
INTRODUCTORY COMPUTER
SCIENCES

DR. MEHMET GÜR

MAİL TO : gur@yildiz.edu.tr

AVESİS: http://www.avesis.yildiz.edu.tr/gur

gurmemo
Text Box

Course
Objectives

-Teaching Programming Language Concepts
-Teaching Problem Analysis using algorithmic approach
and to teach coding with a programming language

2

Title Code Local
Credit

ECTS Lecture
(hour/week)

Practical
(hour/week)

Laboratory
(hour/week)

Introductory Computer
Sciences

HRT1172 3 4 2 2 0

Course LearnIng Outcomes
• Students Will Be Able To Define Fundamental Concepts Of Programming.

• Students Will Be Able To Compile A Programming Language Program.

• Students Will Be Able To Use Arrays And Matrices.

• Students Will Be Able To Write Functions And M-file.

• Students Will Be Able To Use If Then Else And Switch Case.

• Students Will Be Able To Use Loops (For, Do While).

• Students Will Be Able To Use Graphics.

3

References:
• BUSCH R, (1985), BASİC FÜR EİNSTEİGER

• UZUNOĞLU VD. (2002), MATLAB 6.0-6.5, TÜRKMEN KİTABEVİ, İSTANBUL

• WWW.MATHWORKS.COM

• THE MATHWORKS INC., (2003), STATİSTİC TOOLBOX FOR USE İN MATLAB’S USER’S
GUİDE

• DOĞAN, U, (2006), TEMEL BİLGİSAYAR BİLİMLERİ, YTÜ DERS NOTLARI, İSTANBUL

• CHAPMAN, STEPHEN J. (2008), MATLAB PROGRAMMİNG FOR ENGİNEERS

4

Content
• Introduction

• Programming Languages

• Problem-solving Process

6

1. INTRODUCTION to Computer Sciences

• A computer is an electronic device that manipulates information, or
data. It has the ability to store, retrieve, and process data.

• A programming language is a formal computer language designed to
communicate instructions to a machine, particularly a computer.
Programming languages can be used to create programs to control the
behavior of a machine or to express algorithms.

7

Input &Output Devices

8

9

PROBLEM-SOLVING PROCESS

The Problem-solving Process For A Computational Problem Can Be Outlined
As Follows:

1. Define The Problem.

2. Create A Mathematical Model.

3. Develop A Computational Method For Solving The Problem.

4. Implement The Computational Method.

5. Test And Assess The Solution.

10

1. INTRODUCTION to Computer Sciences

1

 A computer is an electronic device that manipulates
information, or data. It has the ability to store, retrieve,
and process data.

 A programming language is a formal computer
language designed to communicate instructions to
a machine, particularly a computer. Programming
languages can be used to create programs to control the
behavior of a machine or to express algorithms.

Input &Output Devices

2

3

PROBLEM-SOLVING PROCESS

4

The problem-solving process for a computational
problem can be outlined as follows:

1. Define the problem.
2. Create a mathematical model.
3. Develop a computational method for solving the

problem.
4. Implement the computational method.
5. Test and assess the solution.

2. PROGRAMMING LANGUAGES

5

Command “Yaz”

Basic Pascal C / C++ MATLAB

Print Writeln Printf fprintf

Command “Gir”

Basic Pascal C / C++ MATLAB

input Readln Scanf
input,
read

A programming language is a notation for writing programs, which are
specifications of a computation or algorithm.

6

 Three types of programming languages
 Machine languages

 Strings of numbers giving machine specific instructions
 Example:

+1300042774 (these would really be in binary)
+1400593419
+1200274027

 Assembly languages
 English-like abbreviations representing elementary computer

operations (translated via assemblers)
 Example:

LOAD BASEPAY
ADD OVERPAY
STORE GROSSPAY

2. Programming Languages

7

 High-level languages
 Instructions closer to everyday English

 English is a natural language. Although high level programming
languages are closer to natural languages, it is difficult to get too
close due to the ambiguities in natural languages (a statement in
English can mean different things to different people – obviously
that is unacceptable for computer programming). However, this is a
big research area of computer science.

 Use mathematical notations (translated via compilers)
 Example:

grossPay = basePay + overTimePay

 Interpreter – Executes high level language programs without
compilation.

