(1) Lineer Vektör Uzayları

Küme: iỳ tanmk nesncleín bir topluluğudur. Eumeles $A, B, C, \ldots, y, \ldots$, U. Y Wi, giloi buiythe horflerk ve bir bimaje ait nesne Tein - VEA $(0 \notin A)$
C : alt kuime
\$: 60s lume
U : birlesim
n: kesizim
X : kortezyen aorpim

$$
\begin{aligned}
& A \times B=\{(a, b): a \in A, b \in B\} \\
& A \backslash B=\{a \in A: a \notin B\}
\end{aligned}
$$

IR: reel sayilar bimesi
Q: rasyonel saylar kimes?
21: tameaylar
IN: dogal saylor kumesi
\%: kompleks sayllor kimes?

* Cisim olarak lR ya da \mathbb{C} alinir.
* X ve Y künekr ve $f: X \longrightarrow Y$ bir fonk. olsun.

$$
f: x \longrightarrow y=y=f(x)
$$

$A \subset X$ Giin A kuimesinin f altindaki gonintuisiu:

$$
f(A)=\{y: y=f(x), x \in A\}=\{f(x): x \in A\}
$$

$B \subset Y$ iain $f^{-1}(B)=\{x \in X: f(x) \in B\}$
$f^{-1}(B)$ ye B cümesinin f altrodaki ters gönntu"s"̈"
$f: X \rightarrow Y$ ve $\quad g: Y \rightarrow z \quad g \rho f: X \rightarrow Z$
$k \in \mathbb{N}$ iain $\mathbb{F}^{k}=\frac{\mathbb{F} \times \mathbb{F} \times \ldots \times \mathbb{F}^{\operatorname{defa}}}{k}$
$x \in \mathbb{F}^{k}: x=\left(x_{1}, x_{2}, \cdots, x_{k}\right), x_{j} \in \mathbb{F}, j=1, \ldots k$.

Tanim: V bir kime olsun. V kümesine asağida veiles taplana ve skole-le aarpma islemlesine göre bir F cismi uncinde bir yektör urayi denir.
$x, y, z \in V$ ve $\alpha, \beta \in \mathbb{F}$ iain.
(1) $x+y=y+x, x+(y+z)=(x+y)+z$
(2) $x+0=x$ olocal sekilde $\quad \rho \in V$ vardir.
(3) $x+(-x)=0 \quad 0.5 . \quad-x \in V$ vardir.
(4) $1 \cdot x=x \quad, \alpha(\beta x)=(\alpha \beta)(x)$
(5) $\alpha(x+y)=\alpha x+\alpha y,(\alpha+\beta) x=\alpha x+\beta x$

- $I F=I R, V$ ye reel vector uray.
- IF $=\mathbb{F}$, y ye kompleks vektor urayl davir.
- V nir elevenarra vectorler denir.
- Vvektor uzayl
- lineer vector unayl lineer uray
$+: V \times V \longrightarrow V$

$$
(x, y) \longrightarrow x+y
$$

: $: ~ F F \times V \longrightarrow V$

$$
(\alpha, x) \longrightarrow \alpha x
$$

$\nLeftarrow V$ bir vectör yayi, $x \in V$ ve $A, B \subset V$ olsun,

$$
\begin{aligned}
& x+A=\{x+a: a \in A\} \\
& A+B=\{a+b: a \in A \text { ve } b \in B\}
\end{aligned}
$$

Tanim: 1,2 : V bar vektor uzayi ve UCV olsun. Eger U, V deki + ve - sleuleine gore bir vectior uzay1 ise 4 ya y nin bir alt vectór uray, ya da usaca alt uayi denir.
Butan'm asağdaki ifadaye daskir.

$$
\alpha, \beta \in I F \text { ve } x, y \in U \text { iain } \alpha x+\beta y \in U
$$

\& U oH uzayi daima DEV vectonini iacrir. $U=\{0\}$ ise U yina bir att uzaydio

Tanim 1.3: V bir vektor unay ve $V=\left\{V_{1 i} v_{2}, \ldots v_{k}\right\} C V$ $k \geqslant 1$ sonlu bir luine ve A CV keyfi boston farkll bir bime olsun.
a) Bir x vectónuine

$$
x=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k}
$$

seclinde yaubbillyorsa y debi vetrörieín bí linear birlesimi (kombinezonu) deair.
b) Eger $\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}=0 \Rightarrow \alpha_{1}==\alpha_{k}=0$ ise vje linee banmsia velctorlein kumes: chairi
c) Lineer bagimsin olrayon bir kúneye linaes bağmindir denir.
d) A daki tim sonlu alt kümeleîn lineer berlesimerinin kümesi SpA ile gösteilir ve buna A nin gerear denir.

- SpA, A kúmesini iacen V deki en kuaüle. lineer alt unaydir.
* B biralt unay ve $A \subset B C V$ ise spA $C B$
e) V lineer bağmsiz ve $S p V=V$ ise V ye N nin bir tabani denir.
$* V=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\} \Rightarrow k$ ya V nin boyutu denic ve $\operatorname{dim} V=$ boy $V=K$ seclinde yozilir.
* Eğer Vrin sonlu bir tabani poksa o zarion Vye sonsuz boyutiu uzay denit.
f) V, Wiain bir taban ise her bin $x \in \mathbb{V}$

$$
x=\alpha_{1} x_{1}+\alpha_{2} x_{2}+t \alpha_{1} x_{n} \quad\left(\alpha_{1}, \alpha_{2}, \alpha_{k} \in F, V=\left\{x_{1}-, x_{k}\right\}\right.
$$

yaulabilir ve $\alpha j,(j=1, \ldots, k)$ scalerleine x vectóninin

I tabanina gore bilesenlen devir.
g) IFt, IF cismine göre bir vektior uzayidir.

$$
e_{1}=(1,0, \ldots, 0), e_{2}=(0,1,0, \ldots, 0), \ldots e_{k}=(0,0, \ldots, 1)
$$

vectörleinin kúmesi IFE íin bir tabandir. (standot taban)
Tanim 1.4: V,W, IF cismi üzeinde iki vecfor. unay! olsun. VKVN kartewen corpimi asağidali. vektor uzay islemlesine göre bir vektór uzayider. $\alpha \in I F$ ve $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \in V \times W$ ian

- $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$
- $\alpha\left(x_{1}, y_{1}\right)=\left(\alpha x_{1}, \alpha y_{1}\right)$

Fcismi ürende
Tanim 1.5: 5 bir kume ve V bir vektor uncui olsun. Tưm $f: S \rightarrow V$ fonksiyonlann ku'mesi F (S,V) ile gosterlir
$\alpha \in \mathbb{F}$ ve figGF(S,V) iain $F(S, V)$ deki toplaria ve skalerle aarpma

$$
\begin{gathered}
(f+g)(x)=f(x)+g(x) \\
(\alpha f)(x)=\alpha f(x)
\end{gathered}
$$

seclinde tanmlanir.
Bojlece $F(S, V)$ bir velctor yayidir.
ómek 1.6: $S=\{1, \ldots, k\}$ ise $F(S, \Rightarrow)$ kimesi IFK urayi k ozdeslestinlebilir $x \in F^{k}$ eleman

Tanim1.7: V, N ayni bir IF cismi üzeinde vektör uzaylar olsun. Bir $T: V \rightarrow W$ fonksigonuna ege tim $\alpha, \beta \in I F$ ve $x, y \in V$ iain

$$
T(\alpha x-\beta y)=\alpha T(x)+\beta T(y)
$$

ise bir tineer don"usüm denin tüm $T: V \rightarrow N$ lireer dinüzümlein bimesi $L(V, W)$ góstealir. $L(V, W)$ ar vektoor uzayidir (Tanm 1.5 teki islemerle. $V=W$ ise $\quad L(V, V)=L(V)$ allne. $T \in L(V): T: V \longrightarrow V$

Tum $x \in V$ iain $I_{x}=x$ birm donusimis tanmlan. (özdeslik dönüsúmü).

Lemma 1.8: $V_{1} W_{1} X$ vectror uraylari ve $T \in L(V, W)$ $S \in L(V, X)$ blsun. Bu dununda so $T \in L(X, X)$ dir.

$$
\begin{aligned}
& \alpha_{1} \beta \in I F, x_{1} y \in V \\
&\left(S_{0} T\right)(\alpha x+\beta y)=S(T(\alpha x+\beta y))=S\left(\alpha \frac{T(x)}{S_{1}}+\beta \frac{T(y)}{S 2}\right) \\
&=\alpha S\left(S_{1}\right)+\beta S\left(S_{2}\right) \\
&=\alpha_{(T(x))+\beta(T) T)}+\frac{S\left(S_{0}\right)}{}+\beta\left(S_{0} T\right)(y)
\end{aligned}
$$

 - $\in \mathbb{F}$ olsun. Bu takdirde
a) $R_{0}\left(S_{0} T\right)=\left(R_{0} S\right)_{0} T$
b) $\operatorname{RO}(S+T)=\operatorname{RO} S+\operatorname{Ro} T$
c) $(S+T) O R=S O R+T O R$
d) $I_{Y} O T=T_{0} I_{V}=T$
e) $(\alpha S)_{0} T=\alpha\left(S_{0} T\right)=S_{0}(\alpha T)$

