3-3 = GENERALIZED THERMAL RESISTANCE
NETWORKS

The thermal resistance concept or the electrical analogy can also be used to
solve steady heat transfer problems that invelve parallel layers or combined
series-parallel arrangements. Although such problems are often two- or even
three-dimensional, approximate solutions can be obtained by assuming one-
dimensional heat transfer and using the thermal resistance network.

Consider the composite wall shown in Fig. 3—19, which consists of two par-
allel layers. The thermal resistance network, which consists of two parallel re-
sistances, can be represented as shown in the figure. Noting that the total heat
transfer is the sum of the heat transfers through each layer, we have

_ _h-Th T-T:_ 1,1
0=+ O=—p—+—¢ —{T]—TEJ(R]—RI) 3-20)

Utilizing electrical analogy, we get

(3-30)

whera
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(3-31)
since the resistances are in parallel.

Mow consider the combined series-parallel arrangement shown in Fig.
3-20. The total rate of heat transfer through this composite system can again
be expressed as

L-T,
=g (3-32)

where

RiR
RW=R,,+R,+Rm=ﬁ+R3+Rm 3-33)
and
_ L _ Ly _ L, _ 1

ST T R 7 K 7 .

Once the individual thermal resistances are evaluated. the total resistance and
the total rate of heat transfer can easily be determined from the relations
above.

The result obtained will be somewhat approximate, since the surfaces of the
third layer will probably not be isothermal, and heat transfer between the first
two layers is likely to occur.

Two assumptions commonly used in solving complex multidimensional
heat transfer problems by treating them as one-dimensional (say, in the
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FIGURE 3-19
Thermal resistance
network for two parallel layers.
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FIGURE 3-20
Thermal resistance network for
combined series-parallel arrangement.
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FIGURE 3-21
Schematic for Example 3-6.

EXAMPLE 36 Heat Loss through a Composite Wall

A 3-m-high and 5-m-wide wall consists of long 16-cm = 22-cm cross section
horizontal bricks (k = 0.72 Wim - °C) separated by 3-cm-thick plaster layers
(k = 0.22 Wim - “C). There are also 2-cm-thick plaster |ayers on each side of
the brick and a 2-cm-thick rigid foam (k = 0.026 W'm - *C) on the inner sida
of the wall, as shown in Fig. 3-21. The indocr and the outdoor tem peratures are
20°C and —10°C, and the convection heat transfer coefficients on the inner
and the cuter sides are b, = 10 Wim? - °C and h, = 25 Wim? - °C, raspectively.
Assuming cne-dimensional heat transfer and disregarding radiation, detarmine
the rate of heat transfer through the wall.

SOLUTION The composition of 8 composite wall is given. The rate of heat
fransfer through the wall is fo be determined.
Assumptions 1 Heat transfer is steady since there is no indication of change
with time. 2 Heat transfer can be approximated as being one-dimensicnal since
it is predominantly in the x-direction. 3 Thermal conductivities are constant.
4 Heat transfer by radiation is negligible.
Proparties The thermal conductivities are given fo be k = 0.72 Wim - °C
for bricks, k = 0.22 Wim - °C for plaster layers, and k = 0.028& Wm - °C for the
rigid foam.
Analysis There is a pattern in the consiruction of this wall that repeats itself
every 25-cm distance in the vertical direction. There is no variation in the hori-
zontal direction. Therefore, we consider a 1-m-deep and 0.25-m-high portion of
tha wall, since it is representative of the entire wall.

Assuming amy cross section of the wall normal to the x-direction to be
Isothermal, the thermal resistance network for the representative section of

the wall becomes as shown in Fig. 3-21. The individual resistances are eval-
nated as-




Ry = Ry = & — .16 m
M T kA T {072 Wim - 20022 % 1 m?)