High-level languages: For example: BASIC, Delphi, C, C++,
COBOL, Fortran, Java, Lisp, Pascal, Flash etc.

2. Programming Languages

2. Programming Languages

8

An Example

of Coding

3. OPERATORS

9

The MATLAB operators fall into three categories:

1. Arithmetic Operators: perform numeric computations

2. Relational Operators: compare operands quantitatively

3. Logical operators: use the logical operators AND, OR

Decimal Digit

Math (,) Computer (.)

125,865 125.865

10

- Basic arithmetic operations (addition, subtraction, multiplication, division)

- Mathematical functions (exponential, logarithmic, trigonometric, etc.)

In front of the digits

Positive : No sign

Negative : 

3. OPERATORS / Arithmetic Operators

11

12

3. OPERATORS / Arithmetic Operators

Operation Arithmetic MATLAB

Addition a + b a + b

Subtraction a – b a – b

Multiplication a . b a * b

Division a  b a / b

Exponentiation

(to the power of)
ab a^b

Modulo (Reminder) %

13

Arithmetic Operators Priority

14

MATLAB’s Operator Precedence Rules

1. The contents of parenthesis are evaluated first starting with the
innermost parenthesis

2. Exponentials are evaluated working from left to right

3. Multiplications and divisions are evaluated working from left to
right

4. Additions and subtractions are evaluated working from left to
right

Priority Operators MATLAB

1 Parenthesis ((.....))

2 Exponential a^b

3 Multiply and Divide a*b and a / b

4 Add and Subtract a+b and a-b

15

If there are operations with the same priority in a code,
the operations are evaluated from left to right.

16

For example:

Y = A * B / C
In the above equation; there are operators that have the same priority
(multiplication and division).
In this case, the code will be worked

first for A * B , and then the answer will be divided to C. (Left to Right)

Y = A ^ B ^ C

In the above equation, first the operation of A power to B is performed ,
and then the result is computed power of C.

Mathematical Expression In coding

a + b – c + 2abc - 7 a + b – c + 2 * a *b *c-7

a + b2 - c3 a + b^2 – c^3

Sqrt(a+b)-2*a*b/(b^2-4*a*c)

A+B*C/D-E*F

ac4b

ab2
ba

2 


F.E
D

C.B
A 

17

18

Example 1: For a = 4, b = 6, c = 8 and d = 10, investigate the
results for given 3 equations encoded in programming language.

1. Equation c * d / (a*d) + b + c *d / a = 28

2. Equation c * d / a*d + b + c *d / a = 226

3. Equation c * d / a*d + (b + c) *d / a =235

Equation Mathematical Expression

A + B^1/2

A + B^(1/2)

(A + B)^1/2

(A + B)^(1/2)

2

B
A

1



BA 

2

)BA(1

19

Example 2: For A = 9, B = 16, solve the equations given below.

= 17

= 13

= 12.5

= 5BA 

3. OPERATORS / Relational Operators

20

Computer can produce decision models besides mathematical operations.

For example,

• which one is bigger or smaller among two variables?

• are two variables equal or not?

Comparison can be done for numerical values or strings.

There are 6 relational operators in MATLAB

21

22

Example 3: Assume that x=0 , y=sin(pi).

In programming, When the below expression is entered

x==y

Then the result,

ans =

0

Because; sin(pi)=1.22410-16 and this is not equal to 0.

3. OPERATORS / Logical Operators

Logical
Operation

Command

AND and (&)

OR or (|)

NOT not (~)

23

Logical operators are used in both relations and mathematical operations.

In programming, it is desired that the expressions should provide more
than one conditions. In this case, logical operators are used.

3. OPERATORS / Logical Operators

A B A &B , and(A,B)

0 0 0

0 1 0

1 0 0

1 1 1

24

AND (&) Operator: If all conditions are true, the result will be true.

If all conditions should be ensured, the AND operator should be used

between conditions.

3. OPERATORS / Logical Operators

A B A|B, or(A,B)

0 0 0

0 1 1

1 0 1

1 1 1

25

OR (|) Operator: If any condition is true, then the result will be true.