Lemma 1.10: V, N velctio uraylan ve $T \in L(V, W)$
a) $T(0)=0$
b) U, V nin bir lineer alt uzayi ise T(U) da W ain bir lineer alt uayidir. Aynca bay $T(U) \leqslant \operatorname{boy}(U)$.
c) U,W nin bi lineer alt ubayl isea V nin bir lineer alt unayldir.
$\left\{x \in Y: \pi_{(x)} \in \cup\right\}$ kimeside
Tanim 1.11: V,W vettor unaylar ve $T \in L(V, N)$ alsun.
a) Tnin gónintisu (image ya da range) $I_{M} T=T(v)$ unayidir: Thin rankl $r(T)=b o y(\operatorname{Im} T)$ dis
b) T nin aekirdegi (kernel ya da sifir (aull) uzayi) $\operatorname{ker} T=\operatorname{aek} T=\{x \in V: T(x)=0\} ;$
$T \operatorname{nin}$ sifirliğ $\quad n(T)=\operatorname{boy}\left(\operatorname{aek} \frac{1}{7}\right)$ dir.
c) $r(T)<\infty$ ise T ye sonlu ranka sahiptir denir.
d) Eger $y \in W$ ain $T(x)=y$ denclenl en fazla bir x aozumune sohpse Tye 1-1 domisum derr.
 doniisüm derir. sahipse Tye örten lüzeñel
àme
f) Bire-bir ve örten T dónusumune brektif obinüsúm
cenir. $y \in W$ iam $T(x)=y$ denkleni tom olarak bir x Gözumüne sahiptro.
$\frac{\text { Lemma 1.12: }}{\text { olsun. }} V$ vetför uaylari ve $T \in L(V, W)$
a) I nin birebrr olmasi iain gerek ve yeter kosul $T(x)=0 \quad$ denkleminin yalnizca $\quad x=0$ cozümüre sohp olnasiden

$$
\operatorname{ack}(T)=\{0\} \quad n(T)=0
$$

ackndégon bayutu.
tek noleta ile degni dusturubnaz bu yuiden 0 dr.
b) T ortendir $\Leftrightarrow \operatorname{Im} T=N$

Eger boy $W<\infty$ ise $[(T)=\operatorname{bog} N$
c) $T \in L(V, W)$ nin bijektsf olmas iain genet ve yeter tosul SoT=Il ve ToS = IN olacak sekilde bijectit bir $S \in L(N, V)$ binsumimin var olmasidir.
$V \quad k$-boyutlu ise $k=n(T)+r(T) \quad(k=$ boy $V)$
Tanim 1.13: V bir yelctör uzay ve $T \in L(V)$ olsun. Eger $T(x)=\lambda x \quad$ daclemi $\quad 0 \neq x \in V$ aozumüne sahipse $\lambda \in \notin$ vir ozdegen danir. x vekisinine de \quad tnim ozdegeine karsilik gelen O_{2} vectör denir. aek (T_AI) CV at unayina A ya borsilk gelen 02 unay devir-
$m \lambda=n(T-\lambda I)$ sayisina d nin katliligl denir.

* birfankun br roktada surekliligi;

1) $f: A \longrightarrow \mathbb{R}$
$x=x_{0} \in A$ nok.
(*)

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)
$$

$\begin{cases}x_{0} d a & \text { tanmilı } \\ \lim _{x \rightarrow} f(x) & \text { nevcut } \\ (x) & \text { esitliğ } \\ \text { sağlan }\end{cases}$
2) $\quad \forall \varepsilon>0$ sayisica barsllik bir $f>0$ sayisi

$$
\left|x-x_{0}\right|<\varepsilon \Leftrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon
$$

0.5. de vorder
ff $\forall x \in A$ nok da súcerio ise fl'a A uzeinde suretlidir devir.
$\forall E>0$ sayisina basilk bir

$$
\begin{aligned}
& \delta_{1} 0 \text { syis tiom } x \in A \\
& \text { iain }\left|x-x_{0}\right|<S \Rightarrow \mid f(x)-f\left(x_{0}\right) k= \\
& \left(x_{0} \in A\right) \\
& \text { o.s. } f=g(S) \text { bulwer. }
\end{aligned}
$$

3) (x, z) ve $\left(y, z^{\prime}\right)$ iai top unoy olsen.
$f: x \rightarrow y$ sureclif olmasi.

$$
U \in z^{\prime}-a a k
$$

$$
V=f^{-1}(u) \in C-\operatorname{aik}
$$

(2) Lineer Operatörler
2. 1 Sürekli Lineer Dónüsümler
X ve 1 iki normlu lineer uzay olsun.
$T: X \rightarrow Y$ lin. don verisin. xo $\cup \in X$ alalim.
Venkn her $\varepsilon>0$ saysina keralik bir $\delta>0$ say|si

$$
\left\|x-x_{0}\right\|_{x}<\delta \Rightarrow\left\|T(x)-T\left(x_{0}\right)\right\|_{y}<\varepsilon
$$

olacak sekilde bulunabilfrse T ye $x_{0} \in X$ noktosirda süretlidir denir.

Lemma 2.1: X ve Y normlu Lineer uraylor (NLU) ve $T: X \rightarrow Y$ bir lineer dónilsüm osux. Bu. duninda asağdati ifodeler devtir:
a) I durgün suretlidir:
b) I sưretlidir
c) $T 0$ nobtasinda süreklidir.
d) $x \in x$ ve $\|x\| \leqslant 1$ iain $\|T(x)\| \leqslant t$ os. $k>0$ reel sayisl vardir.
e) $\operatorname{Tum}_{x} \in X$ iain $\|T(x)\| \leqslant k\|x\|$ o.s. $k>0$ reel sayisi vordir.
$\frac{\text { Ispat: }}{\text { aciktir. }}(a) \Rightarrow(b),(b) \Rightarrow(c)$ ispatlari dolukaa
$(c) \Rightarrow(d): T \quad 0$ pottasinda súcekli alsun. $\delta=1$ alalm. Bir $s>0$ say|si, $x \in X$ ve $\|x\|<\delta \quad$ olduginda $\|T(x)\|<1 \quad 0,5$ vodir. $\omega \in X,\|w\| \leqslant 1$ olsun.

$$
\left\|\frac{5 w}{2}\right\|=\frac{c}{2}\|w\| \leq \frac{c}{2}<\delta \quad \text { dup }
$$

$\left\|T\left(\frac{5 w}{2}\right)\right\|<1$ dir. $\quad T$ lineer oldugnden,

$$
T\left(\frac{S w}{2}\right)=\frac{f}{2} T(w) \quad \text { yaulabilin }
$$

Böylece $\frac{s}{2}\|T(\omega)\|<1$ veya $\|T(\omega)\|<\frac{2}{c}$ alur. $k=\frac{2}{5}$ aronon poritif reel sayidn
$(d) \Rightarrow(e): x \in X, \quad\|x\| \leqslant 1 \quad$ iain $\quad\|T(x)\| \leqslant k$ 0.5 . $k>0$ var olsun. $T(0)=0$ old. don $\|T(0)\|<k\|0\|$ aikar. $y \neq 0, y \in x$ alalm,
$\left\|\frac{y}{\|y\|}\right\|=1 \quad$ olup $\left\|T\left(\frac{y}{\|y\|}\right)\right\| \leq k \quad$ dir.
Tlineer oldugirdon,

$$
\left\|T\left(\frac{y}{\|y\|}\right)\right\|=\left\|\frac{1}{\|y\|} T(y)\right\|=\frac{1}{\|y\|}\|T(y)\| \leqslant k \quad \text { olup }
$$

bunodon $\Rightarrow\|T(y)\| \leq k\|y\|$ elde edilfo.
Bajlece $\forall x \in X$ iain $\|T(x)\| \leq k\|x\|$ balunur.
(e) $\Rightarrow(a): T$ lineer dd don

$$
\|T(x)-T(y)\|=\|T(x-y)\| \underset{(e) \operatorname{den}}{\leq k}\|x-y\| \text { odur. }
$$

$\varepsilon>0$ ve $f=\frac{\varepsilon}{L}$ olsun.
0 zavan $x y \in X^{2}$ ve $\|x-y\|<\delta$ oldugnda $\|T(x)-T(y)\| \leqslant k\|x-y\|<k\left(\frac{\varepsilon}{k}\right)=\varepsilon \quad$ bulunur. Bölece T dizgün sheklidir.
Örnet 2.2: $T: C_{\text {IF }}[0,1] \rightarrow$ IF (IF, ie ya C asmm) lineer dobüsúmù $T(f)=f(0)$ obarak veilsin. T süreklidir.

Gouium: $f \in C_{\mathbb{F}}[0,1]$ olsun. 0 halde

$$
\begin{aligned}
& |T(f)|=|f(0)| \leqslant \sup \{|f(x)|: x \in[0,1]\}=\|f\| \\
& |T(f)| \leq\|f\|
\end{aligned}
$$

$k=1$ lain lemmo 2.1 (e) den T lin dön sürekli olur.
Lenna 2.3: Eger $\left\{C_{n}\right\} \in l^{\infty}$ ve $\left\{x_{n}\right\} \in l^{p}(1 \leq p<\infty)$ ise $\left\{\ln x_{n}\right\} \in l^{p}$ olup

$$
\sum_{n=1}^{\infty}\left|\ln _{n} x_{n}\right|^{p} \leq\left\|\left\{\operatorname{cn}_{n}\right\}\right\|_{a}^{p} \sum_{n=1}^{\infty}\left|x_{n}\right|^{p}
$$

esitsizligi sağlania
ispats
$\left\{C_{n}\right\} \mid \in l^{\infty}$ ve $\left\{\mid x_{n}\right\} \in l^{p}$
$\lambda=\left\|\left\{\operatorname{cn}_{n}\right\}\right\|_{\infty}=$ sup $\left\{i_{n} \mid \text { in } \in \mathbb{N}\right\}^{\text {old dom }}<\infty$
$\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}<\infty \quad \operatorname{dr} . \operatorname{tim} \quad n \in \mathbb{N}$ ión

$$
\left|\ln _{n} x_{n}\right|^{P} \leqslant \lambda^{P}\left|x_{n}\right|^{P}
$$

oup korsilastirna testinden $\sum_{n=1}^{\infty}\left|e_{n} x_{n}\right|^{p}<\infty$ buluer.
Dig̈er bir deyisle $\sum\left|\mathrm{cn}_{n} \times n\right| i$ sensi yakusor.
Bäylece $\left\{a_{n} \times n\right\} \in l^{P}$ olup isteren eśltanlic saglanr.