1 _ 1
ks R““:'hlﬁ (25 Wim? - °CN0.25 x | m®)

= LOI=CIW

= 0.16°CIwW
The three resistances R, K., and A in the middle are parallel, and their equiv-
alent resistance is determined from

1 _1 1. 1_ v . 1 ., 0 _
By B R, R a8 T01 T dmas - MBWRC

which gives

R = 09T°C/W

Mow all the resistances are in =series, and the total resistance is

R =R+ R+ R+ Ry + R+ R,
=04+ 4.6+ 036 + 097 + 036 + 016
= 6.B3CIW

Then the steady rate of heat transfer through the wall becomes

Tay—Te  [20—(-10]7C

g= R  GEVOW

=4IEW (per 0.25 m? surface area)

or 4.38/0.25 = 17.5 W per m? area. The total areaof thewallisA=3m x5
m = 15 m® Then the rate of heat transfer through the entire wall becomes

O = (175 Wim?H15 m?) = 263 W

Of course, this result is approximate, since we assumed the temperature within
the wall to vary in cne direction only and ignored any temperature change (and
thus heat transfer) in the other two directions.

Discussion In the above solution, we assumed the temperature at any cross
section of the wall normal to the x-direction to be fsoffermal. We could also
solve this problem by poing to the other extreme and assuming the surfaces par-
allel to the x-direction to be adiabatic. The thermal resistance network in this
case will be as shown in Fig. 3-22. By following the approach outlined abowe,
the total thermal resistance in this case is determined to be Ry = 6.97"C/W,
which Is very close to the value 6.85°C/W obtained before. Thus either ap-
proach would give roughly the same result in this case. This example demon-
strates that either approach can be wsed in practice to obtain satisfactory
results.
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Alternative thermal resistance

network for Example 3-6 for the

case of surfaces parallel to the
primary direction of heat
transfer heine adiabatic



3-57 Consider a 5-m-high, 8-m-long, and 0.22-m-thick wall
whose representative cross section is as given in the figure. The
thermal conductivities of various materials used, in W/m - °C,
are ky = kp =2, kp =8, kc = 20, kp = 15, and kz = 35. The
left and right surfaces of the wall are maintained at uniform
temperatures of 300°C and 100°C, respectively. Assuming heat
transfer through the wall to be one-dimensional, determine
(a) the rate of heat transfer through the wall; (b) the tem-
perature at the point where the sections B, D, and E meet: and
(c) the temperature drop across the section F. Disregard any
contact resistances at the interfaces.

100°C
A
300°c////
\ tc D
Al4cm
6cm F
[ B
4
cm 5
Cl 6cm
4 cm )

8
lcm| |5c:m| 10 cm |6cmL/ m
[ | | |

FIGURE P3-57

A composite wall consists of several horizontal and vertical layers. The left and right surfaces of the
wall are maintained at uniform temperatures. The rate of heat transfer through the wall, the interface
temperatures, and the temperature drop across the section F are to be determined.

Assumptions 1 Heat transfer is steady since there is no indication of change with time. 2 Heat transfer
through the wall is one-dimensional. 3 Thermal conductivities are constant. 4 Thermal contact
resistances at the interfaces are disregarded.

Properties The thermal conductivities are given to be ka=kr =2, ks = 8, kc = 20, kp = 15, ke = 35 W/m-°C.

Analysis (a) The representative surface area is A=012x1=012 m?. The thermal resistance network

and the individual thermal resistances are R
R, - Rs R

R, : !
A VV N\ R —"\N\NV\— 7
Ry




R, =R, :(Lj 0.01m 04 °C/W

KAJ, (2Wm°C)(0.12m?)
_R, =R, z( J _ 0.05m —0.06°CAW
(20 W/m.°C)(0.04 m?)
R, =R =(£) 0.05m ~0.16 °C/W
PP kAJg  (8WIM.°C)(0.04 m?)

Re =R, =[£j - 0.1m = 0.11°C/W
kA)p, (15 W/m.°C)(0.06 m?)

Ry = Re =(£) - 0lm = 0.05 °C/W
kAJ: (35 W/m.°C)(0.06 m?)

R, =R, :[Lj - 0.06 m = 0.25°C/W
kAJ:  (2W/m.°C)(0.12 m?)