26

3. OPERATORS / Logical Operators

27

Precedence of Logical Operators:

1. The contents of parenthesis are evaluated first starting
with the innermost parenthesis

2. NOT (~) has a priority than the other logical operators.

3. AND (&) and OR (|) are working then.

Age Salary Condition 1 Condition 2 Result Print

20 440 0 0 0 No

19 600 0 1 0 No

25 445 1 0 0 No

30 600 1 1 1 YES

28

Example 3 :
In a company, a list of workers will be prepared and two conditions
are necessary. First, the worker should be over 23 years old and
his/her salary should be 600 TL.

If Age > 23 & salary == 600 then Print Name of Worker

Condition 1 Condition 2

29

Example 4 : Computation of Azimuth angle.
The equation is as below:

(A-B)=atan((YB-YA)/(XB-XA)).

2nd Quadrant,

dY=YB-YA; dX=XB-XA

If (dY>0) & (dX<0)

(A-B)=(A-B)*200/pi+200

(All languages work in RADIAN!)

A

B

Y

X

Computed

(A-B)

3. OPERATORS / Logical Functions

30

Numbers, numeric array, characters (i.e., names), character array

a=1000 (Numeric array)

b=‘Yildiz’ (Character array)

For these kind of arrays, there are logical functions in MATLAB
For instance:

ischar(a) : Determine if item is a character array. Returns logical true (1)
if A is a character array and logical false (0) otherwise.

isnumeric(a): Determine if input is numeric array. Returns true if A is a numeric array
and false otherwise.

isempty(a) : Determine whether array is empty. returns logical 1 (true) if A is an empty
array and logical 0 (false) otherwise. An empty array has at least one
dimension of size zero, for example, 0-by-0 or 0-by-5.

Content
 Algorithms

 Flow Charts/Diagrams

4. ALGORITHM

32

 Step-by-step solution

 “top-down design”

 In Algorithm,

1. Which data (input) will be used? From where?

2. Which processes will be applied? How?

3. What will the results (output) be?

4. Where will the results be displayed and stored?

4. ALGORITHM/ OPERATOR

^ Exponential

* Multiplication

/ Division

+ Addition

- Subtraction

. Decimal Digit

‘ NOT

. AND

+ OR

== Equal to

<> Not Equal to

< Less than

> Greater than

>= Greater or equal to

<= Less or equal to

33

Arithmetic
Operators

Logical
Operators Relational Operators

= Assign

() Parenthesis

General Operators

4. ALGORITHM/ TERMS

34

1. Expression : defined by programmer, who encodes the program for naming:

- variables
- constants
- paragraphs
- store areas
- specific info types
- subprograms etc.

The expression names in the program are more appropriately chosen to
associate with the expressions they hold. For example, “karekök”

4. ALGORITHM/ VARIABLES

35

Rules for naming in Matlab;

 26 Letters in English Alphabet between A and Z
 Numbers between 0 and 9.
 Start with letter
 Variable name can not start with number
 Variable name can not include only numbers

4. ALGORITHM/ TERMS

36

2. Variables : Every time you run the program you can get different
values or information that can be assigned are expressed as
variables.

3. Transfer: The transfer operator is used to represent the results for
assigning values.

variable = expression

Name of any variable Expression, which is not arithmetical,
logical or numerical Transfer operator

variable = expression

2. Transfer

1. Process

Process Direction

4. ALGORITHM DESIGN

Operation
Order

A B C Initial
T

New

T

1 3 - - 0 0 + 3 = 3

2 - 4 - 3 3 + 4 = 7

3 - - 5 7 7 + 5 = 12

T = 12

37

Example: A=3, B=4, C=5
1. Start

2. T = 0

3. Enter a number (A)

4. T = T + A do the operation

5. Enter another number (B)

6. T = T + B do the operation

7. Enter another number (C)

8. T = T + C

9. Print T

10. End

Results for Example

4. ALGORITHM/ TERMS

38

4. Counter: In the program, some operations require to run for a certain times
and to count them.

counter = counter + 1
In the right side of this equation, 1 is added to the old value of the variable and the
result is assigned again to the same variable. This kind of count process is called
as counter.

