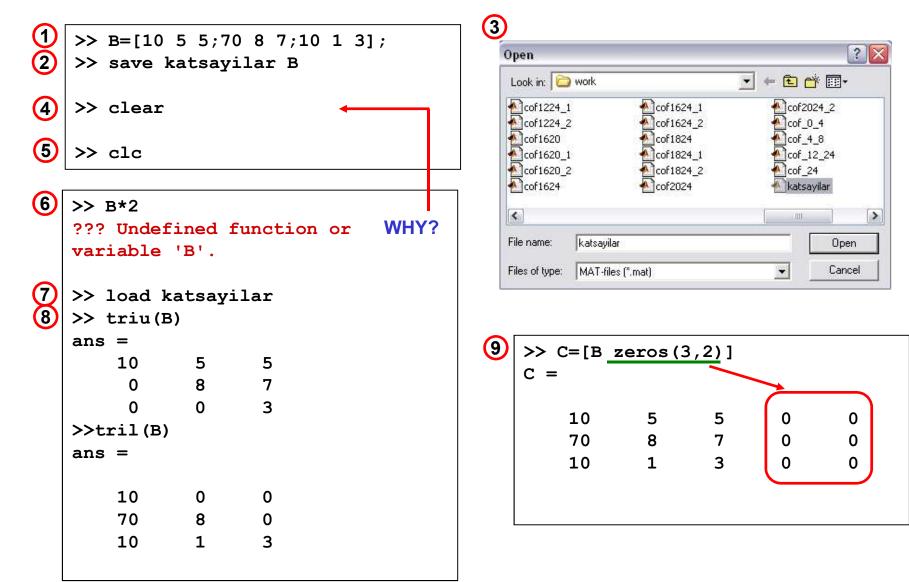

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 5 \\ 7 & 8 & 11 \\ 100 & 1 & 4 \end{bmatrix}$$

Do the operations given below on command window

- 1) Enter matrix A
- 2) Compute the determinant of A
- 3) Compute the inverse of A and assign the answer to matrix B.
- 4) Compute A*B. Review the solution.
- 5) Assign a1 as first column of A; assign a3 as third column of A.
- 6) Create a diagonal matrices namely C, which will be generated from diagonal elements of A.
- 7) Multiply transpose of a1 with a3.
- 8) Multiply a1 and a3 element by element.
- 9) Change the third row of A as [5 6 7] without re-entered the other elements.
- 10) Delete the first and second rows of A.

MATLAB/Exercise-1: Solution



$$\mathbf{B} = \begin{bmatrix} 10 & 5 & 5 \\ 70 & 8 & 7 \\ 10 & 1 & 3 \end{bmatrix}$$

Do the operations given below on command window.

- 1) Enter matrices B.
- Save matrices B to the current folder with the name of «katsayilar»
- Check whether saved or not. (from 'Open Files' window)
- 4) Delete all variables in MATLAB workspace (clear)
- 5) Delete all statements in Command window (clc)
- 6) Do the operation: B*2
- 7) Recall matrices B.
- 8) Create upper and lower triangle matrices of B
- 9) Do the operation: C=[B zeros(3,2)]

MATLAB/Exercise-2: Solution

- 1. Create two different vectors of the same length and add them.
- 2. Now subtract them.
- **3.** Perform element-by-element multiplication on them.
- 4. Perform element-by-element division on them.
- 5. Raise one of the vectors to the second power.
- 6. Create a 3 × 3 matrix and display the first row of and the second column on the screen.