Örnek 2.4: Eger $\left\{C_{n}\right\} \in L^{00}$ ise o somen $T: l^{\prime} \longrightarrow I F, T(\{x n\})=\sum_{n=1}^{\infty} \ln x_{n}$ sin don sürectidir
Göriml lemma 2,3 ten $\left\{0 n x_{n}\right\} \in l^{1}$ olup T nin ig̈-tamlı dduğu alamna gelir.
Aynca

$$
\begin{aligned}
&\left|T\left(\left\{x_{n}\right\}\right)\right|=\left|\sum_{n=1}^{\infty} a_{n} x_{n}\right| \leqslant \sum_{n=1}^{\infty}\left|a_{n} x_{n}\right| \leq \|\left\{\operatorname{cn}| | \sum_{n=1}^{\infty}\left|x_{n}\right|\right. \\
&=\frac{\|\{\operatorname{sn}\}\|_{0}}{k}\left\|_{n}\right\|_{1}
\end{aligned}
$$

olup T aaikaa sureklidr.

$$
\|T(x)\| \leq k\|x\|
$$

örnet 2.5: Eger $\left\{C_{n}\right\} \in l^{\infty}$ ise $T: l^{2} \rightarrow l^{2}$, $T\left(\left\{x_{n}\right\}\right)=\left\{\ln _{n}\right\}$ un din. süretlidin
aozü: $\lambda=\left\|\left\{c_{n}\right\}\right\|_{\infty}$ olsun. $\left\{\operatorname{con}_{n}\right\} \in l^{2}$ oldugndon Ste iy yendan tohmidr.

$$
\left.\left\|T\left\{x_{n}\right\}\right\|_{2}^{2}=\sum_{n=1}^{\infty}\left|c_{n} x_{n}\right|^{2} \leq \lambda^{2} \sum_{n=1}^{\infty}\left|x_{n}\right|^{2}=\lambda^{2} \| x_{n}\right\} \|_{2}^{2} \text { dir. }
$$

Boylece $k=\left\|\left\{c_{n}\right\}\right\|_{\infty}$ ile T surectilir.

Tann2.6: X ve Y NLU ve $T: X \rightarrow Y$ bi lini dón. olsun. Eger tüm $x \in X$ iain

$$
\|T(x)\| \leq k\|x\|
$$

olacak secuide bir $t>0$ reel sayis vorsa T ye sincli döusüm dair

* Yukendaki lema 2.1 den lin dón iain sinirllik ve sureklilik kaviomlaninin dax olduklari gorilúr. Tüm süreti (sinvil) $T=x \rightarrow Y$ lin. don. Lein künesi $B(x, y)$ ite gisteilir.
$T \in B(X, Y): T: X \rightarrow Y$ sinrli lineer doriusimdur (sicrebli)

$$
B(x, y) \subseteq L(x, y): T \in L(x, y): T: x \rightarrow y \text { lin don. }
$$

$T \in B(x, X)=B(X): T: X \rightarrow X$ surecli lin dơn.
ornek 2.7: $a, b \in \mathbb{R}, \quad k:[a, b] \times[a, b] \rightarrow C$ sürekli fonk ve $M=\sup \{|k| s, t) \mid:(s, t) \in[a, b] \times[a, b]\}$ olsun.
a) Eger $b g \in C[a, b]$ ise $f:[a, b] \rightarrow \mathbb{C}$. $f(s)=\int_{a}^{b} k(s, t) \cdot g(t) \cdot d t \quad f a n k s i y o n y ~ d o \quad c[a, b] d e d r$. Yoni $f \in C[a, b]$ dr.
b) $k: c[a, b] \rightarrow c[a, b], \quad(k(g))(s)=\int_{a}^{b} k(s, t) g(t) d t$ bir lin. dan. ise $k \in b(C[a, b], C[a, b])$ ve $\|k(g)\| \leqslant M(b-a)\|g\|$.

Giozim:
a) $\varepsilon>0$ ve $s \in[a, b]$ olsun. $k_{5} \in C[a, b]$ fonkinun $t \in[a, b]$ im $k_{s}(t)=k(s, t)$ darak alalim. $[a, b] \times[a, b], 12^{2}$ de bmpakt: olduğndan k fonku' dügän süreckidir ve bäylece,
eger $\left|s-s^{\prime}\right|<\delta \Rightarrow\left|k_{s}(t)-k_{s}(t)\right|<\varepsilon, \forall t \in[a, b]$ iain 0 ,s.: $s>0$ sayisi vardir. 0 halde

$$
\left|f(s)-f\left(s^{\prime}\right)\right| \leq \int_{a}^{b}\left\|k(s, t)-k\left(s^{\prime}, t\right)\right\| g(t) \mid d t \leq \varepsilon(b-a)\|g\|
$$

Bu redante if sureklidir.
b) Tum $5 \in[a, b] \mathrm{im}$

$$
\begin{array}{r}
|k(g)| s)\left|\leq \int_{a}^{b}\right| k(s(t) g(t) \mid d t
\end{array} \quad \int_{a}^{b} M\|g\| d t \text { amp } \quad \begin{aligned}
& =M(b-a)\|g\|
\end{aligned}
$$

böglece $\|k(g)\| \leqslant M(b-a)\|g\| \quad$ bulunur.
Buradar $\quad k \in B(c[a, b], C[a, b])$
ornel 2.8: $[0,1]$ üzainde taniml füm poliomlans unay P dsun. $p \subset C_{\phi}[0,1]$.

$$
T \& p \rightarrow p, \quad T(p)=p^{\prime}
$$

lineer dón. sirekli deǵldir.
cooums $p_{n} \in P, p_{n}(t)=t^{n}$ olsun.

$$
\begin{aligned}
& \left\|P_{n}\right\|=\sup \left\{\left|p_{n}(t)\right|: t \in[0,1]\right\}=1 \\
& \left\|T\left(P_{n}\right)\right\|=\left\|p_{n}^{\prime}\right\|
\end{aligned}=\sup \left\{\left|p_{n}^{\prime}(t)\right|: t \in[0,1]\right\} \text {. } \quad \begin{aligned}
& =\sup \left\{\left|n t^{n-1}\right|: t \in[0,1]\right\}=n
\end{aligned}
$$

Buradan tum $p \in P$ iain $\|T(p)\| \leq k\|p\|$ o.s. $k \geqslant 0$ seyisinn olnodiǵ enlosilr. 0 halde T sürekli degildir.
Teo 2.9: X sonlu boyatly N.L.U olsan. Werhangir bir viU ion $T, X \rightarrow Y$ bor lin dón. olsun. T süreklídir.
Ispat: Orce x üzeinde yesi bir rorm tosmaualim $\|.\|_{1}: x \rightarrow 1 R,\|x\|_{1}=\|x\|+\|T(x)\|$ olsun.
II. H_{1} fonkunen X iGin br norm oldugina gösterelim: $x, y \in X$ ve $\lambda \in \mathbb{F}$ olsun.
i) $\|x\|_{1}=\|x\|+\|T(x)\| \geq 0$
ii) $\|x\|_{1}=0 \Rightarrow\|x\|=\|T(x)\|=0$ ve boulece $x=0$ olur. $x=0$ ise $\|x\|=\|T(x)\|=0$ aup $\left\|x_{1}\right\|=0$ olur.

$$
\left(\|x\|_{1}=0 \Leftrightarrow x=0\right)
$$

(ii)

$$
\begin{aligned}
\|\lambda x\|_{1}=\|\lambda x\|+\|T(\lambda x)\| & =\|\lambda\| x\|+\|\| \| T(x) \| \\
& =\| \lambda(\|x\|+\|T(x)\|) \\
& =|\lambda|\|x\|_{1}
\end{aligned}
$$

iv)

$$
=\|x\|+\|T(x)\|+\|y\|+\|T(y)\|=\|x\|_{1}+\|y\|_{1}
$$

X sonlu boyutlu deld don 11.11 ve $l l$.lla nomber dentir. Tum $x \in X$ iain $\|x\|_{1} \leq k\|x\| \quad 0,5$. $k>0$ sayis. vardir.

$$
\begin{aligned}
& \|x+y\|_{1}=\|x+y\|+\|T(x+y)\| \\
& =\|x+y\|+\|T(x)+T(y)\| \\
& \leq\|x\|+\|y\|+\|T(x)\|+\|T(y)\| \\
& 11.11 \sim 11.12 \quad a, b \text { vor } k \text {. } \\
& a\|.\|_{2} \leq\|.\|_{1} \leq b\left\|_{2}\right\|_{2}
\end{aligned}
$$

Bu nederle $\|T(x)\| \leq\|x\|_{1} \leq k\|x\|, \forall x \in X$ icm blup T súreklidic.
örnek 2.10: polinomlann künesi iaín $T: \rho \rightarrow K$, $T(p)=p^{\prime}(1)$ lime don. sûrecli degildir
Lema 2 11: x ve Y NLU ve Ti $x \rightarrow Y$
surelli $i m$ dón olsun. 0 zomon $\operatorname{kar}(T)=\operatorname{cec}(7)$ kinesi kapalidir.
İpat1 $\operatorname{ker}(T)=\{x \in X: T(x)=0\}$ ve $\{0\}, \quad$ y de oapaliolir. Buradon $T^{-1}(\{0\})=\operatorname{ter}(T), x$ de kapalidir. T suredi oldugnda.
Tomm 2.12: X ve Y NLU $T: X \rightarrow Y$ bir lin. dön olsun. Tin grafiği
$\mathscr{U}(T)=\left\{\left(x_{1} T(x): x \in x\right\} \quad\right.$ kimesidir
$y(7) \subset \times x y$
$Y(T), ~ X x Y$ nim bir lineer alt urayi $\operatorname{ker}(T)$,
x incen alt unayl.

$$
\begin{aligned}
& x_{n} \rightarrow x \\
& y_{n} \rightarrow y
\end{aligned} \quad{ }_{x}^{d e} \quad \quad \text { dir } \quad\left(\left(x_{n}, y_{n}\right) \rightarrow(x, y) \in x x y\right)
$$

Eger $(x(y) \in Y(T)$ olduğnu gösterebilirsek bu da $\varphi(T)$ nin kapal olmasina yeter
$\left.\left(x_{n}, y_{n}\right) \rightarrow\left(x_{1},\right)^{\prime}\right) \in X_{x} y$ oldugundan $x_{n} \rightarrow x \in X$ ve $y_{n} \rightarrow y \in y$ elde edilir(?)

