~		Uzayları			
Küme: ju tümelesi büyüle	tanımlı A.B.C, harflerle (a &A)	nesnelerin ye bir	bir tople	ilugudur.	giloi e iain
C: alt	miz		s blime		i i
X i cor	ielm tezyon garpım				
AxB=	{(a,b) :a6	EA, 6683			1
	₹0 € A ;				
IR: ree Q: ras	l sayılar le yonel sayıla nsayılar	ürnesî r kümesî			
21: ta	nsayılar ğal sayılar noleks sayı	kunesi.			
			alinic		
	larak IR y Y kümebr			blr fonk	c. alsun
	X> Y ,				2 (32)
	x y=+	(x)			
ACX	igin A 6	ûmesinin f f(x) , x E	altindo AJ= [f(atí gòni x) = x e	ntist:
0-1(0)	in f-1(B	$) = \{x \in X $ timesinin	= f(x) ∈ f athro	B3 bbi tes	gonintis
4:X-	-> Y Ve	9:7->	7_ 95	4:X-	7 2
KEM id	iin	IFXIFX.	×IF		
XEIFE	: X= (X1, X2				

```
Tanım: V bir laime olsun. V kürnesine asagıda
veilen toplama ve skaletle aarpma islemlerine
göre bir F asmi üzetnde bir vektör uzuyı denir.
     xy, ZEV Ve OUBEIF iam
1 x+y = y+x x+(y+2) = (x+y)+2
@ X+O=X olocak schilde OEV vardir.
3 x+(-x)=0 0.5. -x EV vardir.
4 \cdot (B \times) = (AB)(X)
\bigcirc \alpha(x+y) = \alpha x + \alpha y, (\alpha + \beta) x = \alpha x + \beta x
• IF = IR, V ye reel vettor usay,

IF = IR, V ye kompleks vettor usay,

vettor usay,

vettor denir.
 · linear vektoir urayı
 · lineer uzay
 * V bir vector vray , XEV VR ABCV olsun.
x+A= \ x+a : 0 \ A \ \
 A+B = \ a+b: a EA ve b EB ?
 Tanm: 1,2: V bir vektor urayı ve UCV olsun.

Eger U, V deki + ve - işevleme göre
bir vektor urayı ise U ya V nin bir alt
vektor urayı ya da kısaca alt urayı denir.
Bu tanım asağıdati i fadeye derktir.
XIBEIF VE XIYEU iqin XX+BYEU
```

					- 1
U gH	izoyi d	aimo	DEV	vektorini	i jackt
U= 503	ise	U ying.	bir	alt urau	idic-
nim 1.3:	V bir sonlu bir	laine	olsun.	e V = { A C Y	Keyfin
seklade .	V1 + 02 42+	9 7	dets is	rebtörlein	bir linear
o) Eger se	1 1 1 1 1 1	bootmsiz	velcto	-lein lcu	mesi chair
c) Lineer pagimlidir	denir-		1	bineye.	
d) A Jaki kümesi gereni de	SDA ile	lu alt göste	Alic	le bune	birlesimlesoio A nin
SpA / A	1 timesini 1+ uraydi	iquen (,	V de	kî en	buaule
lineer al					
	U	ACI	3 C V	ise	SPACB
	uray Je bağımsız		5pV=1	,	spACB
B biralt) T liner I nin bir	unay ve bagimsiz toban	ve s denir	SpV=	(ise	Tye
B biralt) T liner I nin bir V = S Y1. e dim V Eger V	bagimsız toban Vz., Vi = boy V = V	ve denir.	SpV=	V nin yazılır. yoksa	boyutu denir

```
V tobanna gore bileselles deir.
  9) 1Ft, IF dismine gore bir vektion urayıdır.
    e1=(1,0,1,0) ,e2=(0,1,0,-,0),-,e==(0,0,-,1)
  retrotlemin kumesi IFK idin bir tabandır. (standot taban)
  tanım 1.4: V, W, IF cismi üzende iki vektor uzayıdır.

vektor uzayı işlemlerine göre bir vektör uzayıdır.
     x ∈ IF ve (x1, y1) (x2, y2) € V x X iam
 = (x1,y1)+ (x2,y2) = (x1+x2, y1-1/2)
 = x(x1,y1) = (xx1, xy1)
                                     Faismi üzende
  Tanım 1.5: S bir lime ve V
                                     bir vektor uzouji
  olsun. Thim f: 5 -> V fonksyonlarn kumesi
 F(S,V) ile gostenir x \in F(S,V) is in F(S,V) de x \in F(S,V)
  toplana ve skalerle aarpma
     (f+g)(x) = f(x) + g(x)
        (x+)(x) = x+(x)
  settinde tanımlarır.
Boylece Fls.V) bir vektor urayıdır.
 ómek 1.6: 5= 511-163 | ise F(S, #) kimesî
  IFE uray le ordestestinlebilir. XEIFE elevani
  1 E F (S, IF) elevani ile f (j) = x , 14 j 4 E
  seklade bedesleric
 Tanim 1.7: V. M. aynı bir IF asmi üzende vector
 uraylari olsun. Bir 7. V -> W fonksiyonuna
egot tim x,B E IF ve x,y E V iain
 ise bir lineer dönüsüm denir tüm T: V—> M
lineer dönüzümlein kimesi L (V, M) göstenlir.
 L (V, W) by veletor uzayidir ( Tanım 1,5 teki
islemerle) N=W ise L(VIV) = L(V) aling.
TEL(V) : 7: V _ V
```

```
Tum XEV igin
(ózdeslik dőnűsűmű).
                                                                                                                                                                   donusumu tanmlan
                                                                                                IX=X
      SEL(VV, X) olsun. Bu durunda So T EL(V, X) dir.
Lemma 1.8: VIWIX
       XBCIF / XYEV
         (SoT) (ax + By) = S (T (ax + By)) - S (a T(x) - B T(y))
                                                                                                                                            = 25(S1) + 35(S2)
= 25(T(x)) + 35(T(y))
                                                                                                                                             = x (50T) x - B (507) (4)
                                                                                                                        uzayı, R.S. TEL(Y) ve
  Cemma 1.9: V bir veltor
  & EF olsun. By tabdirde
  a) Ro(SOT) _(ROS)OT
  b) RO(S+T) = ROS + ROT
  C) (S+T) OR = SOR + TOR
d) IvoT = To Iv = T
e) (xs)oT = x(SoT) = So(xT)
 Lemma 1.10: VIW Yektor waylor
                                                                                                                                                          ve TEL(V, W)
  olsun.
 a) T(0) = 0
b) U, V nin bir líneer alt urayı ise TIU) da W
bir líneer alt urayıdır. Ayrıca bay T(U) & bay (U)
c) U, W nin bir líneer alt urayı ise v v nin
bir líneer alt urayıdır. Exev: Txx Est
                                                                                                                                                 Ex€ V: Txx € 1) kimeside
 Tonim 1.11: VW vector uraylar ve TEL (VIN) alsun.
a) Thin goinhisü (image ya da range) ImT = T(V)

urayıdır; Thin rankl r(T) = boy (Im T) dir.
b) Thin getirdeği (ternet ya da sifir hull) urayı)

terT = get T = \( \frac{7}{2} \times \times \frac{7}{2} \t
```