1 1,011 11 Ryq, =0.025 °CIW
Rma: R, R, R, 006 016 006 ’
t 1.1 ,R,,-003°CwW
Rms Rs R 0.1 005
Riotat = Rt + Riig1 + Riig 2 + R; =0.04 +0.025 + 0.034 +0.25 = 0.349 °C/W

R
T..-T., (300-100)°C

Q= =572 W (for a 0.12 m x1m section)
R 0.349 °C/W

total
Then steady rate of heat transfer through entire wall becomes

(5 m)(8 m)
12m?

Quotal = (672 W) =1.91x10° W

(b) The total thermal resistance between left surface and the point where the sections B, D, and E meet
is

Riotat = Ry + Rpjig 1 =0.04+0.025=0.065°C/W

Then the temperature at the point where the sections B, D, and E meet becomes

. T =T .
Q=-1" 5T =T, QR =300°C — (572 W)(0.065°C/W) = 263°C

total

(c) The temperature drop across the section F can be determined from

o é—T 5 AT =OR;. = (572 W)(0.25°C/W) = 143°C

F



3-68 Steam at 320°C flows in a stainless steel pipe (kK =
15 W/m - °C) whose inner and outer diameters are 5 cm and
5.5 cm, respectively. The pipe is covered with 3-cm-thick glass
wool insulation (kK = 0.038 W/m - °C). Heat is lost to the sur-
roundings at 5°C by natural convection and radiation, with
a combined natural convection and radiation heat transfer co-
efficient of 15 W/m? - °C. Taking the heat transfer coefficient
inside the pipe to be 80 W/m? - °C, determine the rate of heat
loss from the steam per unit length of the pipe. Also determine
the temperature drops across the pipe shell and the insulation.

3-68 A steam pipe covered with 3-cm thick glass wool insulation is subjected to convection on its surfaces. The
rate of heat transfer per unit length and the temperature drops across the pipe and the insulation are to be
determined.

Assumptions 1 Heat transfer is steady since there is no indication of any change with time. 2 Heat
transfer is one-dimensional since there is thermal symmetry about the center line and no variation in
the axial direction. 3 Thermal conductivities are constant. 4 The thermal contact resistance at the
interface is negligible.
Properties The thermal conductivities are given to be k = 15 W/m-°C for steel and k = 0.038 W/m-°C
for glass wool insulation
Analysis The inner and the outer surface areas of the insulated pipe per
unit length are

A = 2D, L = 7(0.05 m)(1 m) = 0157 m?

A, = 2D, L = 7(0.055+ 0.06 m)(1 m) = 0.361 m?

Ri Ra R> Ro
The individual thermal resistances are T —/V\NV\N\,—-/V\N\/\/\/\f—’VV\N\/\/\,—’V\/\MN\/— T

1 1

R, = - . —=0.08°C/W
hi A (80 W/m<.°C)(0.157 m*)
R ZR. = In(r, /1) _ In(2.75/2.5) — 0.00101°C/W
UM T oa L 27(15 W/m.eC)(1m)
R. R = In(rs /ry) In(5.75/2.75) —3.089°C/W
27 Tinsulation =5 0L 27(0.038 WimSC)(Lm)
1 ! —0.1847 °CIW

RO = = 2 7
hoA, (15 W/m?2.°C)(0.361m?)
Riotat = Ri +R; +R, + R, =0.08+0.00101+ 3.089 +0.1847 = 3.355 °C/W
Then the steady rate of heat loss from the steam per m. pipe length becomes

Q=R " “33mBoCciW

=93.9W

The temperature drops across the pipe and the insulation are
AT e = QRpine = (939 W)(0.00101 °C/W) = 0.095°C
ATinsulation = QRinsuIation = (93-9 VV)(3-089 OC/VV) =290°C



3-67 A S5-m-internal-diameter spherical tank made of
1.5-cm-thick stainless steel (k = 15 W/m - °C) is used to store
iced water at 0°C. The tank is located in a room whose temper-
ature is 30°C. The walls of the room are also at 30°C. The outer
surface of the tank is black (emissivity & = 1), and heat trans-
fer between the outer surface of the tank and the surroundings
is by natural convection and radiation. The convection heat

T om =30°C

room

Q.-
© Tced water ©

3-67 A spherical container filled with iced water is subjected to convection and radiation heat transfer
at its outer surface. The rate of heat transfer and the amount of ice that melts per day are to be
determined.