Bununla brivete $\left(x n, y_{n}\right) \in \varphi(T)$ oldugindan tuim $n \in \mathbb{N}$ iqin $y_{n}=T\left(x_{n}\right)$ dir. Bölece, T sürekli oldugindon,

$$
y=\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} T\left(x_{n}\right)=T(x)
$$

butunur. O halde

$$
(x, y)=(x, T(x)) \in \varphi(T)
$$

elde edilir. Bu da $\varphi(\tau)$ nin capali olmasi deveetin
Lemma 2.14: X ve y ncu ${ }^{\text {osing }}$ ve $S, T \in B(x, y)$ yi tim $\quad x \in x$ iain $\|s(x)\| \leqslant k_{1}\|x\|$ ve $\|T(x)\| \leq k_{2}\|x\|$ olacak sekilde segelim. $\lambda \in \mathbb{F}$ olsun. Bu durinda,
a) $\|(s+T)(x)\| \leqslant\left(k_{1}+k_{2}\right)\|x\| \quad(\forall x \in x$ iain $)$
b) $\|(\lambda s)(x)\| \leqslant|\lambda| k_{1}\|x\| \quad(\forall x \in X$ ian $)$
c) $B(X, Y), L(X, Y)$ nin bir lineer alt uzayidi.
ispat:
a) Eger $x \in X$ ise

$$
\|(S+T)(x)\| \leq\|S(x)\|+\|T(x)\| \leq k_{1}\|x\|+k_{2}\|x\|
$$

bulunve.

$$
=\left(r_{1}+k_{2}\right)\|x\| \text {. }
$$

b) Eger $x \in X$ ise

$$
\|(\lambda S)(x)\|=\left|d\|S(x)\| \leqslant|\lambda| k_{1}\|x\|\right.
$$

c) (a) ve(b) kismlanda $(s+T) \in B(x, t)$ ve $\lambda S \in B(x y)$ olorak $B(x, y), L(x, y)$ nin bir lineer alt unayidir. Buradan $B,(x, y)$ nin bir lineer usay (lixeer vektor uzayi) oldugu elde edilir.

Allstormalar 1
(1) $T_{:} C_{R}[0,1] \rightarrow \mathbb{R}, T(f)=\int_{0}^{1} f(x) d x$ lineer dönüsümunnün surekli del. gösterinz
(2) $h \in L^{\infty}[0,1]$ alsun.
a) Eger $f \in L^{2}[0,1]$ ise $f h \in L^{2}[0,1]$
old. gostein
b) $T: L^{2}[0,1] \rightarrow L^{2}[0,1], T(f)=h f$ lineer denusumuinuin surecli del gesteín.
(3) I bar kompless thilbert uray! ve y $\in H$ olsun. $f: H \rightarrow \mathbb{\square}, f(x)=(x, y)$ lineer cimusünionin sürekli \rightarrow oldug̈́nu $f(x)=$ göstitinit
(4) a) $\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right) \in l^{2} \Rightarrow\left(0,4 x_{1}, x_{2}, 4 x_{3}, x_{4} \ldots\right) \in l^{2}$ $\sum_{i=1}^{\infty}\left|x_{i}\right|^{2}<\infty$
b) $T=l^{2} \rightarrow l^{2}, \quad T\left(x_{1}, x_{2}, x_{3} \ldots\right)=\left(0,4 x_{1}, x_{2}, 4 x_{3}, x_{4} \ldots\right)$ lin. don surckli old. gost.
2. 2 Sinerl Lineer Openatönin Normy x, Y NLU $\operatorname{lin}_{\sin } \operatorname{tin} T: x \rightarrow Y$ lineor dinu"sümlein kínes' $\mathcal{L}(x, y)$ ile ve tim sinrl $T: X \rightarrow Y$ in. dön kimesini $B(X, Y)$ ile gosteiyorut.
$\mathcal{L}(x, y)$ bir vectór olup $B(x, y) \leqslant \mathcal{L}(x, y)$ bir alt uzaydir.

Lemma 2.15: x ve 4 NLU olsun.

$$
\text { U. }\|: B(x, y) \rightarrow \mathbb{R},\| T \|=\sup \{\|T(x)\|:\|x\| \leqslant 1\}
$$ seklinde tominll fonksjonu. $B(x, y)$ izennde ber rernedur.

ispat: $S T \in B(X, y)$ ve $\lambda \in \mathbb{F}$ olsun.
i) $\|T\| \geq 0 \quad\left(\forall T \in B\left(X_{C} Y\right)\right.$ iain $)$
ii) $\|T\|=0$

$$
\begin{array}{ll}
\Leftrightarrow \quad\|T x\|=0 & (\forall x \in X \text { iain) } \\
\Leftrightarrow T x=0 & \text { (} x \in x \text { ich) } \\
\Leftrightarrow T^{\prime \prime} \text { bir } 0^{\prime \prime} \text { linear dowindir }
\end{array}
$$

iii) $\|T(x)\| \leqslant\|T\|\|x\| \quad($ tüm $x \in X) \Rightarrow\|(\lambda T)(x)\| \leqslant\|a\| T\| \| x \|$ Boyllece: $\quad\|\lambda T\| \leq\|N T\|$ dur $\sim($ lenma $2.14(b))$

$$
\begin{aligned}
& \lambda=0 \text { ise esitlic seglanic } \\
& \begin{aligned}
A \neq 0 \text { ise }\|T\|=\|N-\lambda T\| & \leqslant d \mid\|d T\| \\
& \leqslant\|-\| d\|T\| \\
&
\end{aligned} \\
&=\|T\|
\end{aligned}
$$

Bu nedale $\|T\|=\mid d^{-1}\| \| \lambda T \|$ ya da $\|\lambda T\|=|\lambda| \cdot\|T\|$ youlir.

$$
\|(\lambda T)(x)\| \leq|d|\|T\|\|x\| \quad|a b|=|a|-\| b \mid
$$

ix)

$$
\begin{aligned}
\|(s+7)(x)\| & \leq\|s(x)\|+\|T(x)\| \\
& \leq\|s\|\|x\|+\|T\|\|x\| \\
& =(\|s\|+\|T\|)\|x\|
\end{aligned}
$$

yada

$$
\|s+T\| \leqslant\|s\|+\|T\|
$$

Tanim 2.16: x ve Y NLU ve TEB (x, y) olsun. $T \operatorname{nin} n o r m u \quad\|T\|=\sup \{\|T(x)\|:\|x\| \leqslant 1\}$ olorak tormlanir.

Tanion 2.17: $T: \mathcal{F}^{n} \longrightarrow \mathcal{F}^{M}, T(x)=A x$
sinirlı, linoos daussiminnün. A ratris normu $\|A\|=\|$ I\|. ie tanimlanir.

Ornek 2.18: $T: C_{1 F}[0,1] \rightarrow F, T(f)=f(0)$ Snirli lineer openaẗori iain $\|T\|=1$ old. göstein.
Ciozuimi Ornek 2.2 den tum $f \in C_{\text {If }}[0,1]$ isin $T(f) \mid \leq\|f\|$ olduğmy bilnomz
Böylece
(*) $\|T\|=\inf \{k:\|T(x)\| \leq k\|x\| \quad \forall x \in X\} \leq 1$ olur. Diger yadan tuim $x \in X$ iain $\varphi:[0,1] \rightarrow F$ $y(x)=1$ seklude tomionrsa $\|y\|=\sup \{|g(x)|: x \in[0,17\}$ oup $\quad \rho \in C_{\mathbb{C}}[0,1] \quad$ our. Aynea $|f(y)|=|\rho(0)|=1$
Bälece
$(* *) \quad 1=|T(g)| \leq\|T\|\|j\|=\|t\|$ our.
$(*)$ ve $(* *)$ den $\|T\|=1$ bulenur.

Teoren 2.19: X, Nu ve W, X in yain bir alt urayi yolsun. Y bir Banach unay ve $s \in B(N, Y)$ dsun.

Banach uzayl: Tan normlu y zoyder, y dek- bir Cauchy dhisi yine Y nin bin noktasia yakinsak ise y ye tam uray dair.
(a) $x \in X$ ye $\left\{x_{n}\right\}$ ve $\left\{y_{n}\right\}$ $\lim _{n} x_{n}=\lim y_{n}=x$ olarar secilde W urayinda diriler ise o sona $\left\{S\left(x_{n}\right)\right\}$ ve $\left\{S\left(y_{n}\right)\right\}$ dinibi de yakinsak olup $\lim _{n \rightarrow \infty} S\left(x_{n}\right)=\lim _{n \rightarrow \infty} S\left(y_{n}\right)$ di.
b) T um $x \in \mathbb{N}$ ian $T_{x}=S x$ ve $\|T\|=\|S\|$ olacak rekilde $T \in B(x, y)$ vardir.

Ispat: a) $\{x n\}$ yakinsak dolugandan bor Cauchy drisidir. Bu nedenk

$$
\left\|S\left(x_{n}\right)-S\left(x_{m}\right)\right\|=\left\|S\left(x_{n}-x_{m}\right)\right\| \leq\|S\|\left\|x_{n}-x_{m}\right\| \|
$$

oldughdon $\left\{S\left(x_{n}\right)\right\}_{\text {- }}^{-1 S}$ de bir cauchy dizisidir Y bir Bonach uzayi deld. bi dri yaknsatic.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} x_{n}=\left(\operatorname{mim}_{n \rightarrow \infty}=x \Rightarrow \lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0\right. \\
& \left\|_{\text {olugndon }} s\left(x_{n}\right)-s\left(y_{n}\right)\right\|=\left\|s\left(x_{n}-y_{n}\right)\right\| \leqslant\|s\|\left\|x_{n}-y_{n}\right\|
\end{aligned}
$$

oldugradan

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left(S\left(x_{n}\right)-S\left(y_{n}\right)\right)=0 \text { olur. Yoni } \\
\lim _{n \rightarrow \infty} S\left(x_{n}\right)=\lim _{n \rightarrow \infty} S\left(y_{n}\right) \quad \text { bulmn }
\end{gathered}
$$

Tanim 2.20: x ve 1 NLU ve $T \in L(x, y)$ olsun. Eger tim $x \in x$ ain $\|T(x)\|=\|x\|$ ise Tye bir "izometn" denir.