e) Eger y EXV ign T(x)=y derklemi en az bir X abrümüne sahipse T ye örten Lüzemel derir.
f) Bire-bir ve orten T abnusumine bijektif abnüsum denir. yew iam T(x)=y denklenir tom olorak bir x gözümüne sahiptir.
lemma 1.12: V, W vettor uzayları ve TEL(V, W)
a) T nin birebir olması iqin geret ve yeter kosul T(x)=0 centleninin yalnızca x=0 Gotümüne sahip olmasıdın tek nolita ile
Gek(T) = $\{0\}$ $n(T) = 0$ recording the contrastle definition of the contrastle definition of the contrastle of the contrastle definition of the contrastle
c) TEL(Y, W) nin bijettif olmas iain geret ve yeter tosul SoT = II ve ToS = IV olocat setilde bijettif bir SEL(W, V) domisümümin
Var olmasidir. V k-boyutlu ise k=n(T)+r(T) (k=boy V) Tanım 1.13: V bir yektör urayı ve TEL(V)
olsun. Eger $T(x) = \lambda x$ destelent $0 \neq x \in V$ destelent $0 \neq x \in$
gelen oz uray denir- m = n(T- JI) sayısıng d nın katlılığı denir.

	31			1 14	5		,			13	Su	ba	F	110	3
+ bir	fonkin	or	roktod	9 3	wet	lila	7 5								-
) + :	A	, IR		2)(A 8	>	0	50	2415	110	k	751	1k	1
	= X0 E					bir		6	>0		Sou	1131		^	
(*)	lin fl	()=f1	Xo)			Ix-	lox	4	5	nest)	1+	1/x) -	F((cx
	X	9				0.5		de		· · ·	arc	dir			
Yo	0	tanuli	1111	4)- -			- A					- 1	-01	-10
1	+(x)	nevout			1	- 0	1x	= A		ok.	u	201	rde	6	esc LS:
(*)	esitle	91 5091	anr.	4	5	irel	1 1		1	nir.			10	Sign	
					4.5	->	2	501	150	2	20	51	lk	6	1
					5	0		SOL	151	1, 1	thi	n	X	6	A
					idir	1 1		()	(0)	۷.	-	=7	1+1	c)	-+
					0.5.	1			(5)	ьи	lere	-		_
(X, Z) re	(4	(15	161	to	0	un	QU.	0	Isai	1,				
) t:	V ->	9	surelel		10000			U			+				
/ 7 -			Surect	0	10857	0	. 1			-h		100			
\rightarrow		W Z ≥ (ıl-					41		-				-
1	= 1-1	(U)	E C	-04	16						-			7	
(2)	Lineer	- 00	pera to	rler						120					
2.1	Sicol	1: 1	ineer	Dio	vi cii	mla	_	-			-				
+.X	ve 1	y iki	Voca	nlu	line	25	u	204	0 Y	lsun	olo	الممال		-	
Verlen	her	8	>0	soul	sina	1710	to	sille	1	bı		S	>	2	
sayısı	11 X - X	100			3 3				15 1		46				
										,					
olocal	· rebil	de l	uluabi	lfise		Ty	0		Xo	ϵ_{λ}	_	rot	do	SI	da
süretl	idir c	SOUL.								7					
			0												

Lemma 2.1: X ve y normlu Linear uraylor (NLU) ve 7:X -> y bir linear don'isim olsur. Bu durunda asağıdaki ifadalar darktir:	
a) T duigün sureklidir. b) T süreklidir. c) T O nobtosirola süreklidir. d) XEX Ve X \le 1 igin T X \le k o.s. k>0	
e) Tün XEX iqin T(x) \(\) \(\)	
Ispat: (a) \Rightarrow (b) , (b) \Rightarrow (c) ispatlary oldutage a alettr. (c) \Rightarrow (d): T , 0 rottograble suitetti olsun - \Rightarrow 1 algum. Br \Rightarrow 20 sower \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow	
$E = 1 \text{olding.} \text{Bir} S > 0 \text{soyis} \times \in X \text{ve}$ $ X \leq 1 \text{oldig.} \text{old} T(x) \leq 1 \text{o.s.} \text{vordir.}$ $ Su = 6 u \leq 2 \text{olup}$ $ Su = 6 u \leq 2 \text{olup}$	4.0
$ T(\frac{\omega}{2}) < 1$ dir. Theoroldugada,	
$T\left(\frac{S\omega}{2}\right) = \frac{S}{2} T(\omega)$ yazlabilîr.	
Böylece $\leq T(w) \leq 1$ veya $ T(w) \leq 2$ olur. $k = \frac{2}{5}$ aroon positif real sayidin	
(d) => (e): $x \in X$ $ x \le 1$ iqin $ T(x) \le k$. 0.5. $k > 0$ $ x \le 1$ iqin $ T(x) \le k$. $ T(0) \le x \le 1$ $ x \le 1$	
Tlineer oldugundan,	

```
( ( ( ) ) ( = | 1 T(y) | = 1 1 T(y) | < k 0 (4p)
buradan => 117(y) 11 < Elly 11 elde editic
 Boylece \forall x \in X igin \|T(x)\| \leq k \|x\| bulunur.
 (e) => (a): T linear old dan
 ||T(x) - T(y)|| = ||T(x-y)|| \le k ||x-y||  olur.
 11 T(x) - T(y) 11 < E 11 x - y11 < 14 ( = ) = E bulunur.
 Bôylece T oliegin sireklidir.
 Ornels 2.2: T: C [O, L] -> IF (IF, IR ya C aism)
tineer dönüsümü T(f) = f(0) olorak veilsin.
T sürekli dír.
aozum: f & C, E [Or1] olsun. O halde
T(f) 1 = 1 f(0) 1 ≤ sup $ | f(x) | = x ∈ [0, 1] 3 = | 1 f | 1
 IT(f) | < || f ||
 k=1 (gin lemmo 2-1 (e) den T
                                     an don sinetli
Lemma 2.3: Eger 3 Cn 3 € loo ve 5xn3 € lo (1≤p20)
ise Ecnxn3 € lo olup
  5 1cn x 1 1 5 1 8 (n) 1 2 1 x 1 P
 esitsizligi sağlanıc
```

```
ispati scas EL ve [xa] ECP oldidan

A= 11 scas 1100 = sup FICAL : A EIN 3 K00 Ve
  E IXAIP < D dur. Tim AEIN idea
             ICAXAIPE APIXAIP
     olup Korsilastirna testinden Ilcn XIII Lao bulunu.
    Diger bir oleyişle 5 Icnx1P sensi yakınsor.
Böylece Ecnxn3 E LP olyp istenen esitsinlik
   Ornet 2.4: Eger FCn3 E Loo ise o somon
   To e' -> IF, T(Exn3) = E cnxn lin don süretüdir
   Gözümi lenna 2,3 ten ECNXn3 E C olup Toin
Tyi-tonnlı olduğu onlamna gelir.
   1T((xx3)) = 12 Cxn < 2 | Cxn < 15 | Cxn < 15 | Xn |
                                                  = 115cn31/2 11 xn1,
  olup T aaitaa sureklidir.
    ||T(x)|| \leq |E||x||
  örnet 2.5: Eger ECn 3 E la ise T: L2 -> l2
  + (FXn3) = FCn Xn3 Un don süretlidin
  <u>dozim</u>: = 11 { Cn3 11 a o lsun. { Cn×n3 ∈ C2 oldugudon tonimidr. ole yandan, ...
 \|T\{x_n\}\|_2^2 = \sum_{i=1}^{\infty} |c_n x_n|^2 \le \chi^2 \sum_{i=1}^{\infty} |x_n|^2 = |x_n|^2 = |x_n|^2 \int_{\mathbb{R}^2} |x_n|^2 dx
Boylece k= 1/8cm311 de T streklilir
```

