

EXAMPLE 1 Finding Minors and Cofactors

Let

$$A = \begin{bmatrix} 3 & 1 & -4 \\ 2 & 5 & 6 \\ 1 & 4 & 8 \end{bmatrix}$$

The minor of entry a_{11} is

$$M_{11} = \begin{vmatrix} 3 & 1 & -4 \\ 2 & 5 & 6 \\ 1 & 4 & 8 \end{vmatrix} = \begin{vmatrix} 5 & 6 \\ 4 & 8 \end{vmatrix} = 16$$

The cofactor of a_{11} is

$$C_{11} = (-1)^{1+1} M_{11} = M_{11} = 16$$

Similarly, the minor of entry a_{32} is

$$M_{32} = \begin{vmatrix} 3 & 1 & -4 \\ 2 & 5 & 6 \\ 1 & 4 & 8 \end{vmatrix} = \begin{vmatrix} 3 & -4 \\ 2 & 6 \end{vmatrix} = 26$$

The cofactor of a_{32} is

$$C_{32} = (-1)^{3+2} M_{32} = -M_{32} = -26$$

Remark Note that a minor M_{ij} and its corresponding cofactor C_{ij} are either the same or negatives of each other and that the relating sign $(-1)^{i+j}$ is either +1 or -1 in accordance with the pattern in the "checkerboard" array

For example,

$$C_{11} = M_{11}, \quad C_{21} = -M_{21}, \quad C_{22} = M_{22}$$

and so forth. Thus, it is never really necessary to calculate $(-1)^{i+j}$ to calculate C_{ij} —you can simply compute the minor M_{ij} and then adjust the sign in accordance with the checkerboard pattern. Try this in Example 1.

EXAMPLE 2 Cofactor Expansions of a 2 x 2 Matrix

The checkerboard pattern for a 2×2 matrix $A = [a_{ij}]$ is

$$\begin{bmatrix} + & - \\ - & + \end{bmatrix}$$

so that

$$C_{11} = M_{11} = a_{22}$$
 $C_{12} = -M_{12} = -a_{21}$
 $C_{21} = -M_{21} = -a_{12}$ $C_{22} = M_{22} = a_{11}$

We leave it for you to use Formula (3) to verify that det(A) can be expressed in terms of cofactors in the following four ways:

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}
= a_{11}C_{11} + a_{12}C_{12}
= a_{21}C_{21} + a_{22}C_{22}
= a_{11}C_{11} + a_{21}C_{21}
= a_{12}C_{12} + a_{22}C_{22}$$
(6)

DEFINITION 2 If A is an $n \times n$ matrix, then the number obtained by multiplying the entries in any row or column of A by the corresponding cofactors and adding the resulting products is called the *determinant of* A, and the sums themselves are called *cofactor expansions of* A. That is,

$$\det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}$$
(7)

[cofactor expansion along the jth column]

and

$$\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$$
(8)

[cofactor expansion along the ith row]

EXAMPLE 3 Cofactor Expansion Along the First Row

Find the determinant of the matrix

$$A = \begin{bmatrix} 3 & 1 & 0 \\ -2 & -4 & 3 \\ 5 & 4 & -2 \end{bmatrix}$$

by cofactor expansion along the first row.

Solution

$$\det(A) = \begin{vmatrix} 3 & 1 & 0 \\ -2 & -4 & 3 \\ 5 & 4 & -2 \end{vmatrix} = 3 \begin{vmatrix} -4 & 3 \\ 4 & -2 \end{vmatrix} - 1 \begin{vmatrix} -2 & 3 \\ 5 & -2 \end{vmatrix} + 0 \begin{vmatrix} -2 & -4 \\ 5 & 4 \end{vmatrix}$$
$$= 3(-4) - (1)(-11) + 0 = -1$$