Örnek 2.21: X bir NLU ve I da X üzañdek binim lineer dönusum olsun. I acika X üzeinde bir izometridic.

$$
x \in X \Rightarrow I(x)=x \Rightarrow\|I(x)\|=\|x\|
$$

Otrinek 2.22: a) $x=\left(x_{1}, x_{2}, x_{3}, x_{4} \ldots\right) \in e^{2}$

$$
y=\left(0, x_{1}, x_{2}, x_{3}, \ldots\right) \in l^{2}
$$

b) $S: C^{2} \longrightarrow L^{2}, S\left(x_{1}, x_{2}, x_{1}, x_{4}-\cdots\right)=\left(0, x_{1}, x_{2}, x_{3} \ldots\right)$ fineer donusimi bir izometridir.

Gözum: $x \in l^{2}$ dd dan

$$
\begin{array}{r}
x \in e^{2} \Rightarrow\|x\|=\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{2}\right)^{2} \\
\|x\|^{2}=\sum_{i=1}^{\infty}\left|x_{i}\right|^{2}
\end{array}
$$

$$
\sum_{i=1}^{\infty}\left|x_{i}\right|^{2}=\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\left|x_{3}\right|^{2}+\cdots<\infty
$$

ve dolayisyla

$$
|0|^{2}+\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+=<\infty
$$

olup $y \in L^{2}$ dir.
b)

$$
\begin{aligned}
\|S(x)\|^{2} & =|0|^{2}+\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\left|x_{3}\right|^{2}+\cdots \\
& =\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\left|x_{3}\right|^{2}+\cdots \\
& =\|x\|^{2}
\end{aligned}
$$

$\|S(x)\|=\|x\|$, S br iometridir.

Lenna 2.23: x ve Y normlu linser uzaylo ve $T \in \mathcal{L}(X, Y)$ olsun. T bir izometni ise T sinirlidic ve $\|T\|=1$ dir (ódev)

Aaklama: Bu teoremin tersi gevelde doagM deg̈ldí: $\|T\|=1$ olwasna ragmes tim $h \in C[0,1]$ iain $|T(h)|=\|h\|$ oldugunu säleyeneyit. (oraek 2.18% bakinis)
Ornegin $h:[0,1] \rightarrow F, h(x)=x, x \in[0,4]$ iken $\|h\|=1$ ancak $|T(h)|=0$ dur.

Tanen $x, 4$ NLU ve $T: X \rightarrow Y$ örta bir izometr: x ise T ye de izometrik izometnik olorak izomorfit uraylo deair.
Tearem 2.25: H bir sonsuz boyutla bir thibert uzayi obun. Sen\}, it de bir ortonornal taban olsu.

Hilbert uzay: Tam ia aarpim urayina nilbert unayi denir.
la aorpim urayl: H bir vektör uzayi ve $x_{1} y+z \in H$ olsun.

- $\langle x, y\rangle=\langle\overline{y, x\rangle}$
- $\langle x, x\rangle=0 \Leftrightarrow x=0$

$$
\begin{aligned}
& \text { • }\langle x, x\rangle=0 \Leftrightarrow x=0 \\
& a\langle\lambda, y\rangle=\lambda\langle x, y\rangle \quad(\langle x, \beta y\rangle=\beta\langle x, y\rangle)
\end{aligned}
$$

$$
\cdot\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle
$$

$\langle.$, .〉 ia aorpimi ile H ye bir la aorpm uayl devir.

$$
\begin{aligned}
& \left\{x_{n}\right\},\{y n\} \in e^{2} \quad\langle x, y\rangle=\sum_{\mid=1}^{\infty} x_{1} y_{1}^{\prime} \\
& \langle x \mid y\rangle=0, x+y \Rightarrow \operatorname{ortaganal} \\
& \langle x, y\rangle=0,\|x\|=1,\|y\|=1 \Rightarrow \text { ortanorual }
\end{aligned}
$$

$\left(\begin{array}{l}\left\langle e_{i} e_{j}\right\rangle=0 \quad \\ \left\|e_{i}\right\|=1 \quad i \neq j^{0} \\ i=\|, \ldots\end{array}\right.$

$$
\left\|e_{i}\right\|=1 \Rightarrow x_{1}=1,2, \ldots
$$

$$
x \in H \Rightarrow x=\lambda_{1} x_{1}+\lambda_{2} x_{2}+
$$

Bu durunda tum $n \in \mathbb{N}$ iain $\quad T\left(e_{n}\right)=e_{n}$ olacak sekilde $T: H \rightarrow l_{\text {IF }}^{2}$ órten izometrisi varder.
$\frac{\text { Spat: }}{\text { yaulabili: }} x \in H$ olsun. B_{u} durumda $x=\sum_{n=1}^{\infty}\left\langle x, e_{n}\right\rangle e_{n}$
Aynce, cger $\alpha_{n}=\left\langle x, e_{n}\right\rangle$ ise $\left\{\alpha_{n}\right\} \in l_{\text {ff }}^{2}$ dip.
Buylece
$T_{0}: H \rightarrow l_{1 F}^{2}, T(x)=\{\alpha n\}$ linear domusuniu tenemlerabilir.

TÜm $x \in H$ iain

$$
\|T(x)\|^{2}=\sum_{n=1}^{\infty}\left|\alpha_{n}\right|^{2}=\sum_{n=1}^{\infty}\left|\left\langle x, e_{n}\right\rangle\right|^{2}=\|x\|^{2}
$$

olur. O halde T bir izometridic
27 Subat
$2.3 B(x, y)$ Thayi ve Dual Uraylor $B(X, Y), x$ ve Y NuU $0.4 x \times$ ten Yye sinirli tứm lineer operatórlein usayidir.
Teorem 2.27: X bir NLU ve 4 bir Borach uzay ise o zaman $B(x, y)$ uayi da bir
Banach uzalir. banach uzayidir.

Tanim 2. 28: X bir /F cismr üzeinde NLu olsun. Bu dunurda, $B(X, I F)$ urayina X urayinin dual unay denir ve X^{\prime} ile gosteilir.

Sonuq 2.29: X bir NLU ise X' bir Banach uzayedr. Ispat: $I F=\mathbb{C}$ ya da $I F=R$ seaildiginde her bir dunenda bu u2aylar normlu uzaylar dup ayne zamonda tandir. Yoni lF bir sanach uzayidir.
O halde bir öncekí tearen geregi $X^{\prime}=B(X$, IF) usay da Barach usayi olur.

Örnek 2.30: H, IF císmi ile bir tilbert uaayi ve yEH olsun.
Eger $f: H \rightarrow 1 F$ fonkunu
olarak $\quad f(x)=(x, y) \quad\binom{(x, y)}{\langle x, y\rangle}$
Teoren 2.31: (Riesz-Fréchet Teoremi) Egor H bir Hibert urayi ve $f \in H^{\prime}$ ise 0 zamon tim $x \in H$ iain $f(x)=\left(x_{y} y\right)$ olacat setide tek bir $y \in H$ vardir. Ayrica $\quad\|f\|=\|y\| \quad d r$.

Ispat: (a) (Vorlik kesmi)
Eger tim $x \in H$ igin $f(x)=0$ ise $y=0$ seaini uygur olacattir. Aksi takdiode korf $=\{x \in H: f(x)=0\}$
Ht nin kapabl os-alt uzayidr.
Ayrica (kerf) $\neq 0$ dir.
Bu nedente $f(z)=1$ o.s. bir $2 \in(k e r f)^{1}$
ôzelliele: $z+0$ iain $y=\frac{z}{\|z\|^{2}}$ tanmlorabilic.
f lineer olduğundan

$$
f(x-f(x) z)=f(x)-f(x) \cdot f(z)=0
$$

oler ve boylece $x-f(x) z \in$ ker f bulunur.
Bu aroda, $\& \in($ kerf $)+$ olup băllece
$(x-f(x) z, z)=0 \quad$ belunur.
Buradan $(x-f(x) z, z)=(x, z)-f(x)(z, z)$

$$
\begin{aligned}
& =(x, z)-f(x)(z, z) \\
& =(x, z)-f(x)\|z\|^{2}=0 \quad \text { ya da } \\
& =(x, z)=f(x) \cdot\|z\|^{2} \text { albor. }
\end{aligned}
$$

$f(x)=\left(x, \frac{z}{\|z\|^{2}}\right)=(x, y)$ olorak yaulmosi demektir.
Eger $\|x\|<1$ ise Cauchy Schwortz esitsiligioden:

$$
|f(x)=|\langle x, y\rangle| \leqslant\|x\| \cdot\|y\| \leqslant\|y\|
$$

Yen: $\|f\| \leq\|y\|$ bulunur.
Diger yandan eger $x=\frac{y}{\|y\|}$ ise $\|x\|=1$ ve boblece

$$
\begin{aligned}
& \|f\| \geqslant|f(x)|=\frac{\mid f(y)}{\|y\|}=\frac{\langle y, y\rangle}{\|y\|}-\frac{\|y\|^{2}}{\|y\|}-\|y\| \\
& \|f\| \geqslant\|y\| \cdot
\end{aligned}
$$

(*) ve (**) den $\|f\|=\|y\|$ bulunur.
(b) Teklik

Eger y ve u vectorlei her $x \in H$ iain
$f(x)=(x, y)=(x, w)$ 0.5. vorsa bu dunnda tim $x \in X$ iain $(x, y-\omega)=0$ olur.
Bu da $\quad y-w=0$ yo da $y=w$ olvasi devectir.

Teorem 2.3.2. (a) Eger $c=\left\{c_{n}\right\} \in l^{\infty}$ ve $\left\{x_{n}\right\} \in l^{1}$ ise 0 takdinde $\left.T_{a n} x_{n}\right\} \in e^{1}$ dir. Eger $f c=l^{1} \rightarrow I F$, $f_{c}\left(\left\{x_{n}\right\}\right)=\sum_{n=1}^{\infty} a_{n} x_{n}$ olrak tamimirsa O soman $f_{c} \in\left(l^{1}\right)$ alup $\left\|f_{c}\right\| \leqslant\|c\|_{\infty}$ olur.
(b) Eger $f \in\left(c^{-}\right)^{\prime}$ ise o takdinde $f=f c$ ve $\|c\|_{\infty} \leq\|f\|$ ar. $c \in e^{\infty}$ vordv.
(c) (et) uray e^{∞} uzayina izaretrít olarak izmorfititr.