Assumptions 1 Heat transfer is steady since the specified thermal conditions at the boundaries do not
change with time. 2 Heat transfer is one-dimensional since there is thermal symmetry about the
midpoint. 3 Thermal conductivity is constant.

Properties The thermal conductivity of steel is given to be k = 15 W/m-°C. The heat of fusion of water
at1atmiis h; =333.7 kJ/ kg. The outer surface of the tank is black and thus its emissivity is € = 1.

Analysis (a) The inner and the outer surface areas of sphere are
A =7D;? = z(5m)? =78.54m? A, =D,2 = 7(5.03m)? =79.49 m?
We assume the outer surface temperature T, to be 5°C after comparing convection heat transfer

coefficients at the inner and the outer surfaces of the tank. With this assumption, the radiation heat
transfer coefficient can be determined from

hrad = go_(rzz +Tsurr2)(T2 +Tsurr)
=1(5.67x10"8 Wim2.K*)[(273+5K)? +(273+30 K)?](273+ 30 K) (273+5 K)]=5.570 W/m2.K

The individual thermal resistances are

rad

R; T R R



1 1

Ry i = —— = =0.000159 °C/W
M A (B0 W/m?.°C)(78.54 m?)
Ry = Rphere = -~ = (2515-2.5)m — 0.000013°C/W
4zknr,  4z(15W/m.°C)(2.515m)(2.5m)
conv,o = L = 2 1 7o = 0.00126 °C/W
° h,A  (10W/m?.°C)(79.49m?)
Ryag = ! . L - =0.00226 °C/W
had A (5.57 W/m?.°C)(79.54 m?)
t .t , 1! Requ = 0.000809 °C/W
Ry Reomo Rrag 0.00126  0.00226

Riotal = Reonvj + Ry + Regy = 0.000159 +0.000013+0.000809 = 0.000981°C/W

Then the steady rate of heat transfer to the iced water becomes
o To1 T _ (30-0)°C
Riotal 0.000981°C/W
(b) The total amount of heat transfer during a 24-hour period and the amount of ice that will melt
during this period are
Q = QAt = (30.581kJ/s)(24x3600s) = 2.642x10° kJ

Q 2.642x10° kJ
Mie =T = oo
hy  333.7kl/kg

=30,581W

=7918Kkg

Check: The outer surface temperature of the tank is

' Q . 30,581 W
Q= hconv+rad A, (Tool _Ts) ->T, =T, 4 ——=30°C-

= =5,
Neonv-rad Ao (10+5.57 W/m?.°C)(79.54m?)

which is very close to the assumed temperature of 5°C for the outer surface temperature used in the evaluation of
the radiation heat transfer coefficient. Therefore, there is no need to repeat the calculations.

O

EXAMPLE 3-7 Heat Transfer to a Spherical Container

A 3-m internal diameter spherical tank made of 2-cm-thick stainless steel
(k=15 W/m - °C) is used to store iced water at 7,,; = 0°C. The tank is located
In a room whose temperature is 7., = 22°C. The walls of the room are also at
22°C. The outer surface of the tank is black and heat transfer between the outer
surface of the tank and the surroundings is by natural convection and radiation.
The convection heat transfer coefficients at the inner and the outer surfaces of
the tank are h; = 80 W/m? - °C and h, = 10 W/m? - °C, respectively. Determine
(a) the rate of heat transfer to the iced water in the tank and (b) the amount of
ice at 0°C that melts during a 24-h period.

SOLUTION A spherical container filled with iced water is subjected to convec-
tion and radiation heat transfer at its outer surface. The rate of heat transfer
and the amount of ice that melts per day are to be determined.
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FIGURE 3-28
Schematic for Example 3-7.