Counter variable = Counter variable  increment

New value of counter Old value of
counter

Increasing or decreasing

4. ALGORITHM/ Terms

39

5. Conditional Statements (Conditions): Execute statements if condition is true.
Depending on specific condition, the program can take different actions.
“IF condition” correspondences to “if” in programming language.

For example: Let review an algorithm in a case where variable A is equal to variable B,
Then assign new value to A, which is C/2.

1. Start
2. A=99
3. B=(A+1)*A/100
4. C=50
5. If A==B A=C/2
6. Print A
7. End

A=C/2=25

Because the condition A=B is provided.

4. ALGORITHM/ Terms

Old J Old T New T New J

1 0 0 + 1= 1 3

3 1 1 + 3 = 4 5

5 4 4 + 5 = 9 7

7 9 9 + 7 = 16 9

9 16 16 + 9 = 25 11

11 - - -

40

5. Repetition: To achieve the repetition of calculation in a number of times in
program, loop is used.

Example : Let review an algorithm, which achieves the
addition of the odd numbers between 1 and 10.

1. Start
2. T = 0
3. J = 1
4. If J > 10 then go 8
5. T = T + J
6. J = J + 2
7. Go 4 loop
8. Print T
9. End

Running Loop

4. ALGORITHM / Advantages

41

I. Makes easier to write the program

II. Reduce wrong coding possibility

III. Reduces the task into a series of smaller steps of more manageable size.

IV. Problems can be approached as a series of small, solvable sub-problems.

V. Efficient.

NAME OPERATION SYMBOL USE in FLOW CHART

Oval START/END Denotes the beginning or end of
a program

Flow line FLOW LINES Denotes the direction of logic
flow in a program

Parallelogram INPUT/OUTPUT Denotes either an input
operation (e.g., INPUT) or an
output operation (e.g., PRINT)

Rectangle PROCESSING Denotes a process to be carried
out/ action (e.g., an addition)

Diamond DECISION
MAKING/
CHECKING

Denotes a decision (or branch)
to be made. The program should
continue along one of two routes
(e.g. IF/ELSE)

42

5. FLOWCHART
Flow chart –a graphic representation of the logical sequence of instructions.

C = (a^2 + b^2)^ 1/2

43

NAME OPERATION SYMBOL USE in FLOW CHART

LOOPING Denotes looping which is
represented based on condition
or value of a variable

Circle CONNECTION Denotes the continuing of
flowchart in another place of
page

5. FLOWCHART

5. FLOW CHART

44

LOOPING Control Variable= start value, end value, increment

I = 1, 20 ,3

Loop for increasing

J = 30, 4 ,-2

Loop for decreasing

k = 1, 99

Loop for increasing with
1 step size

I = 1, N, 1 Process A

Single Loop

The increment can be any positive or negative number

45

I = 1, N, 1

J = 1, N, 1 Process B

INNER LOOP

OUTER LOOP

NESTED LOOP

5. FLOWCHART

46

Example: Draw the flow chart for computing the sum of the first N integers

The statement T = 0 is called an initialization of
T because it gives T its initial value before the
loop starts.

i OldT New T

1 0 0+1=1

2 1 1+2=3

3 3 3+3=6

4 6 6+4=10

5 10 10+5=15

If N = 5; Results =

47

Example: Compute the results of below flow chart for N=3
5. FLOWCHART

48

Example: Compute the solution of below flowchart.

5. FLOWCHART

50

V. Decision Making

Condition
YES

No

Process 1

Process 2
Connection

It allows to give a decision in an algorithm and
provides a process depending upon this
decision.

5. FLOWCHART

51

VI. Connection Denotes the continuing of flowchart in another place of page

VII. Print/Output Enable to print results/information to screen

VIII. Flow Lines

Represents the flow direction of the lines in an algorithm

5. FLOWCHART

52

A statement can be used successively to make loops

53

Example: To find the roots of 2nd order equation ax2+ bx + c = 0, design the
flowchart

54

Loop Structure

Basic loop structures allow you to run one or more lines of code repetitively. You
can repeat the statements in a loop structure until a condition is True, until a
condition is False, a specified number of times, or once for each element in a
collection.

In general, below terms are used in programming languages;

 While

 Do-while

 For

 Although there can be alternatives to these structures in different
languages, the running principles are similar to them.