EXAMPLE 7 A Technique for Evaluating 2 x 2 and 3 x 3 Determinants

$$\begin{vmatrix} 3 & 1 \\ 4 & -2 \end{vmatrix} = \begin{vmatrix} 3 & 1 \\ 4 & -2 \end{vmatrix} = (3)(-2) - (1)(4) = -10$$

$$\begin{vmatrix} 1 & 2 & 3 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 & 1 & 2 \\ -4 & 5 & 6 & 4 & 5 \\ 7 & -8 & 9 & 7 & -8 \end{vmatrix}$$
$$= [45 + 84 + 96] - [105 - 48 - 72] = 240$$

Exercise

▶ In Exercises 1-2, find all the minors and cofactors of the ma $trix A. \blacktriangleleft$

1.
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 6 & 7 & -1 \\ -3 & 1 & 4 \end{bmatrix}$$
 2. $A = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 3 & 6 \\ 0 & 1 & 4 \end{bmatrix}$

$$\mathbf{2.} \ A = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 3 & 6 \\ 0 & 1 & 4 \end{bmatrix}$$

3. Let

$$A = \begin{bmatrix} 4 & -1 & 1 & 6 \\ 0 & 0 & -3 & 3 \\ 4 & 1 & 0 & 14 \\ 4 & 1 & 3 & 2 \end{bmatrix}$$

Find

- (a) M_{13} and C_{13} .
- (b) M_{23} and C_{23} .
- (c) M₂₂ and C₂₂.
- (d) M_{21} and C_{21} .

4. Let

$$A = \begin{bmatrix} 2 & 3 & -1 & 1 \\ -3 & 2 & 0 & 3 \\ 3 & -2 & 1 & 0 \\ 3 & -2 & 1 & 4 \end{bmatrix}$$

Find

- (a) M_{32} and C_{32} .
- (b) M_{44} and C_{44} .
- (c) M_{41} and C_{41} .
- (d) M_{24} and C_{24} .

21.
$$A = \begin{bmatrix} -3 & 0 & 7 \\ 2 & 5 & 1 \\ -1 & 0 & 5 \end{bmatrix}$$
 22. $A = \begin{bmatrix} 3 & 3 & 1 \\ 1 & 0 & -4 \\ 1 & -3 & 5 \end{bmatrix}$

$$\mathbf{22.} \ A = \begin{bmatrix} 3 & 3 & 1 \\ 1 & 0 & -4 \\ 1 & -3 & 5 \end{bmatrix}$$

23.
$$A = \begin{bmatrix} 1 & k & k^2 \\ 1 & k & k^2 \\ 1 & k & k^2 \end{bmatrix}$$

23.
$$A = \begin{bmatrix} 1 & k & k^2 \\ 1 & k & k^2 \\ 1 & k & k^2 \end{bmatrix}$$
 24. $A = \begin{bmatrix} k+1 & k-1 & 7 \\ 2 & k-3 & 4 \\ 5 & k+1 & k \end{bmatrix}$

25.
$$A = \begin{bmatrix} 3 & 3 & 0 & 5 \\ 2 & 2 & 0 & -2 \\ 4 & 1 & -3 & 0 \\ 2 & 10 & 3 & 2 \end{bmatrix}$$

True-False Exercises

TF. In parts (a)–(j) determine whether the statement is true or false, and justify your answer.

- (a) The determinant of the 2×2 matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is ad + bc.
- (b) Two square matrices that have the same determinant must have the same size.
- (c) The minor M_{ij} is the same as the cofactor C_{ij} if i + j is even.
- (d) If A is a 3×3 symmetric matrix, then $C_{ij} = C_{ji}$ for all i and j.
- (e) The number obtained by a cofactor expansion of a matrix A is independent of the row or column chosen for the expansion.
- (f) If A is a square matrix whose minors are all zero, then det(A) = 0.
- (g) The determinant of a lower triangular matrix is the sum of the entries along the main diagonal.
- (h) For every square matrix A and every scalar c, it is true that det(cA) = c det(A).
- (i) For all square matrices A and B, it is true that

$$\det(A+B) = \det(A) + \det(B)$$

(j) For every 2×2 matrix A it is true that $det(A^2) = (det(A))^2$.

Evaluating Determinants by Row Reduction

THEOREM 2.2.1 Let A be a square matrix. If A has a row of zeros or a column of zeros, then det(A) = 0.