Tanım2.6:X	ve y NLU ve tům XEX	iqin Tix-77	bir lin. don.
	Ill ≤ k /1×11 de bir t>0 r nüsüm delir	reel sayisi vorso	Tye
Yukondaki Sureklilik ka	lemma 2.1 den avranlarının dele etli (sinvi) T=X	lin don iain	
künesî {	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	teilit	
	$L(X,Y) : T \in L$ $= B(X) : T : X$		
ornel 2.7: fonk ve	alb EIR, t: [alt M = sup & Itls,] x [a,b7 ->	C sürekli b] x [aıb]}
a) Eger ge f(s) = Skl	C[a,b] ise f s,t).g(t),dt +	Difaib7 -> C, Conksiyonu da	C[a,b] de d
You FE		(K(9))(5) =)	Lls,t) g (t) d
oir 11. dón.	ise ŁEB(C[≤M(b-a) g .	alb] C[alb]	ve

Ciozimi a) E>O ve S E [aib] olsun. ks E C [aib] fonkunun te [aib] ian ks (t) = k (sit) olara alalim. [a,b] x [aib], 102 de bompakt io oldugirdan k fonku dürgün süreklidir ve böylece	
eger $ s-s' < \xi \Rightarrow k_s(t)-k_s(t) < \xi$, $\forall t \in [a,b]$ iginous. ≤ 70 soyisi vardir. 0 halde $ f(s)-f(s) \leq \int k(s,t)-k(s',t) g(t) dt \leq E(b-a) g $ By radence f swetlidir. b) Tum $s \in [a,b]$ iam	
$ K(g) (s) \leq \int K(s) dt \leq \int M g dt = olup$ $= M(b-a) g $ $= M(b-a) g $ $= M(b-a) g $ Burdon $K \in \mathcal{B}(C[a,b], C[a,b])$	
ornele 2.8: [O,1] üzennole tanımlı tum polinamlı uzayı P olsun. PC Cp [O,1]. T. P -> P T(p) = p! Uneer don. siretli değildir aozumi Pn EP 1 Pn(t) = t^ olsun.	ann
$ P_{n} = \sup \{ p_{n}(t) : t \in [0,1]\} = 1$ $ T(P_{n}) = P_{n}' = \sup \{ P_{n}(t) : t \in [0,1]\}$ $= \sup \{ nt^{n-1} : t \in [0,1]\} = n$	

Buradon tim pEP igin T(p) \le k p 05. k>0 sayısının o'lvadiği onlasılır. O halale T sürekli değildir.
Teo 2.9: X sonlu boyutly N.L. U olsan. Herhongit bir NLU inn T: X -> Y bir lin. don olsun. T sürekli dir.
Ispat: Once X üzeride yer bir norm tormlayalım
11.11, forkum X ign br norm olduğunu gösterelim: X,y EX ve 2 EIF olsun.
(i) $ x _1 = x + 7(x) \ge 0$
10) $ x _1 = 0 \Rightarrow x = T(x) = 0$ we boulece $x = 0$ of $ x _1 = 0$ of $ x _2 = 0$ of $ x _2 = 0$ of $ x _2 = 0$
$ A \times _{\Lambda} = A \times + T(A \times) = A(X + A T(X)) = A(X + A T(X)) = A(X + A T(X)) = A(X + A T(X))$
)v) x+y ₁ = x+y + T(x+y)
$= (x+y) + (T(x)+T(y)) $ $\leq x + y + T(x) + T(y) $
= x + T(x) + y + T(y) = x + y $= x + T(x) + y + T(y) = x + y$
a 11.112 5 11.111 5 6 11.112
X sonly boyuth old don 11.11 ve 11.11 normbor dentify. Then $x \in X$ is in $1 x _1 \le x _2 1$ o.s.

By nederle $ T(x) \le x _1 \le x _$
Örnek 2.10: P polinomlann kumesi için TP-> E, T (p) = p1(1) lin don. sürekli değildir
Lemma 2 11: X ve y NLU ve T: X - 3 y swekli Im don olsun. O zonon Kor(T)=cek(T) kinesi kapalidir.
ispat: $ker(T) = \{x \in X : T(x) = 0\}$ ve $\{0\}$ ye $\{0\}$ ye $\{0\}$ ve $\{0\}$ v
Town 2.12: X re ? NLU T: X -> ? bir
$S(7) = S(x, 7(x) = x \in X)$ kimesidir $S(7) \subset X \times Y$
S(t)) XX I am bir linear alt urayı Ker(T) , X in br linear alt urayı.
Lemma 2.13: X ve 7 NLU ve 7: X - 7 lin. don n ise o somon S(T) tapaludir.
Ispat: $\{(x_n, y_n)\}$, $\mathcal{S}(t)$ de $(x_i, y_i) \in X \times f$ nottasina yatinsayan bir divi olsun. $(x_i, y_i) \in \mathcal{S}(t)$? $(x_i, y_i) \to (x_i, y_i) \in X \times f$
y -> y - de de
tger $(x,y) \in Y(T)$ olduğunu göstere bilirsek bu $\varphi(T)$ nin tapalı olmasına yeter. $(x_n,y_n) \rightarrow (x,y) \in X \times Y$ olduğundan $x_n \rightarrow x \in X$ ve $y_n \rightarrow y \in Y$ elde edilir(?)
$(x_{n,yn}) \rightarrow (x_{i,y}) \in X \times Y$ oldugundan $x_{n} \rightarrow x \in X$ ve $y_{n} \rightarrow y \in Y$ elde edilir(?)