55

The following illustration shows a loop structure that runs a set of
statements until a condition becomes true.

56

1. Statement (While)

while expression, statements, end evaluates an expression, and repeats the
execution of a group of statements in a loop while the expression is true. An
expression is true when its result is nonempty and contains only nonzero
elements (logical or real numeric). Otherwise, the expression is false.

57

2. Statement (Do-While)

A do while loop is a control flow statement that executes a block of code at
least once, and then repeatedly executes the block, or not, depending on a
given boolean condition at the end of the block.

58

3. Statement (For)

A for-loop (or simply for loop) is a control flow statement for
specifying iteration, which allows code to be executed repeatedly.

59

Use of Nested Loop

Rule: First the inner loop should be completed and then outer loop
should be run. The loops should not block each other.

In each step of
outer loop, the
inner loop should
be repeated N
times.

60

First, determine the N value and design a
loop for running N times.

In the first loop, 1!,

In the second loop 2!

And repeatedly in the last loop (N
repetition) N!

If Condition (Counter>N) is provided,
the loop will be completed.

Print the solution Fact

Example: Design the flow chart of the algorithm, which computes the
factorial of N entered by keyboard.

1

Outlines For MATlab

Introduction

Matrix Operations

Numerical formats

Basic Linear Algebra Operations

Arrays/Vectors

if-end , switch-case structures

Loops (for-end and while-end)

Plots

File read/write

Function m files

Compiler

2

References

Doğan, U., (2009), Temel Bilgisayar Bilimleri Ders Notları, YTÜ, Lisans Ders

Notları, İstanbul.

İnan, A., "MATLAB Klavuzu", Papatya Yayınları, İstanbul, 2007.

Demirel, H., (2005), Dengeleme Hesabı, YTÜ, Lisans Ders Notları, İstanbul.

Ayten, U. E., “Algoritma geliştirme ve programlamaya giriş”, Temel Bilgisayar

Bilimleri Ders Notları.

Serbes, A., “Algoritma geliştirme ve programlamaya giriş”, Temel Bilgisayar

Bilimleri Ders Notları.

Uzunoğlu M., vd. (2002), Matlab, Türkmen Kitabevi, İstanbul.

http://www.mathworks.com/matlabcentral/

http://www.mathworks.com/matlabcentral/fileexchange/

3

MATLAB (short for MATrix LABoratory) is a
special-purpose computer program optimized to

perform engineering and scientific calculations. It
started life as a program designed to perform
matrix mathematics, but over the years it has

grown into a flexible computing system capable of
solving essentially any technical problem.

MATLAB (MATrix LABoratuary)

http://www.mathworks.com/matlabcentral/

The MATLAB System

4

 High level language for technical computing
 Stands for MATrix LABoratory

 Everything is a matrix - easy to do linear algebra

 Development Environment

Mathematical Function Library

MATLAB language

 Application Programming Language

5

MATLAB/Command window

Current directory

Dynamic command line
Mathematical operations,

Running program etc.
M-file editor

Encoding the program

6

MATLAB/Workspace

Workspace

window

Assigned

Variable To open the Workspace
Browser, type workspace at

the command line.

The Workspace Browser lets you view
the contents of the current MATLAB
workspace. It provides a graphical
representation of the whos display

7

MATLAB/Array Editor /Variable Editor

Editor in excel format for matrice, vector and numbers

Two ways to display:

>>open('a')
Double click to the related variable
on workspace browser

sizes of the variable assigned before can
be changed !

8

MATLAB/ Basic File Formats

*.m MATLAB program files

*.fig Graphic files and GUI

*.mat Variable and matrices files

*.p pre-parsed pseudo-code files (the content of these files
can not be displayed, but can be run as program (run
in Matlab)

ARRAYS and VARIABLES

All MATLAB variables are multidimensional arrays. They can be formed as
rows and columns.

Arrays are divided into two main groups; vector and matrices.

Vector; one-dimensional array.

Matrices; 2 or more dimensional array.

Variables; arrays named by the user

9

Variable types in MATLAB: “double” ve “char”.

1- Double: These variables can be real, imaginary or complex numbers used to define the
scalar (64 byte) or variables.

