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RC and RL Circuits

First Order Circuits
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Objectives of Lecture

• Explain the operation of a RC circuit in dc circuits
– As the capacitor stores energy when voltage is first

applied to the circuit or the voltage applied across the
capacitor is increased during the circuit operation.

– As the capacitor releases energy when voltage is
removed from the circuit or the voltage applied across
the capacitor is decreased during the circuit operation.

• Explain the operation of a RL circuit in dc circuit
– As the inductor stores energy when current begins to

flow in the circuit or the current flowing through the
inductor is increased during the circuit operation.

– As the inductor releases energy when current stops
flowing in the circuit or the current flowing through the
inductor is decreased during the circuit operation.
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Natural Response (The Source-Free Response)

• The behavior of the circuit with no external 

sources of excitation. 

– There is stored energy in the capacitor or inductor 

at time = 0 s.

– For t > 0 s, the stored energy is released

• Current flows through the circuit and voltages exist

across components in the circuit as the stored energy is

released.

• The stored energy will decay to zero as time approaches

infinite, at which point the currents and voltages in the

circuit become zero.
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RC Circuit – Natural Response

• Suppose there is some charge on a capacitor at
time t = 0 s.

– This charge could have been stored because a
voltage or current source had been in the circuit at t
< 0 s, but was switched off at t = 0 s.

• We can use the equations relating voltage and
current to determine how the charge on the
capacitor is removed as a function of time.

– The charge flows from one plate of the capacitor
through the resistor R to the other plate to
neutralize the charge on the opposite plate of the
capacitor.
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Equations for the Natural Response of RC Circuit
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Equations for the Natural Response of RC Circuit
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The Key to Working with a Source-Free RC Circuit Is Finding:

• The initial voltage v(0) = V0 across the capacitor.

– Can be obtained by inserting a d.c. source to the circuit 

for a time much longer than  at least t = -5 and then 

removing it  at t = 0.

• Capacitor

– Open Circuit Voltage

• The time constant .

– In finding the time constant  = RC, R is often the 

Thevenin equivalent resistance at the terminals of the 

capacitor; 

• that is, we take out the capacitor C and find R = RTh at its 

terminals
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Time constant - τ

• The natural response of a capacitive circuit refers to 

the behavior (in terms of voltages) of the circuit itself, 

with no external sources of excitation.

– The natural response depends on the nature of the circuit 

alone, with no external sources. 

• In fact, the circuit has a response only because of the energy initially 

stored in the capacitor.

• The voltage response of the RC circuit

– Time constant,  = RC 

• The time required for the 

voltage across the capacitor to 

decay by a factor of 1/e or 

36.8% of its initial value. 
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Example 1
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Equations for the Natural Response of RL Circuit
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Equations for the Natural Response of RL Circuit
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The Key to Working with a Source-Free RL Circuit Is Finding:

• The initial current i(0) = I0 through the inductor.

– Can be obtained by inserting a d.c. source to the circuit 

for a time much longer than  at least t = -5 and then 

removing it  at t = 0.

• Inductor

– Short Circuit Current

• The time constant .

– In finding the time constant  = L/R, R is often the 

Thevenin equivalent resistance at the terminals of the 

inductor; 

• that is, we take out the inductor L and find R = RTh at its 

terminals
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Time constant - τ

• The natural response of an inductive circuit refers to 

the behavior (in terms of currents) of the circuit itself, 

with no external sources of excitation.

– The natural response depends on the nature of the circuit 

alone, with no external sources. 

• In fact, the circuit has a response only because of the energy initially 

stored in the inductor.

• The current response of the RL circuit

– Time constant,  =L/R

• The time required for the 

current in the inductor to decay 

by a factor of 1/e or 36.8% of 

its initial value. 
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Example 2
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Example 3
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Example 4
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Singularity Functions

• Singularity functions (also called switching
functions) are very useful in circuit analysis.

• They serve as good approximations to the
switching signals that arise in circuits with
switching operations.

• They are helpful in the neat, compact
description of some circuit phenomena,

– especially the step response of RC or RL circuits

• Singularity functions are functions that either
are discontinuous or have discontinuous
derivatives.
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Unit Step Function

• The unit step function (u(t)) is 0 for negative values of 

t and 1 for positive values of t. 
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Unit Step Function

• Voltage source of V0u(t) and its equivalent circuit.

• Current source of I0u(t) and its equivalent circuit.
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Unit Impulse Function

• The derivative of the unit step function u(t) is 

the unit impulse function ((t))
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Integration of Unit Functions

• To illustrate how the impulse function affects other 
functions, let us evaluate the integral

• This is a highly useful property of the impulse function 
known as the sampling or shifting property.
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Unit Ramp Function
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Relationships of singularity functions

• The three singularity functions (impulse, step, 

and ramp) are related by differentiation as

• or by integration as
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Driven RC Circuit
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Driven RC Circuit



Solution of a First Order System

• Solution is of the form:

• yh(t) is homogeneous solution

• Due to the system’s response to initial conditions

• yp(t) is the particular solution

• Due to the particular forcing function, u(t), applied to 
the system

• General form of differential equation:

• Initial condition:



Homogeneous Solution

• The homogeneous solution is the system’s 

response to its initial conditions only

• System response if no input is applied  u(t) = 0

• Also called the unforced response, natural response, or 

zero input response

• All physical systems dissipate energy  yh(t)0 as t

𝑑𝑉𝐶(𝑡)

𝑑𝑡
+

1
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𝑉𝐶 𝑡 = 0
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1
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Particular Solution
• The particular solution is the system’s response to the 

input only

• The form of the particular solution is dictated by the form of the 

forcing function applied to the system

• Also called the forced response or zero state response

• Since yh(t)0 as t, and y (t) = yp(t) + yh(t):

• y (t) yp(t) as t

We know that 𝑉𝐶 ∞ = 𝑉0 so; 𝑉𝐶𝑃 𝑡 = 𝑉0

Then the total solution will be; 
𝑉𝐶 𝑡 = 𝑉𝐶𝐻 𝑡 + 𝑉𝐶𝑃 𝑡

𝑉𝐶 𝑡 = 𝐴𝑒−
1
𝑅𝐶𝑡 + 𝑉0

The initial condition is zero; 
𝑡 → 0

𝑉𝐶 0 = 0 = 𝐴𝑒0 + 𝑉0

𝐴=-𝑉0 → 𝑉𝐶 𝑡 = 𝑉0-𝑉0𝑒
−

1

𝑅𝐶
𝑡

𝑓𝑜𝑟 𝑡 > 0



Total Solution of Driven RC circuit



Example 5
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Driven RL Circuit



Driven RL Circuit



Driven RL Circuit
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Example 7
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General Equations

• When a voltage or current source changes its 

magnitude at t = 0s in a simple RC or RL circuit.

– Equations for a simple RC circuit

– Equations for a simple RL circuit
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General Solution Procedure

𝑥 𝑡 = 𝑥 ∞ + 𝑥 0 − 𝑥 ∞ 𝑒−
𝑡
𝜏