20 Subat Bununla birlikte $(x_n, y_n) \in \mathcal{C}(T)$ olduğinden tüm $n \in IN$ iğin $y_n = T(x_n)$ Nic. Böylece , T sürekli olduğunden, y = limyn = lim T(xn) = T(x) 1700 bulunus O holde $(x,y) = (x,T(x)) \in \mathcal{C}(T)$ elde edilir Bu ob P(T) nin kapalı olnası devetir Lemma 2.14: X v2 y NU " VE SITE B(X,Y) Ji tim XEX idin 115(x)11 & killx11 ve 117(x)11 & k2/(x/1 olacale setilde segelim. ACIF olsun Bu during, 6) //(25) (x) / \le /2/ |x/ | (\forall x \in X ian) c) B(X, Y), L(X, Y) no bir linear alt way dir. ispat: a) Eger XEX ise. $||(S+T)(x)|| \le ||S(x)|| + ||T(x)|| \le \epsilon_1 ||x|| + \epsilon_2 ||x||$ = (+1+cz) 11x1 bulunur. b) Eger XEX ise $||(\lambda S)(x)|| = |A|||S(x)|| \le |A|||x|||$ c) (a) re(b) tismlandar (5+T) EB (x, t) ASEB(XIY) olorab B (XY), 4(XIY) oin bir lineer alt mayldir. Buradan B(X,Y) am bir linear way (linear vektor uzayı) olduğu elde edilir.

Alistro	valar 1			
1 7:0	FIR TO, 17	-712 /-	$T(f) = \int_{0}^{1} f$ $dol. \qquad gos$	(x) dx
Linear do	nű sá műnűn	suretli	dol. gös	tenno
	L∞ [0,1]		Che	1250,17
, ,			se fhe	
dinisumin	<u>un</u> <u>sur</u>	eblî old.	T(f) = hf gastein.	uneer -
3 H 67	tomplet	s Hilbert f(x) = (x,y)	uroul re	y E H olsun.
			1 1 1 V	
000	x1, x2, x3, x4	,) El ²	⇒ (0,4x1,	×2,4×3,×4)∈e²
		T(X1, X2, X2	(-,)=(0,4	X1, X2, 4X3, X4-
lin, dòn	, sürek(i	T(x1, x2, x3	56.	
2.2	Sinch L			ormu
sinvli	Buisin len	kimesi lin. dö	D(X(Y)	ile ve tim
ile g	steryonut - XY) bir	vektor ol	40 B(X/	
bir al				


```
Tonin 2.17; T= IF" / IFM , T(x) = Ax
 sinisti , unes divisiminante l'All = 11711 ile tonimianic
                                                                                                                                                  A matris normu
Signification operation is in 11711=1 old
   gastan
 Crozum Ornek 2.2 des tum f E CIF [0,1] için
  Böylece
(*) ||T|| = \inf \{ k : ||T(x)|| \le k ||x|| \quad \forall x \in X \} \le 1
olur. Diger yadan tim x \in X iain g : [0,1] \to [0,1]
f(x) = 1 f(x) = \int f(x) \cdot |f(x)| = \int f(x)
   Boylece
  (**) 1 = |7(9)| \leq |17|| ||9|| = |17||
   (*) re (**) den
                                                                                                          11711=1
                                                                                                                                                         bylunur-
   alt urayi pleun. I bir Banach urayi ve se B(W, Y)
    leoren 2.19: X, NLU ve
                                                                                                                                                                             Xin
      SEB(WIY) olsun.
      Banach urays: Tam normu uraydır, y deki bir
Cauchy disisi yine ynın bir noktosira yakınsak
ise y je tam uray derlir.
                                                                                      tam you derly.
                                        yye
        ise
(a) x \in X re [x \land ] re [y \land ] [imx \land = cimy \land = x]
 olarat sekilde W urayında diriler îse o sonon 

§ S(xn) } ve § S(yn) } oliper de yakınsak

olup lim S(xn) = lim S(yn) dir.
 olarak
b) Tim x & W ian Tx = 5x ve 11711 = 11511
  plarak rebilde TEB(X1Y) varder.
```

Ispat: a) { Cauchy diz	X J }	yakınsak	pldugin	dan	or
IlS(xn) - S oldugindon s oldugindon s oldugindon s	(x_m)	= (S (xn-x	m) \le \le \le \le \le	5 X o	-xmll hisiolic ensactic
1m x = (my	$J_{n} = x$	=> lim (xn-yn) =	-0	
11 S(xn) - Si					-yn
um (S(xn) n-200 um S(-3(yn) $\times n = lin$	H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	bulm		
Tanım 2.20: olsun, Eger ise Tye	X je	VEX	igin 117	[∈ L (x) -	(×, 1) = ×
Örnek 2.21:	X 67	- NLU		la >	Cüzaidel
bin'm lineer üzeinde bir x∈X ⇒	jzome izome T(x) =		$\frac{T}{\Gamma(x)} = \frac{\alpha}{ x }$	akga dl.	X
Örnek 2.22:	a) x=	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,xu) ∈	(2)	
b) S: C² → GÖZUM: XEL	mi bin	S(XI,XZIX izome	J, X4 tridir.) = (0,	X1, X2, X3,
GÖZUM: XEL XEl² ⇒	x = ($\left(\begin{array}{c} \infty \\ \geq 1 \\ \text{i=1} \end{array}\right)^2$) 2		
	x 2 =	$\sum_{i=1}^{\infty} x_i ^2$			

```
\sum_{i=1}^{\infty} |x_i|^2 = |x_i|^2 + |x_2|^2 + |x_3|^2 + ...
  re dolayisiyia
 |0|^2 + |x_1|^2 + |x_2|^2 + - | < \infty
   olup y E Lª dir.
   b) ||S(x)||^2 = |0|^2 + |x_1|^2 + |x_2|^2 + |x_3|^2 + \cdots
                  = |x_1|^2 + |x_2|^2 + |x_3|^2 + ...
                          = //×//<sup>2</sup>
        11 S(x) 11 = 1/x11, 5 br wometnow.
 lenna 2.23: X ve y normlu lineer uraylor ve
TE D(XIY) olsun. T bir izometni ise T sınırlıdır
ve 11 TII=1 dir. (ödev)
   Agiklama: Bu teorenin tersi genelde ologia
degildir. ||T|| = 1 olvasing ragmen tum h EC[0,17]
iain ||T(h)| = ||h|| ololugunu soyleyemeyit.
Coraek 2.18 e bakınız)
Ornegin h: [0,1] -> |F / h(x)=x / x E[0,1]
iken ||h||=1 orack ||T(h)|| =0 dir.
   Tanin X, Y NLU ve T: X -39 orten bir
izometri ise T ve izometrik izometrik izometrik olarak
izomarfik uzaylar olenir.
   Teorem 2.25: H bir sonsuz boyutlu bir thibert uzayı olsun. Fen], H ole bir ortonornal
    takan olsun.
```