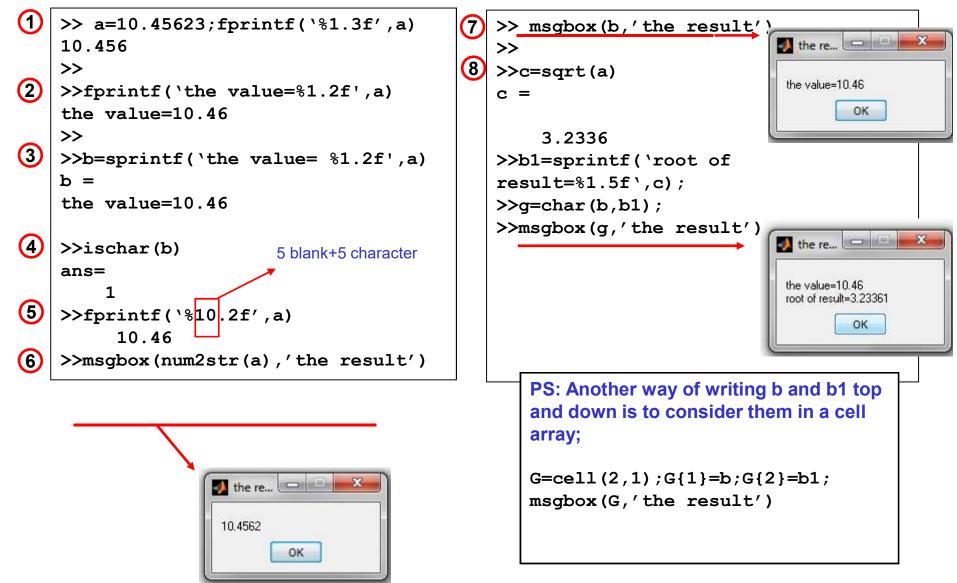
MATLAB/Exercise-3: Solution

2. >> (c = 1 <u>3. >> (</u> c =	13 c=a- -1	4 b 2 *b	<pre>4. >> c=a./b c = 1.2500 0.8 5. >> c=a.^2 c = 25 36 9</pre>	571 3.0000
<u>6. >></u> e e = 5 8 9	=[5 8 8 7 4		>>e(1,:) ans = 5 8 4	>> e(:,2) ans = 8 7 4

• Create a vector:

>> a=[4 25 45 21 25 77 95 22 78 44]

- Find minimum value in a, and name it as M
- Find maximum value in a, and name it as N
- Define a vector, named as B shows M and N
- Find average of B and named as D
- Find average of a and named as T
- Subtract them and named as O MATLAB/Exercise-4: Solution
- >> M=min(a)
 M = 4
- >> N=max(a)
 N = 95
- >> B=[M N] B = 4 95
- >> D=mean(B)
 D = 49.5000
- >> T=mean(a)
 T = 43.6000
- >> O=D-T O = 5.9000

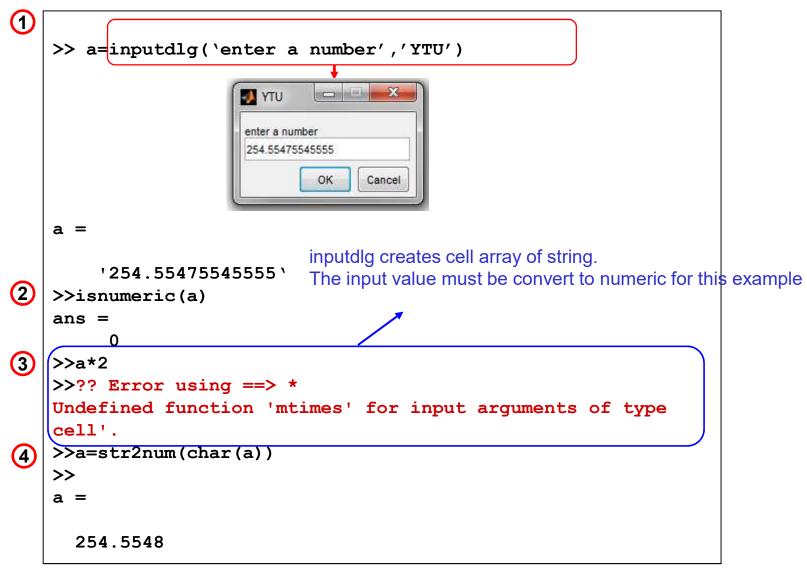

Do the operations in command window:

- 1. Using fprintf function, present a=10.45623 with 3 decimals
- 2. Present the expression: ['the value=' a], with 2 decimals for a.
- 3. Assign above expression to a variable namely b. (sprintf)
- 4. Check whether b is string or not.
- 5. With 5 space and 2 decimals, present the a.
- 6. For a; use msgbox(a,'result') to write it on GUI
- 7. For b; msgbox(b,'result') to write it on GUI
- 8. Assign root of a to c. b and ['root of result', c] should be top and down; and (c with 5 decimals) write them in msgbox

msgbox(message,title)

Message is a string vector, string matrix or cell array.