Assumptions 1 Heat transfer is steady since the specified thermal conditions at
the boundaries do not change with time. 2 Heat transfer is one-dimensional
simce there is thermal symmetry about the midpoint. 3 Thermal conductivity is
constant.

Propertias  The thermal conductivity of steel is given to be k = 15 Wim - °C.
The heat of fusion of water at atmospheric pressure is b, = 333.7 klkg. The
outer surface of the tank is black and thus its emissivity is & = 1.

Analysis (a) The thermal resistance network for this problem is given in
Fig. 3-28. Moting that the inner diameter of the tank is Iy = 3 m and the outer
diameter is I = 3.04 m, the inner and the cuter surface areas of the tank are
A, =wDi = w3 m)? =283 m?
A; = wl¢ = 3.4 mP = 200 m*

Also, the radiation heat fransfer coefficient is given by
oy = eo(TF + TEKT: + Ta)

But we do not know the outer surface temperature T, of the tank, and thus we
cannot calculate oy Therefore, we need to assume a T; value now and check
the accuracy of this assumption later. We will repeat the calculations if neces-
sary using a revised value for Ts.

We note that T, must be between 0°C and 22°C, but it must be closer
t 07C, since the hest transfer coefficient inside the tank is much larger. Taking
T. = 5°C = 278 K, the radiation heat transfer coefficient is determined to be

hpg = (1367 = 1073 Wim? - K3)[(295 K)® + (278 K¥)[(295 + 2TE) K]
=5MWm? K =534 Wim?.-"C
Then the individual thermal resistances bacome

1 1

— SR = (L4420
R = Ren s = 18 = BOWimE cOHIB3 mpy — DO00HUTTIW
R=p =Th_ (152 — 1500 m

1= Ragmere = = 3 (15 Wim - “CHI5Z mi(1.50 m)
— 0.000047°CIW
1 1

g =1 — 0.00345°C/W

Ro = Rawn2 = 30 = O Wim® - “CHZ9.0 m)
I ! — 0.00646°C/W

R = Ay = (5.3 Wi - 0290 m)

The two parallel resistances R, and R, can be replaced by an equivalent resis-
tance Ry, determined from

L _1 1 1 |
R Ko oo 000345 ' 000636

= 444.TWPC

which gives

Roguy = 0.002255CI'W




MNow all the resistances are in series, and the total resistance is determined
to be

Rie = B; + By + Rogyy = 0000442 + 0.000047 + 0.00225 = 0.00274°CI'W

Then the steady rate of heat transfer to the iced water becomes

Te—-T, (-0FC _ : -
0 =—%— =goorrow - WOW  (orQ = 8027 k)

To check the validity of our original assumption, we now determine the outer
surface temperature from

Io.—T.
Q=mé 'rl ? T;=T.,.;—QE*V
= 22°C — (8020 WH{0.00225°C/'W) = 4°C

which is sufficiently close to the 5°C assumed in the determinaticn of the radi-
ation heat transfer coefficient. Therefore, there is no need to repeat the calcu-
laticns using 4°C for T..

(b} The total amount of heat transfer during a 24-h period is
0 = Af = (8.029 kI/sN24 = 3600 s) = 673,700 kJ

Moting that it takes 333.7 kJ of energy to melt 1 kg of ice at 0°C, the amount
of ice that will melt during a 24-h period is

@ 63 T0K
e M EEN B i
Therefore, about 2 metric tons of ice will melt in the tank every day.
Discussion An easier way to deal with combined convection and radiation at a

surface when the surrounding medium and surfaces are at the same tempera-
ture is to add the radiation and convection heat transfer coefficients and to treat

the result as the convection heat transfer coefficient. That is, to take i = 10 +
5.34 = 1534 W/m? - °C in this case. This way, we can ignore radiation since

its contribution is accounted for in the convection heat transfer coefficient. The
convection resistance of the outer surface in this case would be

| |
Recaines = Bommmea Az (15.34 Wim? . °C)(29.0 mT)

= 0.00225°C/W

which is identical to the value obtained for the equivalent resistance for the par-
allel convection and the radiation resistances.