THEOREM 2.2.2 Let A be a square matrix. Then $det(A) = det(A^T)$.

Table 1

Relationship	Operation
$\begin{vmatrix} ka_{11} & ka_{12} & ka_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = k \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ $\det(B) = k \det(A)$	In the matrix B the first row of A was multiplied by k .
$\begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = - \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ $\det(B) = -\det(A)$	In the matrix B the first and second rows of A were interchanged.
$\begin{vmatrix} a_{11} + ka_{21} & a_{12} + ka_{22} & a_{13} + ka_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ $\det(B) = \det(A)$	In the matrix <i>B</i> a multiple of the second row of <i>A</i> was added to the first row.

THEOREM 2.2.3 Let A be an $n \times n$ matrix.

- (a) If B is the matrix that results when a single row or single column of A is multiplied by a scalar k, then det(B) = k det(A).
- (b) If B is the matrix that results when two rows or two columns of A are interchanged, then det(B) = -det(A).
- (c) If B is the matrix that results when a multiple of one row of A is added to another or when a multiple of one column is added to another, then det(B) = det(A).

EXAMPLE 3 Using Row Reduction to Evaluate a Determinant

Evaluate det(A) where

$$A = \begin{bmatrix} 0 & 1 & 5 \\ 3 & -6 & 9 \\ 2 & 6 & 1 \end{bmatrix}$$

Solution We will reduce A to row echelon form (which is upper triangular) and then apply Theorem 2.1.2.

$$\det(A) = \begin{vmatrix} 0 & 1 & 5 \\ 3 & -6 & 9 \\ 2 & 6 & 1 \end{vmatrix} = - \begin{vmatrix} 3 & -6 & 9 \\ 0 & 1 & 5 \\ 2 & 6 & 1 \end{vmatrix}$$

$$= -3 \begin{vmatrix} 1 & -2 & 3 \\ 0 & 1 & 5 \\ 2 & 6 & 1 \end{vmatrix}$$
The first and second rows of A were interchanged.

A common factor of 3 from the first row was taken through the determinant sign.

$$= -3 \begin{vmatrix} 1 & -2 & 3 \\ 0 & 1 & 5 \\ 0 & 10 & -5 \end{vmatrix}$$

$$= -3 \begin{vmatrix} 1 & -2 & 3 \\ 0 & 1 & 5 \\ 0 & 0 & -55 \end{vmatrix}$$

$$= (-3)(-55) \begin{vmatrix} 1 & -2 & 3 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= (-3)(-55)(1) = 165$$

$$-2 \text{ times the first row was added to the third row.}$$

$$-10 \text{ times the second row was added to the third row.}$$

$$-10 \text{ times the second row was added to the third row.}$$

$$-10 \text{ times the second row was added to the third row.}$$

$$-10 \text{ times the second row was added to the third row.}$$

EXAMPLE 5 Row Operations and Cofactor Expansion

Evaluate det(A) where

$$A = \begin{bmatrix} 3 & 5 & -2 & 6 \\ 1 & 2 & -1 & 1 \\ 2 & 4 & 1 & 5 \\ 3 & 7 & 5 & 3 \end{bmatrix}$$

Solution By adding suitable multiples of the second row to the remaining rows, we obtain

$$\det(A) = \begin{vmatrix} 0 & -1 & 1 & 3 \\ 1 & 2 & -1 & 1 \\ 0 & 0 & 3 & 3 \\ 0 & 1 & 8 & 0 \end{vmatrix}$$

$$= -\begin{vmatrix} -1 & 1 & 3 \\ 0 & 3 & 3 \\ 1 & 8 & 0 \end{vmatrix}$$

$$= -\begin{vmatrix} -1 & 1 & 3 \\ 0 & 3 & 3 \\ 0 & 9 & 3 \end{vmatrix}$$

$$= -(-1)\begin{vmatrix} 3 & 3 \\ 9 & 3 \end{vmatrix}$$

$$= -(18 \begin{vmatrix} 3 & 3 \\ 9 & 3 \end{vmatrix}$$
Cofactor expansion along the first row to the third row.