Lemna 2.33: Eger x, y ve z, NLu ve $T \in B(x, y)$ ve $S \in B(y, z)$ ise $S_{0} T \in B(x, z)$ olup

$$
\left\|S_{0} T\right\| \leq\|S\| .\|T\| \quad \text { dir. }
$$

Ispat: SOT kolayea liner olup.

$$
\left\|\left(s_{0} T\right)(x)\right\|=\|s(T(x))\| \leq\|s\|\|T(x)\| \leq\|S\| \cdot\|T\| \cdot\| \| .
$$ esitsiligignden $s_{0} T \in B(x, z)$ ve $\left\|s_{0} T\right\| \leqslant\|S\| \cdot\|T\|$ elde edilís.

Tonim 2.34: X, Y ve Z NLU ve $T \in B(X, Y)$ ve $S \in B(Y, Z)$ olsun. S ve T op in bin besest olon SOT aperatöni $5 T$ ile gostenilir ve bu operatorlein corpimi darak totimlonir.
$X=Y=Z \Rightarrow$ TS ve $S T$ her iksi de tamlidi. Gerelde TS $\neq 5 T$
$x N(U$ ise $B(x, x)=B(x)$: X den X e tim sinirll lin. op. in uzayl.

Lemma 2.35: x bir NLU olsun.
(a) $B(x)$, blimsel bir rebirdir ve bäylece brimsel bir halkadir.
(b) Eger $\left\{T_{n}\right\}$ ve $\left\{S_{n}\right\}, B(x)$ de $\lim _{n \rightarrow \infty} T_{n}=T$ ve

$$
\begin{array}{lll}
\lim _{n \rightarrow \infty} S_{n}=S & \text { Ols. dieiler ise } & 0 \text { zanon }{ }^{n \rightarrow \infty} \\
& \lim _{n \rightarrow \infty} S_{n} T_{n}=S T & \text { dir. }
\end{array}
$$

Ispat: (a) Aartitr.
(b) $\left\{T_{n}\right\}$ yakinsat old. da sinirlidir Böylece. tím $n \in \mathbb{N}$ iain $\left\|T_{n}\right\| \leq k \quad 0, s$. $k>0$ vodis.
$\varepsilon>0$ alalm.
$n \geqslant N_{1} \Rightarrow\left\|S_{n}-S\right\|<\frac{\varepsilon}{2 \varepsilon} \quad$ ors \quad bir $N_{1} \in \mathbb{N}$ ve $n \geqslant N_{2} \Rightarrow\left\|T_{n}-T\right\|<\frac{\varepsilon}{\alpha(\|S\|+1)} \quad 0,5, \quad$ br $N_{2} \in \mathbb{N}$ verdr.

$$
\left\|S_{n} T_{n}-S T\right\| \leq\left\|S_{n} T_{n}-S T_{n}\right\|+\left\|S T_{n}-S T\right\| \leq K\left\|S_{n}-S\right\|+\|S\| \cdot\left\|T_{n}-T\right\|
$$

olup tuim $n \geqslant \max \left\{N_{1}, N_{2}\right\}$ iain

$$
\left\|S_{n} T_{n}-S T\right\| \leqslant k\left\|S_{n}-S\right\|+\|S\| T_{n}-T \|<\varepsilon \text { bullur. }
$$

Böjlece $\quad \lim _{n \rightarrow \infty} S_{n} T_{n}=S T$ elde edille
Notasyon:
x nlu ve $T \in B(x)$ olsun.
(a)

$$
\begin{aligned}
& T T=T^{2} \\
& T T T=T^{3} \\
& T T=T=T
\end{aligned}
$$

b) $a_{0}, a_{1}, a_{n} \in \mathbb{F}$ ve

$$
\begin{aligned}
& a_{1} a_{1, \ldots} a_{n} \in \mathbb{F} \\
& P: I F \rightarrow \mathbb{F}, p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
\end{aligned}
$$

ise

$$
P(T)=a_{0} I+a_{1} T+\cdots+a_{n} T^{n}
$$

\longrightarrow binim openatiór

Lemma 2.36: x, NLU ve $T \in B(x)$ olsun. $\frac{\text { Eger } p \text { ve } q \text { biré polinon ve } \lambda_{1} \mu \in \mathbb{C} \text { ise }}{0 \text { oman }}$
(a) $(\lambda p+\mu q)(T)=\lambda p(T)+\mu q(T)$
(b) $(p q)(T)=p(T), q(T)$

Alustirua I Gobzimlen
(1) $T: C_{12}[0,1] \rightarrow \mathbb{R}, T(f)=\int_{0}^{1} f(x) d x$ lineer dönisimil sireklidir.

$$
|T(f)|=\left|\int_{0}^{1} f(x) d x\right| \leqslant \int_{0}^{1} \mid f(x)\left\|d x \leqslant \int_{0}^{1}\right\| f\|d x=\| f \|
$$

$|T(f)| \leq\|f\| \Rightarrow T$ sinrlidir, dolayisigla süreekidire
$\Rightarrow \forall x \in X$ rain

$$
|f(x)| \leq \sup \{|f(y)|: y \in[0,1]\}=\|f\|
$$

(2)(a) $h \in L^{\infty}[0,1]$ ve $f \in L^{2}[0,1] \Rightarrow f h \in L^{2}[0,1]$ hever hever her yerde (almest avery where)

$$
|g(x)| \leq\|g\| \quad \text { olup }
$$

$|f(x) g(x)|^{2} \leq|f(x)|^{2}\|g\|_{\infty}^{2} \quad a_{1} e$

$$
\int_{x}|f g|^{2} d \mu \leq\|g\|_{\infty}^{2} \int_{x}|f|^{2} d \mu<\infty \quad\left(f \in L^{2}\right) \text { dur. }
$$

Böllece $f g \in c^{2}$ olur.
Aynca $\|f g\|_{2}^{2}=\int|f g|^{2} d \mu \leqslant\|g\|_{\infty}^{2} \int_{x}|f|^{2} d \mu$

$$
=\|g\|_{\infty}^{2}\|f\|_{2}^{2}
$$

(b) $\left.T: L^{2}[0,1] \rightarrow L^{2}[0,1], T / f\right)=h f, h \in L^{\infty}[0,1]$

$$
\|T(f)\|_{2}^{2}=\|h f\|_{2}^{2} \leqslant\|h\|_{\infty}^{2}\|f\|_{2}^{2}
$$

$f \in \epsilon^{2} \Rightarrow\|T(f)\|_{2} \leq\|h\|_{\infty}\|f\|_{2}$
$114 \|_{2}$

$$
\Rightarrow T \text { süreklidir. }
$$

(3) H tompleks Hilbert unay ve $y \in H$ ise f. $H \rightarrow \Phi, f(x)=(x, y)$ lin. dön súrekliolif

Cauchy-Schwortz esitssiligirden $\quad \forall x \in H$ iain

$$
\begin{array}{ll}
|f(x)|^{2}=|(x, y)|^{2} \leq\|x\|^{2} \cdot\|y\|^{2} \\
\Rightarrow|f(x)| \leqslant\|y\| \cdot\|x\| & l^{2}=\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}<\infty \\
\Rightarrow f \text { sureklidir. } & \begin{array}{ll}
& x=\left\{x_{n}\right\} \in l^{2} \\
& \left\{x_{1}, x_{2}, \ldots\right\}
\end{array}
\end{array}
$$

(4) (a) $\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in l^{2} \Rightarrow\left(0,4 x_{1}, x_{2}, 4 x_{3}, x_{4}, \ldots\right) \in l^{2}$

$$
\begin{aligned}
\left\|\left(0,4 x_{1}, x_{2}, 4 x_{3}, x_{4}, \cdots\right)\right\|^{2} & =16\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+16\left|x_{3}\right|^{2}+\mid x_{4}^{2}+\cdots \\
& \leq 16\left(\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\left|x_{3}\right|^{2}+\left|x_{4}\right|^{2}+\cdots\right) \\
& =16 \sum_{n=1}^{\infty}\left|x_{n}\right|^{2}<\infty \\
& =\left.16| | x\right|^{2}<\infty
\end{aligned}
$$

$\|y\|^{2}<\infty \quad$ yani $y \in l^{2}$ bulunin.
(b) $T: l^{2} \longrightarrow L^{2}, T(x)=y$ lin. doniusumuи sürectidir

$$
\begin{aligned}
&\|T(x)\|_{2}^{2}=\|y\|_{2}^{2}=\|\left(0,4 x_{1}, x_{2}, 4 x_{3}, x_{4} \cdot\left\|_{2}^{2} \leq 16\right\| x \|^{2}\right. \\
& \Rightarrow\|T x\|_{2} \leq 4\|x\| \Rightarrow T \text { surcelidic. } \\
& \forall\|T(f)\|_{2} \leq k\|f\|_{2} \\
&\|T\|_{\leq k}
\end{aligned}
$$

Alistirmalar 2
(1) $T: C_{1 R}[0,1] \rightarrow R, T(f)=\int_{0}^{1} f(x) d x$ olsun. (sinirl lin. dón)
a) $\|T\| \leqslant 1 \quad$ old gäster
b) Eger $g \in C_{R}[0,1], \forall x \in[0,1]$ iaín $g(x)=1$ ise $|T(g)|$ ve bôjlece \|T\| bulunuz.
(2) $h \in L^{\infty}[0,1]$ ve $T \cdot L^{2}[0,1] \rightarrow L^{2}[0,1], T(f)=h f$ olsun.

$$
\|T\| \leq\|h\|_{\infty}
$$

(3) $T: c^{2} \rightarrow c^{2}, T_{x}=y$

$$
\begin{aligned}
& x=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \\
& y=\left(0,4, x_{1}, x_{2}, \ldots\right)
\end{aligned}
$$

shark lin. don. in IITI normuna buL.
(4) Lemma 2.23 a ispatlayn.
(5) H bir hilbert uzdy ve $y_{i z} \in H$ olsun. $\pi(x)=(x, y) z$ lin. dinusimmin sinirl old ve $\|T\| \leq\|y\| \cdot\|z\|$. old. gaston

5 Mart
2.4 Ters Operatórler

$$
A x=y \quad \Leftrightarrow \quad x=A^{-1} \cdot y
$$

Tanim 2.37: x bir normlu uzay ve $T \in B(x)$ olsun. Eger TS=ST $=I$ o.s. bir $S \in B(x)$ operationi versa operatoinine tersinitr operatór denir.
Bir $T E B(x)$ operataünuin bir $S \in B(x)$ torsi vorsa bu ters operatór tektir ve o $T^{-1}=5$ seclinde göstentir.