							,												(N)	100			100					
		+11	her	-		u 2	ay		1	T	an	1_	P	1	a	ar	DIC	n		120	24	na		hi	be	rt		
		U20			- 1	len			en A		10	. ,		18.2	1		1	-		10 1	,		1	-		4	<i>e</i>	
					PI	T	Lu	20	yı	5		4	k	ji.	1	ek	101	+11	u	za	y!_		12		X 12		. e	
-		ols				1	1	1	12	دادر	71		12.			115		/		1	1:	12	J -			3	4-	in garan ka
(0 4	-11	11 1		l V	11	18	1		1.5		1.3		11	100	Á	1.1					-	9 ()			3	
-		0	4>	(1×	$\langle \rangle$	=	0	1.0		>	X	=()	3.54			100								1	i in		
-		4		1		بير		=		7 ((x	ıy	>	1 0 m	(<	X	, F	s y	>	1	B		X	1-1)			
2		0 ((>	۲,	y	+ 7	->	=	- <	(x	<i>,</i> y	> 1	1/1/	X.	, 2	>	1 1	V V	ρ			1.			18/			
3		-			1		Íq		a			-4		e	-	+1		ye		bii		_[<	î_(aor	Or	1_	410	y
141		de	ir.	9						7		. 2	14.19 3134 34.0	T SE	-			:=	-100	×2	V	-4				1 5	10	
	1				5	Χn	\\	/-}	yn	<u>.}</u> 3)	е.	1	تستثر	1000	71.1	X	y 2	- A		-				()	444	1		
	1	15 9 3	Ý a	4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(y	>	=	0		1	1	1 10	y	<u> </u>		Hy	0	-10	9	13					201		
				4	X,	y)	>=	0		John John	1/1	XI	=		1	lly	<u>儿</u> 。	= 3	1	· ·		Or	-10	NO	CN	OI 4	27	_
	1		14		1	£, r	es s'	L An	iv, y		1	XI.	115	. Xii	4.4.	1111		Sev	1.	3.1		lr,	1	10.7	Pour Major			11
		1				j >	1	ے_)	Ĭ.,	1	+	100	1	3	(10-1)	1.		ž.v.		No.	Wa I	160	SA.	الد			
			/L.	PI	1000			×	= /	2	201	16	75	Χz	+													
			u		ط	urv			1 7	1-6	Um	11		ne	-17	4n	1	ρį'n			le te	(م		ér 200		y'A	13	
	1	olac Jara		N 12		Se	kil.	de					8	H			0			O	TO	N. A.	+ ,	1	NE I			
		sα			X	ϵ	Н		0	lsu	۸٠	E	Su	a	lur	MW I	da		X	\ <u></u>	~	012	2	×ı	en	> 6	2	
		1921	_	•	r,	15	1 1			My .		N. Tr								i v		- 1			At 3 h			
	I	A. 344	loca	1	1	e	ge	713	194	×η	æ	4	c,	en	>	1.	SE	1	20	χν.	3	€	63	6	d	7.	1011	
			Te	1				, 4_				TI	_×)		5.	<u>ل</u> ا	3		1	ear-	i ii	الر	201	ısı	N i			di
		toni		-		lic		1.			1	1.	^/		11.6)		4.17	410		- CA		EM				

Tüm x €	H igin co	
$ (x) ^2 =$	$\sum_{n=1}^{\infty} \Delta_n ^2 = \sum_{n=1}^{\infty} \langle x, e_n \rangle ^2 = x ^2$ halde T bir izo retridic 27 Subat	
	(X/Y) Uhayi ve Dual Waylor	
	1), X ve 7 NLU 0.11 X tension lineer operatorien uzayıdır.	
	7: X bir NLU ve Y bir Boroch	
		A
Bu duninda uzayı derir.	X bir F cismr űzerinde NLU olsun 2, B(X, IF) uzayına X uzayının olual vz X' ile gosterlir.	-
Snug 2.29:	X bir NLU ise X' bir Bonach uz	ayıdı.
Ispat: IF = C bu uzaylar tamdır. Yoni	ya da 1F= & sealldigirde her bir duru normlu uzaylar olup aynı zamanda i 1F bir Barach uzayıdırı,	nda
O halde bin	i IF bir Barach uzayıdır. i önrekî terren gereği X = B(X, IF) Barach uzayı olur.	<u>.</u>
48 H olsun.	HIF cismi ile bir Hilbert uzayı ve	
olarak tanın	The forkunu $f(x) = (x,y)$ (x,y) mlantsa $f \in H'$ olur. (x,y)	
Tebrem 2.31:	(Riesz-Fréchet Teoremi) Egor H ve f∈H ise o 2amon tim x	bir
igin f(x)= Ayrıca (1f1)	ve f∈H! ise o samon tim x (x,y) olacak setilde tek bir y∈H v = y dır	ardır.

ano?