Cofactor expansion along the first column
$$= -18 \begin{vmatrix} 3 & 3 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{vmatrix}$$

▶ In Exercises 9–14, evaluate the determinant of the matrix by first reducing the matrix to row echelon form and then using some combination of row operations and cofactor expansion.

$$\mathbf{9.} \begin{bmatrix} 3 & -6 & 9 \\ -2 & 7 & -2 \\ 0 & 1 & 5 \end{bmatrix}$$

9.
$$\begin{bmatrix} 3 & -6 & 9 \\ -2 & 7 & -2 \\ 0 & 1 & 5 \end{bmatrix}$$
 10.
$$\begin{bmatrix} 3 & 6 & -9 \\ 0 & 0 & -2 \\ -2 & 1 & 5 \end{bmatrix}$$

11.
$$\begin{bmatrix} 2 & 1 & 3 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$

11.
$$\begin{bmatrix} 2 & 1 & 3 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$
 12.
$$\begin{bmatrix} 1 & -3 & 0 \\ -2 & 4 & 1 \\ 5 & -2 & 2 \end{bmatrix}$$

In Exercises 15–22, evaluate the determinant, given that

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = -6 \blacktriangleleft$$

15.
$$\begin{vmatrix} d & e & f \\ g & h & i \\ a & b & c \end{vmatrix}$$
 16. $\begin{vmatrix} g & h & i \\ d & e & f \\ a & b & c \end{vmatrix}$

$$\begin{array}{c|cccc}
g & h & i \\
d & e & f \\
a & b & c
\end{array}$$

17.
$$\begin{vmatrix} 3a & 3b & 3c \\ -d & -e & -f \\ 4g & 4h & 4i \end{vmatrix}$$

17.
$$\begin{vmatrix} 3a & 3b & 3c \\ -d & -e & -f \\ 4g & 4h & 4i \end{vmatrix}$$
 18. $\begin{vmatrix} a+d & b+e & c+f \\ -d & -e & -f \\ g & h & i \end{vmatrix}$

19.
$$\begin{vmatrix} a+g & b+h & c+i \\ d & e & f \\ g & h & i \end{vmatrix}$$

19.
$$\begin{vmatrix} a+g & b+h & c+i \\ d & e & f \\ g & h & i \end{vmatrix}$$
 20. $\begin{vmatrix} a & b & c \\ 2d & 2e & 2f \\ g+3a & h+3b & i+3c \end{vmatrix}$

21.
$$\begin{vmatrix} -3a & -3b & -3c \\ d & e & f \\ g - 4d & h - 4e & i - 4f \end{vmatrix}$$
 22. $\begin{vmatrix} a & b & c \\ d & e & f \\ 2a & 2b & 2c \end{vmatrix}$

22.
$$\begin{vmatrix} a & b & c \\ d & e & f \\ 2a & 2b & 2c \end{vmatrix}$$

23. Use row reduction to show that

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (b-a)(c-a)(c-b)$$

Properties of Determinants;

Suppose that A and B are $n \times n$ matrices and k is any scalar.

$$\det(kA) = k^n \det(A)$$

 \triangleright EXAMPLE 1 $det(A + B) \neq det(A) + det(B)$

Consider

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}, \quad A + B = \begin{bmatrix} 4 & 3 \\ 3 & 8 \end{bmatrix}$$

We have det(A) = 1, det(B) = 8, and det(A + B) = 23; thus

$$\det(A + B) \neq \det(A) + \det(B)$$

THEOREM 2.3.3 A square matrix A is invertible if and only if $det(A) \neq 0$.

THEOREM 2.3.4 If A and B are square matrices of the same size, then

$$det(AB) = det(A) det(B)$$

THEOREM 2.3.5 If A is invertible, then

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

DEFINITION 1 If A is any $n \times n$ matrix and C_{ij} is the cofactor of a_{ij} , then the matrix

$$\begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \end{bmatrix}$$

is called the *matrix of cofactors from A*. The transpose of this matrix is called the *adjoint of A* and is denoted by adj(A).

