* |nstructor: Dr. Gorkem SERBES (C317)
gserbes@yildiz.edu.tr
https://avesis.yildiz.edu.tr/gserbes/

* Lab Assistants:
Dogan Onur ARISQY - arisoy@yildiz.edu.tr
Nihat AKKAN - nakkan@yildiz.edu.tr
Yeliz ERSAN - yelize@yildiz.edu.tr

* Grading:
 Midterm exams & Assignments & Quizzes 60%
* Final exam 40%

only individual submissions allowed!

Introductory Computer Sciences 2018-2019
Fall Week #1

mailto:gserbes@yildiz.edu.tr
https://avesis.yildiz.edu.tr/gserbes/

PROBLEM SOLVING &
ALGORITHM DEVELOPMENT

Introduction

* An algorithm is a systematic logical step-by-step procedure for
solving a problem.

* When we solve a problem using a computer, we first need to
design an algorithm concerning the problem.

* Generallyy, we use flowcharts or pseudocode in the
development phase of an algorithm.

Why we need good algorithms?

= Without efficient algorithms many simple
problems cant be solved by the computer
(running time is too large, or not enough
memory)

Algorithms - Properties

There is no ambiguity in any instruction

There is no ambiguity about which instruction
is to be executed next (steps are ordered well)

The description of the algorithm is finite

The execution of the algorithm concludes
after a finite number of steps

How do we measure whether an
algorithm is ‘good’?

= Time complexity

= The number of steps it takes to solve the
problem as function of input size

= Examples:

= Analogy: Mowing grass has linear time
complexity because it takes double the time to
mow double the area

= What about looking up a name in a dictionary,
what happens if we double the dictionary size?

Introductory Computer Sciences 2018-2019
Fall Week #3

How do we measure whether an
algorithm is ‘good’?

s Space complexity

= The amount of memory required by
the algorithm

= Optimal vs. suboptimal solutions

y
- g,
s

R E"
R O AN
RGP P o

Introductory Computer Sciences 2018-2019
Fall Week #3

Examples of Problems that require
efficient algorithms

= [he sequence alignment problem

Introductory Computer Sciences 2018-2019
Fall Week #3

Examples of Problems that require
efficient algorithms

= The traveling salesman problem (TSP)

= [Teaching a computer to play Tic-Tac-Toe

= Teaching a computer to play Chess

Introductory Computer Sciences 2018-2019
Fall Week #3

Program Development Cycle

. DEVELOP AN
Analyze: Define the problem — ALGORITHM!

Design@n/fhe solution to the problem.

Choose thS‘eiect the objects
(textboxes, command buttons, etc.)

Code: Translate the algorithm into a programming
language.

Test & Debug: Locate and remove any errors in
the program.

Document: Organize all the material that
describes the program.

—~ MATLAB

10

B w N e

Solving problems with MATLAB

To solve a problem, use the following problem solving
methodology

State the Problem

Describe the Input and Output

Develop a Hand Example

Develop a MATLAB Solution

— First, clear the screen and memory: clear, clc

— Now perform the following calculations in the command
window or in the editor window

Test the solution

Solving problems with MATLAB
Example

Problem: For the initially given parameters

— V,: the magnitude of initial velocity vector,

— hy: initial height,

— 0, the angle of the velocity vector with the horizontal axis,

— @g: gravity;
calculate the final velocity vector (its magnitude as well as its angle with the
horizontal axis (v,0)), the time passes during this travel (t), the horizontal
distance it travels (x), and the maximum height it reaches to (h).

Solving problems with MATLAB
Example ctd.

1) State the Problem:
For the initially given parameters
— V,: the magnitude of initial velocity vector,
— hg: initial height,
— 0,: the angle of the velocity vector with the horizontal axis,
— g: gravity;
calculate the
— final velocity vector (its magnitude as well as its angle with the horizontal
axis (v,0)),
— the time passes during this travel (t),
— the horizontal distance it travels (x),
— the maximum height it reaches to (h).

2)

3)

Solving problems with MATLAB
Example ctd.

Describe the Input and Output:
In this example
Vo, ho, 6, and g are the inputs.
(v,8), t, x, and h are the outputs.

Develop a Hand Example (use mathematical expressions):
Let, m=3.141592, g =9.8, v, = 20, 8, = 75 (in degrees), h, = 30.
Then,

Voy = Vosin(nB,/ 180) and v, =v,cos(nB,/ 180).

tise = (Voy - 0) /g

m.g.h,, =0.5m(vy)*2 [1 h,, =0.5(vy)2/ g

hey = hye #+ hg and m.g.h, =0.5m(v,)*2 [1 v, =(2gh.,)"0.5
ta =(v,—0)/g , d = Vo,(tise + try) Vi = Vox
6, = 180*(arctan(-v, /v,)) /Tt

4)

Solving problems with MATLAB
Example ctd.