Example1: deneme = 2 + i

**double can be converted to the ASCII

Example2: double(‘deneme’)

ARRAYS and VARIABLES
2- char: converts array A into a character array.

S = char(A)

if A is a string array, then char converts the string array into a character array.
char converts each string element of A into a character vector, and then
concatenates the vectors to produce a character array

To convert characters into a numeric array, use a function that converts to a
numeric type:

• d=‘selam’

• double(d)

• g=[115 101 108 97 109]

• char(g)

10

>> d='selam'
d =
selam
>> double(d)
ans =

115 101 108 97 109
>> char(d)
ans =
selam

NAMING ARRAYS and VARIABLES

To create a variable, a name should be defined!!

>> var = 3.14

>> string = ‘selam’

Variable Naming!!

first character should be letter! Don’t use numbers for starting naming!

After first letter, there can be number, _ or combinations of them

Sensitive to capital letter: var and Var are different

The length of names can be max. 63 characters

Do not use constants defined in MATLAB!!

pi  3.1415926…

ans  shows the last assigned variable

Inf & –Inf  returns positive and negative infinity

NaN  ‘Not a Number’

Do not use Turkish letter!!

ç, ğ, ı, ö, ş, ü, Ç, Ğ, Ġ, Ö, Ş, Ü

11

>> pi

ans =

3.14159265358979

12

MATLAB
Basic Commands
clc clears all input and output from the Command Window display,

giving you a clean screen.
clear removes all variables from the current workspace

clear a removes only variable labelled “a”

demo runs Matlab demo

date Displays on screen Day-Month-Year (Ex: 17-Feb-2009)

who/whos lists in alphabetical order the names of all variables in the currently
active workspace/ lists in alphabetical order the names, sizes, and
types of all variables in the currently active workspace

exit Terminate MATLAB program (same as quit)

help lists all primary help topics in the Command Window

help f_na gives info for f_na function

save d a saves variable «a» with file name «d» as extension mat

load d loads variable «a» from MAT-file (d.mat) into workspace

Save ve load commands are crucial for saving matrices etc.

13

MATLAB
Saving Matrices

Command: save; extension *.mat, to recall use load

For example: Let save ‘a’ matrix in “D:\yildiz” named as “katsayilar.mat”
Use below command line:

save D:\yildiz\katsayilar a

To recall/load the ‘a’ matrix saved as katsayilar.mat,

load D:\yildiz\katsayilar

If a new matrix is saved as «katsayilar.mat», there is no possibility to see
again the previous version. So, save has overwrite specification.

14

MATLAB
Creating Matrices

Brackets are used to form vectors and matrices.

Three ways to create matrices and vectors:


















41100

1187

531

A

Example:

A=[1 3 5
7 8 11
100 1 4]

Way 1:

A=[1 3 5;7 8 11;100 1 4]

Way 2

A(1,1)=1, A(1,2)=3, A(1,3)=5
A(2,1)=7, A(2,2)=8, A(2,3)=11
A(3,1)=100, A(3,2)=1, A(3,3)=4

Way 3:

15

MATLAB/Basic Algebra Commands

inv(A) is the inverse of the square matrix A.

A’ transpose of matrix A.

det(A) is the determinant of the square matrix A.

A+B adds matrices A and B that the sizes are the same

A-B subtracts matrices A and B that the sizes are the same

A*B multiply matrices A (no. of column: m) and B (no. of row: m)

A/B If the det(B)≠ 0, this command carries out the operation A*inv(B)

A.*B multiplies arrays A and B element by element

A./B divides arrays A and B element by element.

16

MATLAB/Basic Algebra Commands

trace(A) is the sum of the diagonal elements of A.

diag(A) Diagonal matrices and diagonals of A matrix

sum(A) is the sum of the elements of the vector A. If A is a matrix, Sum is a row
vector with the sum over each column.

triu(A) is the upper triangular part of A

tril(A) is the lower triangular part of A

zeros(m,n) creates an m-by-n matrix of zeros

ones(m,n) creates an m-by-n matrix of ones

eye(m) is the m-by-m identity matrix

17

MATLAB/Basic operators

A(:) is all the elements of A, regarded as a single column.