MATLAB/Exercise-5: Solution



Do the operations in command window:

- 1. Type the command using inputdlg function for a numerical value (namely, a), which will be used for the next steps.
- 2. Check a whether it is numerical value or not.
- 3. Do a*2. Review the result you obtained.
- 4. Change a into numerical array if necessary.

inputdlg('prompt','name')

MATLAB/Exercise-7: Solution

• Find the result for the sum of two numbers entered from keyboard and displaying the result in 3 decimals with an expression "the sum is found as"

clear clc % finding sum of two numbers A=input('enter the first number= '); B=input('enter the second number= '); sum2=A+B; fprintf('the sum is found as %1.3f \n',sum2)

• Find the result of factorial N entered from keyboard and displaying the result in 3 decimals with an expression "the result is found as"

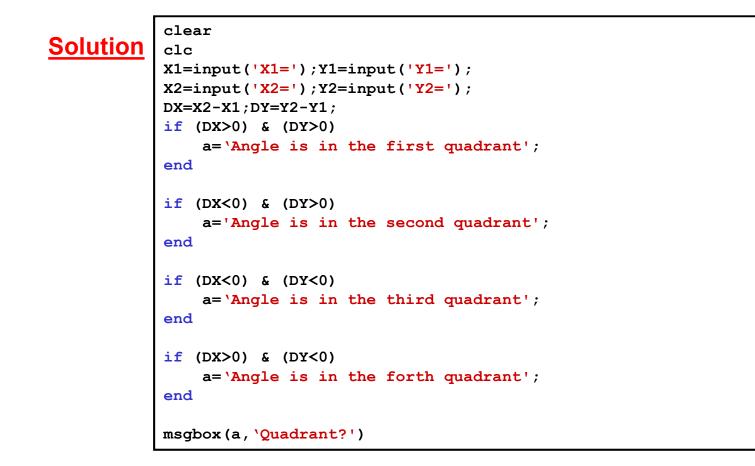
clear,clc	
N=input('enter a number=');	
factorial=1; % count	
for i=1:N	
factorial=factorial*i;	
end	
factorial	
fprintf('the result is found as %d \n',factorial)	

N!=N*(N-1)!

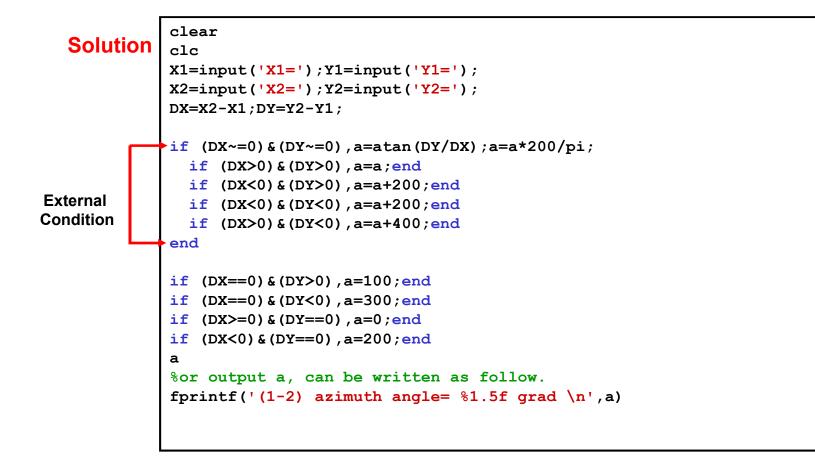
- According to N entered from keyboard;
 - Find the sum the integers from 1 to N
 - Find the sum of the odd numbers from 1 to N
 - Find the sum of the even numbers from 1 to N.

clear

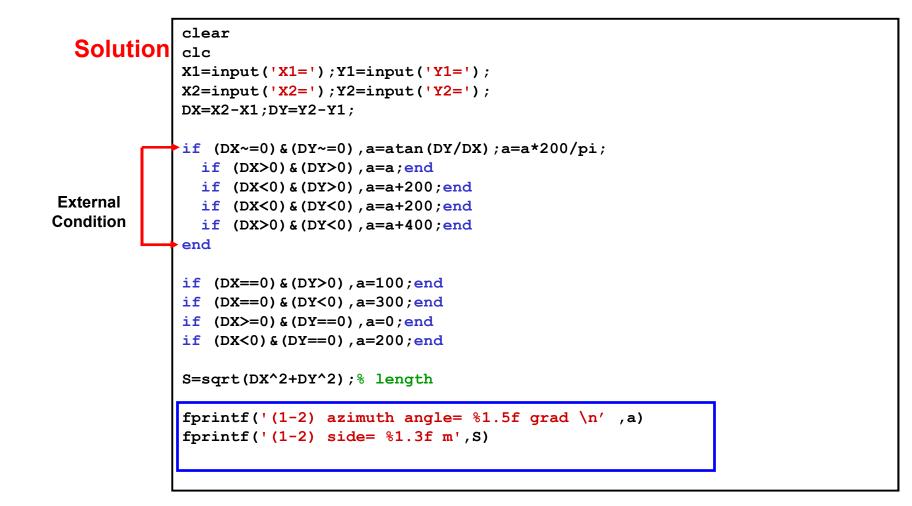
```
clc
% sum of the numbers from 1 to N (T1)
% sum of the odd numbers from 1 to N (T2)
% sum of the even numbers from 1 to N (T3)
N=input(' enter the upper number N= ');
T1=0;T2=0;T3=0;
for i=1:N
  T1=T1+i;
end
for j=1:2:N
  T2=T2+j;
end
for k=2:2:N
  T3=T3+k;
end
fprintf('Sum of the numbers from 1 to \%d = \%d \ln(N,T1)
fprintf('Sum of the odd numbers from 1 to \%d = \%d n',N,T2)
fprintf('Sum of the even numbers from 1 to \%d = \%d n',N,T3)
```