•		1.5	3/19		
Ispati (a)	(Norlit ki	smi)	a y k	1 Vil 2	
	\sim	\sim		1 1 1	0 4 6
Eger til	$m x \in H$	1910 +	(x)=0	ise y=	-O segimi
yygux olac	aktir. Aks	· takdir	ole Ker	f= IXE	=0
דו חוח צ	apaul 02-	art uzay	all		1961 (A) (A)
Ayrıca (1	(2rf) + 0 $2 f(2) = 1$	dir.	1 1	0 (16.00	7-Z
Bu nedente	2 f(2) = 1	0.5.	br 2	E (COT+)	
Ozellitle	240	icin y=	1/2 1/2	canmiura	0/1/10
		1 1 1	11211		
f linear	1 9 04 1 6	VI (/2)=	0		
7 (x-+(x) =	böylece $= \pm \varepsilon (\ker x)$	- (x) 7-	E Kerf	bulunur	1 lapin
Ru grada	=€(ker	f) - olup	bőylece	11/2/12	
$(x - f(x) \neq$	2)=0	bulunur		1111	
Buradan	$(x - f(x) \geq 1)$	2) = (x1	2)-f(x)	2,2)	
1 1 1 1		= (x,	5) - f(x)	112112 = 5	o ya da
		(X,:	=f(x)	.112117	allor.
			land		Janaktic
+(x)=(x	2) = (X(y)	local y	aziimasi	der et ili
	112117				
Ear 11x1	11<1. ise	Cauchy	Schwort:	esitsi	illatides
I Familia	744		100 (198)	14 1 1	
1 f(x) = 1 < x	(,y) = 1/x/1.	1/4/1 / 1/4	(E) ru	4 - 1 - 6	+ 1 1 1 1 1
Yan: 11411		outunur.	4 1 14	HARLY CHA	*
7 0		1000	1 10	Cara la	
Diger yand	don eger	X = 9	ise 11;	XII = 1	ve boylere
11 011 5 1 04	1 = f(y)	1 1911		3112 =	1411
11+11 017cx	Name of Street, or other Persons	= 3/9	The same of the sa	1411	101
3 3	/ IIgli	1 191		0"	ch Mark
11 fl > 11 y/1	10 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1				W Land
**	16 4				a le la la la la
(x) ve (x	*) den	11-11-11411	bulunu		I E proposi
4		1		Mr. Jally . C.	
(b) Teklik			X will be a second		
	le l		1 (A / 1)		
1		vektorler			
f'(x) = (x,y)		0.5.	orson bu	durind	a tum x ∈ X
igin (X	y-ω)=0 y-ω=0	olur.			la alaba
Bu da	y-w=01	ya da	y=w o	luasi d	end CII'

```
Teorem 2.32: (a) Eger c = S(n) \in L^{\infty} ve S(n) \in L^{\frac{1}{2}}

ise o takelinde S(n) \times S(n) \in L^{\frac{1}{2}} dir. Eger S(n) \times S(n) = S(n) \times S(n) = S(n) \times S(n) \times S(n) \times S(n) \times S(n) = S(n) \times S(n) \times S(n) \times S(n) \times S(n) = S(n) \times S(n) \times
    fac(1) olup 11fall & 11c/100 olug.
   (b) Eger f \in (C^1)^1 ise o takdirde f = f c ve ||c||_{\infty} \leq ||f|| or ||c||_{\infty} \leq c \in C^{\infty} varde.
(c) (e4) uzay co uzayina izaretrik olarak
        izonorfittin
    Lenna 2.33: Eger X, Y ve Z , NLU ve TEB(X, Y)
ve SEB(Y, Z) ise SoTEB(X, Z) olup
                                                              1150 TII < 11511 11 TII dir.
          Ispat: 507 bolayea liner olup.
 ||(S_0 T)(x)|| = ||S(T(x))|| \le ||S|| ||T(x)|| \le ||S|| \cdot ||T|| \cdot ||x||
esitsizligindes So T \in B(X_1 + 2) ve ||S_0 T|| \le ||S|| \cdot ||T||
     elde edilia
      Tanım 2.34: X, Y ve Z NLU ve TEB(X, Y) ve
SEB(Y, Z) olsun. S ve T op. nin bilestesi
olan SoT operationi ST ile gasterilir ve bu
operatorlein carpımı olarak tonmlanır.
         X=Y=2 \Rightarrow TS ve ST her itisi de termlidir.
Genelde TS \neq ST
X NLU ise B(X,X)=B(X): X der X e tim
          sinicle lin. op, in uzayl.
     Lemma 2.35: X bir NLU olsun.
(a) B(x), birimsel bir cebirdir ve
bir halkadır.
                                                                                                                                                                                                                                                                   boylece bransel
     (b) Eger { Tn} ve {Sn? , B(x) de lim Tn = T ... dim Sn = S o.s. dieller ise o 2 ann no com no com Sn Tn = ST dir.
```

1.1	
Ispat: (a) Agiktir.	
	I de Pilem tim
b) &Tn } yatırsak old. on nEIN igin Tn &K 015.	sinicilalis bogital
E>O alalm.	ors, bir NIE/N VE
$1 > N_1 \Rightarrow 1 \leq -5 $	
$ \cap \rangle N_2 \Rightarrow \neg \neg \neg \neg \angle \varepsilon $	015, bir N2 E/N Va
2(11511+	(1)
15nTn - 5711 < 11 5nTn - 5 Tn 11 + 11 5 Tn -	$-ST/1 \le K/1S_n - S/1 + 1/1S/1 - 1/7_n - 7$
olup tim 1>, max \$N1, N23	ian
ISNTN-5711 < K 115n-511 + 115/1/11	170-711 LE bulun
Boylece um Sn Tn = ST elde	edill
Notasyon:	
X NLU ve TEB(x) olsun	
(a) $TT = T^2$ (b) $a_0, a_1,$	an EIF ve
777= 73 13.0 17.0	F, P(x)= 00+01x+ +00 x
T T T T T T T T T T	I + a, T + - + a, T^
	Ly blam operation
33.4 . 4.3 0.5 0.5 1.3 3.3	
Lenna 2.36: X, NU Ve	TEB(X) olsun
Eger p ve q birer polinon	m re him & C ise
o 20man	
(a) (Ap + Mg) (T) = Ap(T)+)	Ma(T)
(b) $(pq)(T) = p(T)(q(T))$	