A(:,i) is the i.th column of A

A(j,:) is the j.th row of A

A(:,[i j]) is the i.th and j.th columns of A

A([i j],:) is the ith and jth rows of A

e=a:b:n creates a vector start at a, end at n, increment for each step
is b.

e=linspace(a,n,b) creates a vector; start at a, end at n, element number b

e=logspace(a,n,b) creates a vector; start at 10a, end at 10n, element number b

18

MATLAB/Basic operators

For Example:

e=1:1:n, A vector contains integers from 1 to n.
e=2:2:n, A vector contains even integers from 1 to n.
e=1:2:n, A vector contains odd integers from 1 to n.
e=-10:0.1:n, A vector contains numbers from -10 to n, increment 0.1
e=linspace(0,10,6), e=[0 2 4 6 8 10]
e=logspace(0,2,3), e=[1 10 100]

19

MATLAB/Basic Matrices Operators
length(A) returns the length of vector A (MAX(SIZE(A)))

[m,n]=size(A) returns the number of rows (m) and
columns (n) in a as separate output
variables.

max(A) is the largest element in A

min(A) is the smallest element in A

[m,i]=max(A) returns the indices of the maximum values in
vector A.If the values along the first non-
singleton dimension contain more than one
minimal element, the index of the first one
is returned.

[m,i]=min(A) returns the indices of the minimum values in
vector A.If the values along the first non-
singleton dimension contain more than one
minimal element, the index of the first one
is returned.

sort(A) sorts the elements of A in ascending

A(:,i)=[] Deletes ith column of A

A(i,:)=[] Deletes ith row of A

Creating Matrices

20

zeros(m, n): matrix with all zeros
ones(m, n): matrix with all ones.
eye(m, n): the identity matrix
rand(m, n): uniformly distributed random
randn(m, n): normally distributed random
magic(m): square matrix whose elements have the
same sum, along the row, column and diagonal.
pascal(m) : Pascal matrix.

Some Built-in functions

21

mean(A):mean value of a vector
max(A), min (A): maximum and minimum.
sum(A): summation.
sort(A): sorted vector
median(A): median value
std(A): standard deviation.
det(A) : determinant of a square matrix
inv(A): Inverse of a matrix A

Matrices & Vectors

22

All (almost) entities in MATLAB are matrices

Easy to define:

Use ‘,’ or ‘ ’ to separate row elements

Use ‘;’ to separate rows

>> A = [16 3; 5 10]
A = 16 3

5 10

Matrices & Vectors - II

23

Order of Matrix -

m=no. of rows, n=no. of columns

Vectors - special case

n = 1 column vector

m = 1 row vector

m  n

Creating Vectors and Matrices

24

 Define

 Transpose

Vector :

>> a=[1 2 3];
>> a'

1
2
3

Matrix:

>> A=[1 2; 3 4];
>> A'
ans =
1 3
2 4

>> A = [16 3; 5 10]
A = 16 3

5 10
>> B = [3 4 5

6 7 8]
B = 3 4 5

6 7 8

Array Operations

25

Evaluated element by element

.' : array transpose (non-conjugated transpose)

.^ : array power

.* : array multiplication

./ : array division
Very different from Matrix operations

>> A=[1 2;3 4];
>> B=[5 6;7 8];

>> A*B
19 22
43 50

But:

>> A.*B
5 12
21 32

Indexing Matrices

26

Given the matrix:

Then:

A(1,2) = 0.6068

A(3) = 0.6068

A(:,1) = [0.9501

0.2311]

A(1,2:3)=[0.6068 0.4231]

A =
0.9501 0.6068 0.4231
0.2311 0.4860 0.2774

Aij ,i 1...m, j 1...n

m

n

1:m

>> A=1:3
A=
1 2 3

>> A(4:6)=5:2:9
A=

1 2 3 5 7 9

>> B=1:2
B=
1 2

>> B(5)=7;
B=

1 2 0 0 7

>> C=[1 2; 3 4]
C=
1 2
3 4

>> C(3,:)=[5 6];
C=
1 2
3 4
5 6

>> D=linspace(4,12,3);
>> E=[C D’]