Develop a MATLAB solution:

PI=3.141592; % or use pi

G=9.8; v0=20; thetalO0=75; h0=30;

Sassuming thetal 1s given 1n degrees not 1n radilians
vOy=(vO0 * sin(PI*theta0/180.0));

vOx=(v0 * cos(PI*theta(0/180.0));

t rise=v0y/G;

h rise=0.5* (vOy*v0y)/G; % 0.5mv”"2=mgh
h fall=h rise+h0;

vy=sqrt (2*G*h fall); %0.5mv"2Z2=mgh

t fall=vy/G;

d=v0x* (t rise+t fall);

vx=v0x;

theta=180*atan (-vy/vx) /PI;

t =t rise + t fall;

v_mag = sqrt(vx”"2 + vy"2);

Introductory Computer Sciences 2018-2019
Fall Week #3

16

Solving problems with MATLAB
Example ctd.

5) Test the solution:

We can run the commands and output the solution as:

For a given set of initial wvalues:

Initial Velocity Magnitude: 20[m/s]

Initial Velocity Angle with the horizontal: 75[degrees]
Initial height: 30 [m]

Gravity: 9.8[m/ (s"2)]

Final parameter set 1is:

Velocity Magnitude: 31.4325[m/s]

Velocity Angle with the horizontal: -80.5212
Travel time: 5.1349[s]

Maximum height 1t reaches to: 49.0411 [m]

The horizontal distance it travels: 26.5801 [m]

Methods to represent algorithms (Algorithm Design
Techniques)

Turn OFF Abort
Wahie

Flowchart

Pseudocode

Algorithm 3.1: DES(graph)

procedure V1s1T(node)
Pou Wter if not node VISITED
node. VISITED + true
then {

for each edge + EDGEs(node)
do V151T(TARGET (edge))

DO NOT Use
Trigger
SAFETY

DO USE Trigger
SAFETY

main
Tum ON for each node + NoDes(graph)
Launcher's Water L
i do VisiT(node)

Launch Immediately
when pressurize d

18

Flowcharts

Flowchart is a tool to distinguish the problem into smaller problems and to
order them sufficiently to obtain the solution.

We use shapes such as boxes, diamonds, etc. and arrows to build
flowcharts.

Mostly used shapes are given as follows:

Shape Name Description
> Flow line
Terminal Start or stop
Decision Yes (true) or no (false) question.
Ex. Is k equal to 10? Or k=107
/ / Input / Output | Recieve and display data.
Ex. get input from keyboard; display it.
Process Perform something.
Ex. add a to b.

Introductory Computer Sciences 2018-2019

1
Fall Week #3 ?

Example - 1

* Ask user to input a number between 1-10.

Example - 1

Ask user to input a number between 1-10.

1. start
2. get the value (k)
3. if k is smaller than 1, go

to step-4, otherwise go
to step-5

. display ‘you entered a
wrong number’ and go to
step-2

. if k is larger than 10, go
to step-4

. stop

start H_}

;

display ‘enter a
number
between 1-10’;
get k

k>=1

|

display ‘you
entered a

wrong number’

f

" no

yes$:

<10
Pl [

yeva

stop)

Introductory Computer Sciences 2018-2019

Fall Week #3

21

Example - 2

e Sum up numbers from1to5

O 0 N O ULk WwWwNRE

start

sum=0
sum=sum+1
sum =sum + 2
sum=sum + 3
sum=sum+4
sum=sum+5
output the sum
stop

Example - 2

Sum up numbers from 1to 5

start

v

sum =sum + 2
sum=sum + 3

sum =sum + 4

{_.

sum=sum + 5

v

display sum

v

stop

Introductory Computer Sciences 2018-2019

Fall Week #3

23

Example - 2

e Sum up numbers from1to 5

0 N O U A WDNR

L start
start v
sum = 0 sum=0
) v
k=1 k=1
sum =sum + k v
k=k+1 —P» sum=sum + Kk
_ v
if k<6 go to step-4 k=k+ 1
output the sum v
stop T k<5
‘ =
display sum
R
[\ stop

Introductory Computer Sciences 2018-2019
Fall Week #3

24

Example - 3

e Ask user to input a non-negative integer and compute its factorial.

Example - 3

Ask user to input a non-negative integer and compute its factorial.

1. start start

2. display ‘enter a non-negative p— l
integer’, get the value (k) Pl = Aot sl
H . . oy e get k

3. if k is negative or it is not an i

integer, go to step-2

k>=0andkisan

4. fact=1 7 nteger? o
5. if kis less than or equal to 1, ye;sl_'
go to step-9 B
6. fact =fact * k I
8. if k is larger than 1, go to yesl | Il
step-b fact=factk Step
9. output fact L
10.stop | k= l|<-1

Introductory Computer Sciences 2018-2019

2
Fall Week #3 ®