Alixtimalar 2
(sinicli an dón)
a) $ T \le 1$ old. goster. b) Eger $g \in C_p[0,1]$, $\forall x \in [0,1]$ iain $g(x) = 1$ is e $ T (g)$! Ve boylece $ T $ bulunuz.
2) $h \in L^{\infty}[0,1]$ ve $T \cdot L^{2}[0,1] \rightarrow L^{2}[0,1]$, $T(4) = hf$ obsum. $ T \leq h _{\infty}$
3 T: $c^2 - 7c^2$, $T_x = y$ $x = (x_1, x_2, -x_3,)$ $y = (0, 4x_1, x_2,)$
Sinvil Un. don. in 1711 normana bul. 4) Lemma 2-23 4 ispatlayin.
(5) H bir hilbert uzay ve yız EH olsun. T(x)= (xıy)z lin dönü sünün sınırlı old ve 11711 < 11411. Izll. old. gastan
2.4 Ters Operationer
$Ax=y \Leftrightarrow x=A^{-1}.y$ The sum of the state of
Tanım 2.37: X bir normlu uzay ve TEB(x) olsun. Eger TS=ST=I o.s. bir SEB(x) operatori vorsa T operatorine tersinir operator denir.
Bir TEB(x) operatorian bir SEB(x) tersi varsa bu ters operator tektir ve o 7-1 = S seklirde gösterilir.

```
Lemma 2.38: X NLU ve TI, T2, B(x) de l'ei

tersinic operator olsun. O takdirde,

la) TI = operatori TI tersi le tersinirdir.

(T operatòrinin tesi T = olup T = 1 operatorinun

tersi de T dir)
 (b) T1 T2 de tosinicair re (T1 T2) = T2-1. T1-1 dir.
Spot: ODEV
omet 2.39: 3ir h \in C[0,1] iain Th \in B(L^2[0,1]) operation (Thg)(t) = h(t)g(t) settling tenminson. Eger f \in C[0,1], f(t) = 1 + t is Tf operations tesinically.
Gózim: Alistrua I 2 sonudan boyle bir h & CIO, IJ
iain Th nin sınırlı olduğunu biliyoniz.
k(t) = 1 seadim. O samon k \in C [0,17] we turn t \in C [0,17] we turn
  (TETA 9)(t) = (TE f 9) (t) = E(E) f(E) g(E)
                                                   = \frac{1}{14t} (14t) \cdot g(t) - g(t)
 olur. Böylece tim g \in L^2[0,1] igin (Tu Tf) g = g
bulunur. O halde Tk Tf = I dir. Berzu sektole T_{i}T_{k} = I.

Tf operationnún tesinir olup T_{i}T_{k} = I.
          Th: L2 [0,17 -> L2 [0,17
                    SITnI2dx Los
                    12 (0,1]
```

Teorem 2.40: \times bir $T \in B(x)$, $ T \times L$ tersinizdir ve $(I - T) = \sum_{n=0}^{\infty}$	Banach uzayı okun. Eger ise I-T operation
ispat: X Banach Barach 11711 < 1 oldugadan Her n EIN iain 11711 ZITTI serel de	oldugadan Teo 2,27 den dir- SITII yakınsar.
sersi de vakinsar. $S = \sum_{n=0}^{\infty} T^n$ ve $S_k = \sum_{n=0}^{\infty} T^n$ ve S	ob S'yè yakınsar $-T^{k+1} - III = 11 - T^{k+1} \leq T ^{k+1}$ $\lim_{k \to \infty} (I - T) S_k = I$.
Bonzer setilde S(I- Böylece J-T operation	$S_{\nu} = \lim_{L \to \infty} (I - T_{\nu}) S_{\nu} = I$ bulunur. $T = I$ olduğu da göstenlebilir. $I = I$ olduğu da göstenlebilir.