- Write a program, which displays containing how many a in a text
- a=how many a are there in a text

```
clear
clc
a='how many a are there in a text';
s=0;
for i=1:1:length(a)
if a(i)=='a'
s=s+1;
end
end
s
```

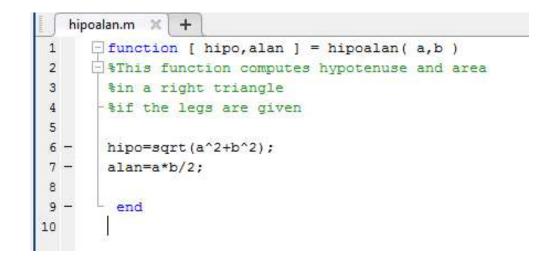

• Create elements of matrix A using input function and for end loop.

```
clear
clc
m=input('Enter number of rows for matrix A= ');
n=input('Enter number of columns for matrix A= ');
for i=1:m
for j=1:n
for j=1:n
fprintf('Enter the matrix A %d,%d.th element:',i,j)
A(i,j)=input('');
end
end
A
```


Prepare a program for determining the quadrant of the azimuth angle (P1P2) after entering the coordinates of Point 1 and Point 2. After running the program, the related quadrant should be seen in a message box (msgbox)

Prepare a program for computing the azimuth angle (P1P2) after entering the coordinates of Point 1 and Point 2.

Prepare a program for computing the azimuth angle (P1P2) and horizontal distance between two points (S) after entering the coordinates of Point 1 and Point 2.


Prepare a program, if the user selects option 1, then direct the user to the YTU web site, otherwise direct the user to any web site you prefer.

```
Solution
clear
clc
disp('[1]...YTU web sayfasi')
disp('[2]..Bahattin Erdogan web sayfasi')
a=input('<Selection>=');
while (a>2) | (a<=0)
a=input('Please enter correct to the option number');
end
if a==1
web www.yildiz.edu.tr -browser
end
if a==2
web www.yildiz.edu.tr/~berdogan -browser
end</pre>
```

Write a Matlab code as a function which converts the arc length given on sphere as degree into arc length in meter.

1	<pre>[] function [S] = yaykenari(aci,R,ro)</pre>
2	[\$[S] = yaykenari(aci, R, ro)
3	%This function computes the arc length
4	% aci describes the angle value to be computed
5	% R is the radius of sphere
6	-% ro can be either 180/pi or 200/pi
7	1952 2952
8 -	S=aci/ro*R;
9	
.0	
.1 -	end
2	

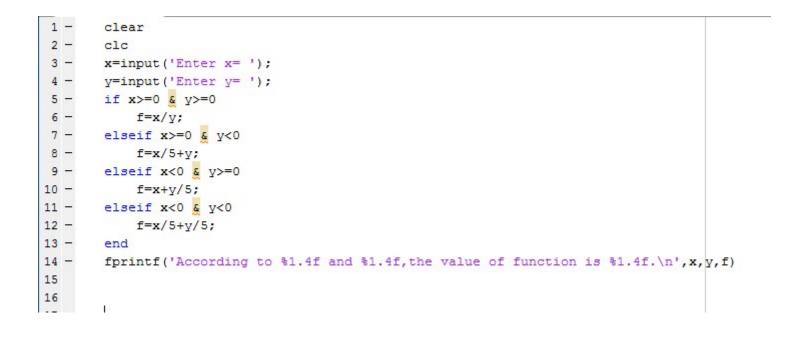
Write a Matlab code as function file, which computes the hypotenuse and area of a right triangle by legs.