Lenma 2.38: x NLU ve $T_{1}, T_{2}, B(x)$ de iki Tersinic operatór olsun. 0 takdirde,
(a) $T_{1}-1$ operatoni T_{1} tersi in tersinirdir.
$1 T$ operatininuin tersi T^{-1} olup T^{-1} oporatonimun. tersi de T dir)
(b) $T_{1} T_{2}$ de tersirdir ve $\left(T_{1} T_{2}\right)^{-1}=T_{2}^{-1} T_{1}^{-1}$ dit.

Ispat: ÖDEV
Omet 2.39: 3ir $h \in C[0,1]$ iain $T_{n} \in B\left(L^{2}[0,1]\right)$ operatoin ($\tau n g)(t)=h(t) g(t)$ setude tonmionsin. Eger $f \in C[0,1], f(t)=1+t$ ise Tf operatainin
terinirdir.

Cózëmi Alistrna 12 sorvdon beyle bir h 2 sincle olduãunu bilibonz. iain Th nin sinirle olduğunu biligonaz.
$k(t)=\frac{1}{1+t}$ seaclim. 0 zaman $L \in C[0,1]$ ve tim

$$
\begin{aligned}
\left(T_{k} T_{f} g\right)(t)=\left(T_{k} f g\right)(t) & =k(t) f(t) g(t) \\
& =\frac{1}{1+t}(1+t) \cdot g(t)=g(t)
\end{aligned}
$$

 bulunur 0 halde $T_{6} T_{f}=I$ dir. Benes sebnde $T_{f} T_{k}=I$. If operatomaun tosinir olup $T^{-1}=T k$ dir.

$$
\begin{gathered}
\operatorname{Tn}_{n}: L^{2}[0,1] \rightarrow L^{2}[0,1] \\
\int_{L^{2}[0,1]}|\operatorname{Tn}|^{2} d x<\infty
\end{gathered}
$$

Teorem 2.40: X bir Banach uzayl olsun. Eger $T \in B(x),\|T\|<1$ ise $I-T$ operationi tersinirdir ve.

$$
(I-T)^{-1}=\sum_{n=0}^{\infty} T^{n}
$$

$\frac{\text { ispat: }}{B(x) \text { Banach oldugndan Teo } 2.27 \text { den }}$
$\|T\|<1$ oldugndan $\sum_{n=0}^{\infty}\|T\|^{n}$ yakinsar.
Her $n \in \mathbb{N}$ ain $\left\|T^{\wedge}\right\| \leq\|T\|^{n}$ oldug̈nden $\sum_{n=0}^{\infty}\left\|T^{n}\right\|$ sersi de yalansar. Buradan $\sum_{n=0}^{\infty} T^{n}$ sersi de yakensar.

$$
S=\sum_{n=0}^{\infty} T^{n} \text { ve } S_{k}=\sum_{n=0}^{k} T^{n} \text { olsun. }
$$

$\left\{S_{k}\right\}$ dizisi $B(x)$ de S'ye yaknsar

$$
\left\|(I-T) S_{k}-I\right\|=\left\|I-T^{k+1}-I\right\|=\left\|-T^{k+1}\right\| \leqslant\|T\|^{k+}
$$

$\|T\|<1$ old. dan $\quad \lim _{k \rightarrow \infty}(I-T) S_{k}=I$.
Bu rederle, lemna 2.35 ten

$$
(I-T) S=(I-T) \lim _{k \rightarrow \infty} S_{k}=\lim _{k \rightarrow \infty}\left(I-T_{k}\right) S_{k}=I \text { bulunur. }
$$

Benzer sekilde $s(I-T)=I \quad$ olduğu da göstenlebilir. Böylece $I-T$ operatonic tersinir olup $(I-7)^{-1}=5$.
örnek 2.41: $A \in \not \subset$ saysi iqin $a, b \in R$ ou $k:[a, b] \times[a, b] \rightarrow \mathbb{R} \quad f a n k s i j o n u n u$ ele alalim. $k(x, y)=A \sin (x-y)$

Eger $|A|<1$ ise bir $f \in C[a, b]$ isin

$$
g(x)=f(x)+\int_{a}^{b} k(x, y) g(y) d y \cdot(*)
$$

olacak sckilde bir $g \in C[a, b]$ vor ddegunn göstinnia.
Gözim: 2.7 1b) de,

$$
K: C[a, b] \rightarrow C[a, b],(k(g))(s)=\int_{a}^{b} k(s, t) g(t) d t
$$

lineer dónusümuinún sinrle aldua ve \|k(y)\|$\leq|A| \| y \mid$ oldugu gösterimisti. Böylece $11 \angle \| \leq|A|$ dir.
(*) denclevinder $\quad(I-k) g=f$ yaullabilit.
I-K tersinir dup (Teo2i40), bu son denkbuin $g=(I-c)^{-1} f$ (tek) cozumi vordic.

Sonua 2.42: X bir Barach unayi dsun. $B(x)$ in tim tersinir elcumbann A lumesi aaiktir.
 A'nin acik olduğnu gástemok íin $\|T-S\|<h \rightarrow s \in A$ old gósternec yeter.
$\|T-S\|<\eta$ olsun. 0 zanon,

$$
\left\|(T-5) T^{-1}\right\| \leqslant\|T-S\|\left\|T^{-1}\right\|<\left\|T^{-1}\right\|\left\|^{-1}\right\| T^{-1} \|=1
$$

olur. Böylece teo 2.40 gereğ $I-(T-5) T^{-1}$ operationit tersinindir.
$\|T\|<1 \Rightarrow I-T \quad$ tersinir
$\left\|(T-S) \cdot T^{-1}\right\|<1 \Rightarrow I-(T-S) \cdot T^{-1}$ tersinidic
Allnda $\quad I-(T-S) \cdot T^{-1}=I-\left(T \cdot T^{-1}-S \cdot T^{-1}\right)$

$$
=I-I+S \cdot T^{-1}=S T^{-1}
$$

olup s, t^{-1} op. tersinirdir. Bólilece
$S=S \cdot T^{-1}, T$ op ï tersinidir. (lemma-2.3\%)

- halde SEA dir.

Teoren 2.43: (Aak Tasvir Teoreni)
X ve Y Banach uzay! ve $T \in B(X, Y)$ olsun. $L=\{T(x): x \in X$ ve $\|x\| \leq 1\}$ olsun. 0 takdirde
a) $\{y \in Y:\|y\| \leq r\} \subseteq E$ o. s. \quad r>o varder.
\rightarrow Lnin kapanisi
(Zyi iaren thim kapal, kumebin kesifimi)
b) $\left\{y \in \mathcal{T}:\|y\| \leqslant \frac{r}{2}\right\} \subseteq L$
C) Eger T brebir ise $S_{0} T=I_{x}$ vardir. $T_{0} S=I_{y}$
$T: X \rightarrow Y \quad$ sinirli (süreckli)
V, Y de aak ise $T^{-1}(V), X$ de aalktir.

S: $Y \rightarrow X \quad$ sinirlı (sürekli)
$T^{-1} \quad U \begin{aligned} & X \\ & X\end{aligned} \quad \begin{aligned} & s^{-1}(u) \\ & \text { aalktr. }\end{aligned}=T(u)$
Sonua 2.44 (Kapal Grafik Teoreni)
Eg̈er x ve Y Barach ve $T: x \longrightarrow y$ bir lin. dòn. ise ve eger g(T) grafiga kapali ise 0 zaman T sureblidir.
$\frac{\text { Ispat: }}{\text { kapali }} \times$ grafiğ Banach Banach Uay olup $g(T)$ grafiğ de Banach uzayidir. $(g(7) \leqslant x \times Y \Rightarrow g(T) \quad$ Banach $)$
kapal, Banach
$R: g(T) \longrightarrow x, R(x, T x)=x \quad$ olsun. R aulka brebár ve örtadir.

$$
\|R(x, T x)\|=\|x\| \leq\|x\|+\|T x\|=\|(x, T x)\|
$$ olup R sinirlidir ve $\|R\| \leq 1$ dir

$$
\begin{aligned}
& \|R(x, T x)\| \leqslant 1 \cdot\|(x, T x)\| \\
& \|R(y)\| \leqslant k \cdot\|y\|
\end{aligned}
$$

Bälece $\quad S R=I g(T)$ ve $R O S=I x \quad 0.5$. $\begin{array}{ll}\text { sinirl. bir } & 5: X \rightarrow g(T) \text { lineer dönüsümsi vardir. } \\ \text { (Teo } 2.43 \text { ten }\end{array}$ (Teo 2.43 ten)

Ozellikle tum $x \in X$ iain $S_{x}=(x, T x)$ dir. $\forall x \in X$ iain

$$
\|T x\| \leq\|x\|+\|T x\|=\|(x, T x)\|=\|S x\| \leq\|S\| .\|x\|
$$

ololugendan T sinell diur. $\quad(\|T\| \leq\|S\|)$ (Yoni sürebli)
örten
$\frac{\text { Sonua 2.45: } x \text { Banach ve } T \in B(x)(X: K \text { ürire })}{\text { b/re-bir ise } T \text { tersinidir. }}$

Lemma 2.46: X NCU ve $T \in B(x)$ tersinir ise $\operatorname{tim} x \in X$ iain $\|T(x)\| \geqslant\left\|T^{-1}\right\|^{-1}\|x\|$ esitsidiğ sağlanic.
Ispat: $\operatorname{Tum}_{\text {ol }} x \in X$ iain $\|x\|=\left\|T^{-1}(T(x))\right\| \leq\left\|T^{-1}\right\|$. $\|(x)\|$ buradon,

$$
\begin{gathered}
\|x\| \cdot\left\|T^{-1}\right\|^{-1} \leqslant\|T(x)\| \text { ya da } \\
\|T(x)\| \geqslant\left\|T^{-1}\right\|^{-1} \cdot\|x\| .
\end{gathered}
$$

lemma 2.47: x Barach ve $T E B(x)$, tüm
 $\operatorname{Im}(T)$ goñinti kümesi kapalidir.
$\frac{\text { Lemna } 2.48 N}{0 \text { takdirde }} X$ banach ye $T \in B(x)$ olsun.
(a) T tersinirdir.
 iain $\|T(x)\| \geqslant \alpha\|x\|$ o.s. $\quad \alpha>0$ vardir. ispati
(a) $\Rightarrow(b)$ Lenna 1.12 ve Teo 2.46 nin sonucu olarak elde edilir.
$(b) \Rightarrow(a) \operatorname{Im}(T), X$ de yogun olsun-- halde durinida lemma 2.47 den $\operatorname{Im}(T)$ kapalidr.