THEOREM 2.3.6 Inverse of a Matrix Using Its Adjoint

If A is an invertible matrix, then

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$$

Let

$$A = \begin{bmatrix} 3 & 2 & -1 \\ 1 & 6 & 3 \\ 2 & -4 & 0 \end{bmatrix}$$

As noted in Example 5, the cofactors of A are

$$C_{11} = 12$$
 $C_{12} = 6$ $C_{13} = -16$
 $C_{21} = 4$ $C_{22} = 2$ $C_{23} = 16$
 $C_{31} = 12$ $C_{32} = -10$ $C_{33} = 16$

so the matrix of cofactors is

$$\begin{bmatrix} 12 & 6 & -16 \\ 4 & 2 & 16 \\ 12 & -10 & 16 \end{bmatrix}$$

and the adjoint of A is

$$adj(A) = \begin{bmatrix} 12 & 4 & 12 \\ 6 & 2 & -10 \\ -16 & 16 & 16 \end{bmatrix} \blacktriangleleft$$

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A) = \frac{1}{64} \begin{bmatrix} 12 & 4 & 12 \\ 6 & 2 & -10 \\ -16 & 16 & 16 \end{bmatrix} = \begin{bmatrix} \frac{12}{64} & \frac{4}{64} & \frac{12}{64} \\ \frac{6}{64} & \frac{2}{64} & -\frac{10}{64} \\ -\frac{16}{64} & \frac{16}{64} & \frac{16}{64} \end{bmatrix}$$

Exercise

In Exercises 7–14, use determinants to decide whether the given matrix is invertible.

7.
$$A = \begin{bmatrix} 2 & 5 & 5 \\ -1 & -1 & 0 \\ 2 & 4 & 3 \end{bmatrix}$$
 8. $A = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 3 & 2 \\ -2 & 0 & -4 \end{bmatrix}$

$$\mathbf{8.} \ A = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 3 & 2 \\ -2 & 0 & -4 \end{bmatrix}$$

9.
$$A = \begin{bmatrix} 2 & -3 & 5 \\ 0 & 1 & -3 \\ 0 & 0 & 2 \end{bmatrix}$$
 10. $A = \begin{bmatrix} -3 & 0 & 1 \\ 5 & 0 & 6 \\ 8 & 0 & 3 \end{bmatrix}$

$$\mathbf{10.} \ A = \begin{bmatrix} -3 & 0 & 1 \\ 5 & 0 & 6 \\ 8 & 0 & 3 \end{bmatrix}$$

11.
$$A = \begin{bmatrix} 4 & 2 & 8 \\ -2 & 1 & -4 \\ 3 & 1 & 6 \end{bmatrix}$$
 12. $A = \begin{bmatrix} 1 & 0 & -1 \\ 9 & -1 & 4 \\ 8 & 9 & -1 \end{bmatrix}$

$$\mathbf{12.} \ A = \begin{bmatrix} 1 & 0 & -1 \\ 9 & -1 & 4 \\ 8 & 9 & -1 \end{bmatrix}$$

13.
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 8 & 1 & 0 \\ -5 & 3 & 6 \end{bmatrix}$$

13.
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 8 & 1 & 0 \\ -5 & 3 & 6 \end{bmatrix}$$
 14. $A = \begin{bmatrix} \sqrt{2} & -\sqrt{7} & 0 \\ 3\sqrt{2} & -3\sqrt{7} & 0 \\ 5 & -9 & 0 \end{bmatrix}$

TF. In parts (a)–(l) determine whether the statement is true or false, and justify your answer.

- (a) If A is a 3×3 matrix, then det(2A) = 2 det(A).
- (b) If A and B are square matrices of the same size such that det(A) = det(B), then det(A + B) = 2 det(A).
- (c) If A and B are square matrices of the same size and A is invertible, then

$$\det(A^{-1}BA) = \det(B)$$

(d) A square matrix A is invertible if and only if det(A) = 0.