The state of the s	
Eger $ A \le 1$ ise, bir $f \in C[a_1b_1]$ $g(x) = f(x) + \int_{a}^{b} k(x,y) g(y) dy \cdot (x)$	iain
olacak schilde bir gectarb] vor	ddigunu göstinis
Gōzum: 2.71b) de,	6
$K: C[ab] \rightarrow C[ab] - (k(g))(s) =$	Sk(sit)g(t)ot
lineer dönüsümünün sınrlı olduğu ve IIK olduğu gösterilmisti. Böylece IIKII (1A (*) denklerinden (I-K)g=f yazılabilir	old direction
$J-K$ tesinir olup (Teo 2:40), bu $g = (J-K)^{-1}f$ (tek) gozumu vordir	son derkleum
Sonua 2.42: X bir Banach unayı alsu tüm tersinir elevanların A lumesi	n. B(x) in acikhr.
1spat1 TEA 1/2 n = 11 T-111-	Ism. 7-1. ters op.
A'nın acık olduğunu göstermek için 11 T-SII < N => SEA old. göstermek yeter.	
117-511 <n, 0="" 20000,<="" olsuno="" td=""><td></td></n,>	
$ (7-5)T^{-1} \le T-5 T^{-1} < T^{-1} $	
olur. Böylece teo 2.40 geregi I- operationi, tersinindir.	$(T-S)T^{-1}$
11 T11 ∠ 1 ⇒ I-T tesnic	
$ (T-S).T^{-1} < 1 \Rightarrow I - (T-S).T$	1 - 1 - 2
Aslanda $I - (T - S).T^{-1} = I - (T - T^{-1})$	S-T-1)
= I-I+ST-	1 = 5-7-4

```
olup S. T-1 op. Hersinirdir Boylece
 S=S.7-1. T. op 'i tersiniedin. (lenna 2.38)
 O halde SEA dir.
Teoren 2.43: (Aaik Tasvir Teoreni)
olsun. L= {T(x): x ∈ X ye 1/x1/≤13 olsun.
 0 takdirde
0) §y∈7: ||y|| ≤r 3 ⊆ L o. s. ->0 vardır.

L> L nin kapanısı

(Lyi jaeren tim kapalı kümelein kesizimi)
 b) {y ∈ 7 : //y | | ≤ { } ? C |
c) Eger T birebir ise So T-IX ve To S=IX
 T: X -> 7 sınırlı (sürelcli)
V, 7 de oak ise T-+(V), X de ealetir.
  S: Y -> X sinirli (süretli)
T-1 U aaik iain s-1(u) = 7(u)
X aaiktr.
Sonua 2.44 (Kapali Grafile Teareni)
Eger X ve & Barach ve T: X - 7 bir
lin. don ise ve eger glT) grafige
kapalı ise o zoman T süreklidir.
ispat: X x 1 , Banach Uzayı olup g(7) rapalı grafiği de Banach uzayıdır.
(9(7) \leq \times \times Y \Rightarrow 9(7) \quad \text{Banach})
```

```
R: g(T) -> X, R(x, Tx) = x alsun-
R aulkaa brebr ve ortendir
           ||R(x,7x)|| = ||x|| \le ||x|| + ||Tx|| = ||(x,7x)||
olup & siniclidic ve ||R|| \le 1 dir.
                                   \|R(x,Tx)\| \leq 1.\|(x,Tx)\|
                                    || \mathcal{L}(y) || \leq \mathcal{L} \cdot ||y||
  Böylece S_0R = I_{g(7)} ve R_0S = I_X 0.5.

S_1 \cap I_1 \cap I_2 \cap I_3 \cap I_4 \cap I_4 \cap I_5 \cap I_4 \cap I_4 \cap I_5 \cap I_5 \cap I_5 \cap I_5 \cap I_5 \cap I_6 
                     Ozellikle tum XEX igin Sx = (x,7x) dir.
       YXEX igin
                                  ||7 \times || \le || \times || + ||7 \times || = ||(x, 7 \times)|| = ||5 \times || \le ||5|| \cdot || \times ||
    olohugirdon T sinirli olur (11711411511)
(Yoni sürebli)
Sonua 2.45: X Barach ve TEB(x) (X': X ürafre)
lemma 2.46: \times NCU ve TEB(x) tersinic ise tum \times \in \times igin ||T(x)|| > ||T^{-1}|| - 1 ||x||
  esitsivligi soglonic.
 1spot: Tum x EX iain 11x11=117-1(Tex) 11 & 117-211. 1501
  olup burodon,
                                  11x11-11-1 = 117(x)11 ya da
                                                                ||T(x)|| > ||T^{-1}||^{-1} \cdot ||x||
```

```
lemma 2 47: X Barach le TEB(x), tim 20

X EX igin | |T(x)|| > x ||x|| 0.5 bir x >0

Var özelligi ile verilsin 0 takdiide T nin

Im(T) görüntü kümesi kapalıdır.
 Cemma 2.481 X Banach Le TEB(x) olsun-
O takdirole asagidati i fadeler dentir.
(b) Im(T) X de yogundur ve tum xeX

ispat:

(a) => (b) lemma 1-12 ve Teo 2-46 nin

sonucu olorak elde edilir.

(b) => 1a) Im(T) X de yogun olsun-

Bu dunnda lemma 2.47 der Im(T) kapalidr.

O halde Im(T) = X olur.
 (a) T tosinirdir.
(b) Im(7) X de vogundur ve tum xex
igin 117(x)11 > 211x11 0,5.
      Eger x Ever(T) ise T(x)=0 ve böylece
              0= 1/7(x) 1/3 x 1/x/1 3 T brebr.
  you x=0 0 halde Ker(T) = $03 re boylece soma 2.45 ten T tersinir alur.
   Aletrnalar 3
 1 X NLU YE P, QEB(x) olsun.
  T: B(x) -> B(x) / T(R) = PRQ
 lin dönysümünün sınırlı old. gösterin
 aorin 1/7(R)11=11PRQ11 < 11P11 11RQ11 < 11P11 11R[] 11Q11
           > T singly ve ITII < IPIIII QII
```

```
(2) T: l2 -> l2 | sinirli op.

T (x1, x2, x3, --) = (0, 4x1, x2, 4x3, x41 --)

set linde olsan.

a) 72 bul.

b) 117211 bul ve -117/12 ile borsilostir.
 a) Gozum:
a) \frac{Go2Um}{T}:
T^{2} = TT(x_{1}x_{2},x_{3},...) = T(0,4x_{1},x_{2},4x_{3},...)
= (0,0,4x_{1},4x_{2},4x_{3},...)
= (0,0,4x_{1},4x_{2},4x_{3},...)
   b) ||T^{2}(x)||^{2} = ||(0,0,4x),(x),(x)|^{2} - ||x||^{2} = ||x||^{2}
                                                                         11×11
      1172112 < 16 => 117211 < 4 gilor
         X = (1.0,0,..) = 1/x/=1
        117211 > 4 . 11721 = 4
   3 X, Y, Z NU Ve T: X -> Y Ve
S: Y-7 Z 120metaler ise So T da lar
      isometridir.
   Gozin: 11(SoT)(x) 1 = 11 S(T(x)) 1 = 11 T(x) 1 = 11 x 11
        > S5T
                         bir izometridir
```

```
ALISTIRMA 2 GÖZÜNLERİ * ||f||= sup { |f(x)|: xeX}
 (1) a) IITIL (1)
 [I(t)]=12t(x)9x = 2lt(x)19x = 2lt1 9x = 1lt1
      > | T (f) | ≤ 1. ||f|| => ||T|| ≤ 1 elde edilir.
 6) g ∈ Cg [0,1], g(x)=1, x ∈ [0,1] igin
  17(9) = | 5 g(x) dx | = |5 dx | = 1
     119 = sup { 19/x) | : x & [01] ] =1
      L = |T(9)| \le ||T|| ||9|| = ||T||
                  15117110
      O ve 2 da 11711=1 bulunur.
@ h ∈ L° [0, L] ve T: L² [0,1] -> L² [0,1],

T(f) = h f sinir li donissim
                         11T (f) 1/= 1/4/1/ 4 1/4/1
   11T11 ≤ 11h11 a
   \|T(f)\|_2 \le \|f\|_2 \|h\|_{\infty}
                                   => //T//2 < //4//p
   > 11716 5 11/16
(3) T: 22 -> L2 sinur la operation T(x1, x2, -1) = 10, 4x1, x2, 4x3.)
11 TIXI = 11 (0,4x1, x2, --) 11 = (16 |x1|2 + 1x12 + 16 |x12 + --)
                            6 (16|x112+16|x212+16|x312+...)
                           = |b(|x_1|^2 + |x_2|^2 + ...)
                            = 1611x112
```

17(x) 11 4 4 11 x 11 -> 11 T 11 4 0
Alistima 4
1 Lemma 2,38 ; ispatlayiniz.
2) X linear way üzarinde II. II. ve II. II. normlari Ventsin. X by normlara göre bir Barach way! Olsun. Aynca tim XEX isin IIXII. E Ellx II. O.S. bir E>O sayisi mevcut olsun. Bu durunda II. II. ve II. II. normlarinin esdeğer ololuklarını yanı; ; IIXII. Er IIXIII o.ş bir r>O sayısının var olduğunu gösterniz.
(11.112 re 11.112 normlare derktir > k, 1/x1/2 < 1/x1/2 < t/x1/2 = 1/x1/2 < t/x1/2
Yol Gösterme: I: X -> X (X, $. _2$) -> (x, $. _1$) binin operatori almiz.
(Teorem 2.4 'i tullanisak) I , 1-1 old tersinirdir. I'nin tersi kadisi old. tosi de sinirlidir.
$I = I : (\times, I-I _1) \rightarrow (\times, I-I _2)$
x 2 ≤ r x 1 0 € r > 0 vordir. Boylece - ve - 2 normlari esdegerdir.
3 C= 5 Cn 3 E L ve To E B(L2) operations To (Exn3) = FCn xn3 olorax tanimionsin.
a) inf { col : n EN } > 0 ve do = 1 se d = {dn} = [old. gostern.
b) 1 & scn: neN3 se To-AI operation tersinindir.

(5 x n) = 5 cn x n 3 olsun. cn = 1 ise T operation!

(5 x n) = 5 cn x n 3 olsun. cn = 1 ise T operation!

(5) X Banach ways be 5 Tn 3, 8(x) de T ∈ B(x)

operationing yakinsayon tessining operation but druss olsun. In €N ain 11 Tn-11 < A old kabul edelim

Bu halde T tessinindin