Eger $x \in \operatorname{ker}(T)$ ise $T(x)=0$ ve böylece

$$
0=\|T(x)\| \geqslant \alpha\|x\|
$$

$\rightarrow T$ birebir.
yoni $x=0$. 0 halde $\operatorname{ker}(T)=\{0\}$ ve boullece soma 2.45 ten \rightarrow tersinir olur.
Allstirmalar 3
(1) x NUL ve $P, Q \in B(x)$ olsun.

$$
T: B(x) \rightarrow B(x), T(R)=P R Q
$$

lin dönusuumünùn sinirl dd. gôsteín
Gözün $\quad\|T(R)\|=\|P R Q\| \leqslant\|P\|\|R Q\| \leqslant\|P\|\|R\|\|Q\|$
$\Rightarrow T$ sinell ve $\|T\| \leqslant\|P\|\|Q\|$
(2)

$$
\begin{aligned}
& T: l^{2} \rightarrow l^{2} \quad \text { sinil op. } \\
& T\left(x_{1}, x_{2}, x_{3}, \cdots\right)=\left(0,4 x_{1}, x_{2}, 4 x_{3}, x_{4}, \cdots\right)
\end{aligned}
$$

sectmole olsun.
a) T^{2} bul.
b) $11 T^{2} \|$ bul $v e-\|T\|^{2}$ ile bersilostir.
a) Cơ2 $\mathrm{Cum}:$

$$
\begin{aligned}
T^{2}=T T\left(x_{1}, x_{2}, x_{3} \ldots\right) & =T\left(\begin{array}{r}
y_{1} \\
y_{2}, y_{3} \\
\left.0,4 x_{1}, x_{2}, 4 x_{3}, \ldots\right) \\
\end{array}\right. \\
& =\left(0,4 y_{1}, y_{2}, 4 y_{3}, \ldots\right) \\
& =\left(0,0,4 x_{1}, 4 x_{2}, 4 x_{3}, \ldots\right)
\end{aligned}
$$

b) $\left\|T^{2}(x)\right\|^{2}=\left\|\left(0,0,4 x_{1}, 4 x_{2}, \ldots\right)\right\|^{2}=1$
$\left\|T^{2}\right\|^{2} \leqslant 16 \Rightarrow\left\|7^{2}\right\| \leqslant 4$ aikar

$$
\begin{aligned}
& x=(1,0,0, \ldots) \Rightarrow\|x\|=1 \\
& \left\|T^{2}\right\| \geqslant 4 . \quad\left\|T^{2}\right\|=4
\end{aligned}
$$

(3) x, y, z xull \quad va $x \rightarrow y$ ve

S:Y $\rightarrow z$ izometnles ise 507 da bor izometridir.

Gó2üm: $\|(S o T)(x)\|=\|S(T(x))\|=\|T(x)\|=\|x\|$ bileske tanimi
\Rightarrow SoT bir izometridir

AUSTIRMA 2 GÖzŨMLERI

$$
*\|f\|=\sup \{|f(x)|: x \in X\}
$$

(1) a) $\|T\| \leq 1$?

$$
|T(f)|=\left|\int_{0}^{1} f(x) d x\right| \leqslant \int_{2}^{1}|f(x)| d x \leqslant \int_{S}^{1}\left\|{\underset{\text { say }}{ }}_{1}^{\|}\right\| d x=\|f\|
$$

$\Rightarrow|T(f)| \leq 1$. $\|f\| \Rightarrow\|T\| \leq \frac{1}{1}$ elde codilis.
b) $g \in C_{R}[0,1], g(x)=1, x \in[0,1]$ iain

$$
\begin{gathered}
|T(g)|=\left|\int_{\partial}^{1} g(x) d x\right|=\left|\int_{\int}^{1} d x\right|=1 \\
\|g\|=\sup \{\lg \mid x) \mid: x \in[0,1]\}=1 \\
1=|T(g)| \leqslant\|T\|\|g\|=\|T\| \\
1 \leq\|T\| \ominus
\end{gathered}
$$

(1) Ve (2) den. $\|T\|=1$ bulunur.
(2) $h \in L^{\infty}[0,1]$ ve $T: L^{2}[0,1] \longrightarrow L^{2}[0,1]$,
$-(f)=n f$ sinirh donugum

$$
\begin{array}{ll}
\|T\| \leq\|h\|_{\infty} & \|T(f)\|_{2}=\|h f\|_{2} \leq\|u\|_{x}\|f\|_{2} \\
\|T(f)\|_{2} \leq\|f\|_{2}\|h\|_{\infty} & \Rightarrow\|T\|_{2} \leq\|h\|_{\infty} \\
\Rightarrow\|T\|_{2} \leq\|h\|_{\infty} &
\end{array}
$$

(3) $T: e^{2} \longrightarrow l^{2}$ sinis operatori $\left.T\left(x_{1}, x_{2}, \ldots\right)=10,4 x_{1}, x_{2}, 4 x_{1} \ldots\right)$

$$
\begin{aligned}
\|T|x|\|^{2}=\left\|\left(0,4 x_{1}, x_{2}, \ldots\right)\right\|^{2} & =\left(16\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+16\left|x_{1}\right|^{2}+\ldots\right) \\
& \leqslant\left(16\left|x_{1}\right|^{2}+\left.|6| x_{2}\right|^{2}+\left.|6| x_{3}\right|^{2}+\ldots\right) \\
& =16\left(\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\ldots\right) \\
& =16\|x\|^{2}
\end{aligned}
$$

$$
\begin{align*}
& \|T(x)\|^{2} \leq\|6\| x \|^{2} \\
& \|T(x)\| \leq 4\|x\| \quad \rightarrow T \| \leq 4 \tag{1}
\end{align*}
$$

Alistirma 4
(1)Lemma 2.38 i ispatlayiniz.
(2) x bineer uzay úzeinde $11 . l_{2}$ ve $\|_{\text {. }} l l_{2}$ normlar venicin. X by normlara göre bir Barach wayl olsun. Aynca tim $x \in x$ iain $\|x\|_{2} \leqslant k\|x\|_{2} 0,5$: bir $k>0$ soyisi mevcut olsun. Bu dumenola $11 . l_{\text {, we }}$ $11 . L_{2}$ normlarinin esdeger ololublanni yani; $\|x\|_{2} \leqslant r\left\|x_{1}\right\| \quad 0,5$ br $r>0$ sayisinin var olduğunu gösteiniz.
($\|.\|_{2}$ ve $\left\|_{1}\right\|_{2}$ normlar danktir $\Leftrightarrow k_{1}\|x\|_{2} \leqslant\|x\|_{1} \leq k_{2}\left\|_{x}\right\|_{2}$ 0.5. $k_{1}, k_{2}>0 \quad$ varolir.)

Col Cósterme: $I: X \rightarrow X \quad\left(X,\left\|_{1}\right\|_{2}\right) \rightarrow\left(x,\left\|_{1}\right\|_{1}\right)$ birim operatoris aliniz.

$$
\|I x\|_{\downarrow}=\|x\|_{2} \quad \text { sinirlidir. }
$$

(Teorem 2.4'u kullanisak) I, 1-1 old tersinirdir. I'nin tersi cendisi old. tori de sinirider.

$$
I^{-\frac{1}{=}} I:\left(x,\left\|_{1}\right\|_{1}\right) \rightarrow\left(x,\left\|_{1}\right\|_{2}\right)
$$

$\|x\|_{2} \leq r\|x\|_{1} \quad 0 . p \quad r>0$ vorder.
Böjlece $H_{1} l_{1}$ ve l. $\|_{2}$ normlar esdegerdir.
(3) $C=\left\{C_{n}\right\} \in \ell^{\infty}$ ve $T_{c} \in B\left(l^{2}\right)$ ррелаtion $T_{c}\left(\left\{x_{n}\right\}\right)=\left\{C_{n} x_{n}\right\}$ olorak tanimbonsin.
a) inf $\left\{\left|c_{n}\right|: n \in N\right\}>0$ ve $d_{n}=\frac{1}{E_{n}} \quad ; s e \quad d=\left\{d_{n}\right\} \in C^{\infty}$ ve $T_{c} T_{d}=I d T_{c}=I$ old. gösteñ.
b) $A\left\{C_{n}: \cap \in N\right\}$ ise $T_{C}-\lambda I$ operatóni tersinirdin.
(4) $C=\left\{C_{n}\right\} \in l^{\infty}$ ve $T_{C} \in B\left(l^{2}\right)$ operatorl $\left.\operatorname{Tc}\left(\left\{x_{n}\right\}\right)=i_{n} x_{n}\right\} \quad$ olsun. $c_{n}=\frac{1}{n}$ ise T op.
(5) x Banach urayl se $\left\{T_{n}\right\}, B(x)$ de $T \in B(x)$ operatomire yakinsayon tersinir, operatorlein blr drasi olsun. ${ }^{2} \in N$ lain $\left\|T_{n}-1\right\|<1$ old kabul edetim Bu halde T tersinirdit.