In a class, the total number of the students is 20 and, the distribution of ages of these students is classified in 18, 19 and 20. Write a Matlab code for entering the ages of the students from keyboard, compute how many students there are in each classified groups and represent the results in bar plot.

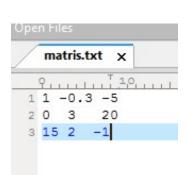
-						
1	-	clear, clc				
2	-	count18=0;count19=0;count20=0;				
3	-	stud_no=20;				
4	-	- count=0;				
5	-	while count <stud_no< td=""></stud_no<>				
6	-	<pre>stucount=input('Enter the age of student: ');</pre>				
7	-	if stucount==18				
8	-	count18=count18+1;				
9	-	end				
10	-	if stucount==19				
11	-	count19=count19+1;				
12	-	end				
13	-	if stucount==20				
14	-	count20=count20+1;				
15	-	end				
16	-	count=count+1;				
17	-	<pre>disp([num2str(count) 'Student input is done'])</pre>				
18	-	end				
19						
20	-	bar([18 19 20], [count18 count19 count20])				
21	-	<pre>xlabel('Students Ages')</pre>				
22	-	<pre>ylabel('Total Student Number')</pre>				
23						

15 observations of a side are given below in kenar.txt file. Write a Matlab code to ensure the following items:

- Find the mean value of these observations
- Find the differences of each observations from mean value (residuals)
- Compute the standard deviation of observations
- Remove the observations if there is a deviation from |residual|>3*standard deviation
- Write the remaining observations to a new file, namely 'temizolcu.txt'


Observation	
15.538	Residual=mean – observation
16.834	Standard deviation=([residual ²]/(number of observation-1)) ^(1/2)
12.741	
15.862	
15.319	
13.692	
14.566	
15.343	
18.578	
17.769	
13.650	
18.035	
25.725	
14.937	
15.715	

Exercise-20: Solution


```
hatali.m 🗶 🕂
1 -
       clear
2 -
       clc
       a=textread('kenar.txt','%f','headerlines',1); %data are read by textread function
3 -
4 -
       orta=mean(a); %by mean function, the mean value of observations are computed
5
6 --
     - for i=1:length(a)
                           % residuals computed by for loop
7 -
           duzeltme(i,1)=orta-a(i);
8 -
      - end
9 -
       stan=sqrt(duzeltme'*duzeltme/(length(a)-1)); %standard deviation of obsevations computed
.0
1 -
      hata=0;
.2 -
       artim=0;
.3 -
     for i=1:length(duzeltme) %observations, whose residuals are bigger than residuals are computed
.4 -
           if abs(duzeltme(i))>3*stan
5 -
               artim=artim+1;
.6 -
               hata(artim)=i;
.7 -
           end
.8 -
      -end
.9
20 -
      hata=sort(hata)
21 -
     F for i=1:artim % remove errorneous observations
22 -
           a(hata(artim+1-i),:)=[];
23 -
      - end
              veri=fopen('temizolcu.txt','w+') % error-free observations are written
24 -
25 -
              fprintf(veri,'%1.3f\n',a)
26 -
              fclose (veri)
27
```

A function, f(x,y), with two variables are defined below. Write a Matlab code, which computes the results by entering x and y values from keyboard.

$$f(x,y) = \begin{cases} \frac{x}{y} & x \ge 0 \& y \ge 0\\ \frac{x}{5} + y & x \ge 0 \& y < 0\\ x + \frac{y}{5} & x < 0 \& y \ge 0\\ \frac{x}{5} + \frac{y}{5} & x < 0 \& y \ge 0\\ \frac{x}{5} + \frac{y}{5} & x < 0 \& y < 0 \end{cases}$$

Write a matlab code that represents the number of positive and negative elements of a matrices or vector stored in a matris.txt file.

1	-	clear
2	-	clc
3	-	<pre>veri=fopen('matris.txt','r+');</pre>
4	-	<pre>a=fscanf(veri,'%f',[3 3]);</pre>
5	-	fclose(veri);
6	-	[nsatir, nsutun]=size(a);
7	-	<pre>pozitif=0;</pre>
8	-	negatif=0;
9	-	for i=1:nsatir
10	-	for j=1:nsutun
11	-	if a(i,j)<0
12	-	<pre>negatif=negatif+1;</pre>
13	-	else
14	-	<pre>pozitif=pozitif+1;</pre>
15	-	end
16	-	- end
17	-	- end
18		
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 17 - 16 - 17 - 17 - 16 - 17 -