E=
1 2 4
3 4 8
5 6 12

Adding Elements to a Vector or a Matrix

27

Creating Vectors

28

Create vector with equally spaced intervals

>> x=0:0.5:pi
x =

0 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000

Create vector with n equally spaced intervals

>> x=linspace(0, pi, 7)
x =

0 0.5236 1.0472 1.5708 2.0944 2.6180 3.1416

Equal spaced intervals in logarithm space

>> x=logspace(1,2,7)
x =

10.0000 14.6780 21.5443 … 68.1292 100.0000

Note: MATLAB uses pi to represent , uses i or j to
represent imaginary unit



29

Scalar:

>> a=12

a =

12

>> b=78

b =

78

>> c=4.5

c =

4.5

Vector:

>> a=[54 52 0 14 4]

a =

54 52 0 14 4

>> b=[54;52;0;14;4]

b =

54
52
0
14
4

>> a=a'

a =

54
52
0
14
4

>> b=b'

b =

54 52 0 14 4

30

>> a=[2 4]

a =

2 4

>> b=[6 5]

b =

6 5

>> c=a+b

c =

8 9

>> a

a =

2 4

>> b

b =

6 5

>> c=a-b

c =

-4 -1

>> a

a =

2 4

>> b

b =

6 5

>> c=a*b
Error using *
Inner matrix
dimensions must
agree.

31

>> b=[1:10]
b =

1 2 3 4 5 6 7 8 9 10

>> a=[1:2:20]

a =

1 3 5 7 9 11 13 15 17 19

>> f=[12:-3:-2]

f =

12 9 6 3 0

According to the given matrix, what are the results of
the commands?

32

d =

2 5 8 11
8 5 7 21
88 55 44 33

>> size(d)

>> length(d)

>> a=d(1:1) >> d(1,2) >> d(1,3) >> d(1,4)

>> d(2,1) >> d(3,1) >> d(3,2)

a =

2
ans =

3 4

ans =

4

ans =

5

ans =

8

ans =

11

ans =

8

ans =

88

ans =

55

According to the given matrix, what are the results of
the commands?

33

>> d(:,1)

d =

2 5 8 11
8 5 7 21
88 55 44 33

>> d(:,2) >> d(1,:) >> d(3,:)

ans =

2
8

88

ans =

5
5

55

ans =

2 5 8 11

ans =

88 55 44 33

How can we find the red colored numbers?

34

>> d(3,1:2)

ans =

88 55

d =

2 5 8 11
8 5 7 21
88 55 44 33

d =

2 5 8 11
8 5 7 21
88 55 44 33

>> diag(d)

ans =

2
5

44

5 7 21
2 5 8

d =

2 5 8 11
8 5 7 21
88 55 44 33 >> [d(2,2:4);d(1,1:3)]

Calculate the sum of the marked numbers

35

d =

2 5 8 11
8 5 7 21
88 55 44 33

Sum of the row >> sum(d(1,:))

ans =

26

Sum of the colon

>> sum(d(:,1))

ans =

98

>> sum(d(2,2:4))

ans =

33

36

d =

1 2 3 4 5 6 7 8 9
9 7 5 3 1 -1 -3 -5 -7
4 8 16 32 64 128 256 512 1024

d=[1:9;9:-2:-7;2.^(2:10)]

According to the given matrix, find the results of the
commands

37

>> max(d)

d =

2 5 8 11
8 5 7 21
88 55 44 33

>> min(d) >> mean(d)

>> median(d) >> sum(d)

ans =

88 55 44 33

ans =

2 5 7 11

ans =

32.667 21.667 19.667 21.667

ans =

8 5 8 21

ans =

98 65 59 65

Give a MATLAB expression that multiplies two
vectors to obtain

38

>> a=[1 1 1]' * (1:5)

a =

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

>> b=(0:4)' * [1 1 1]

ans =

0 0 0
1 1 1
2 2 2
3 3 3
4 4 4

39

MATLAB/Basic Matrices Operators

sortrows(a,i) sorts the matrix a based on the columns specified in the vector i

Example:

a =
1 1000
3 10
2 5
4 1

>> sortrows(a,1)

ans =

1 1000
2 5
3 10
4 1

a =
1 1000
3 10
2 5
4 1

>> sortrows(a,2)

ans =

4 1
2 5
3 10
1 1000

MATLAB/Assign value to a variable

>> a=input('enter data=')
enter data=12

a =

12

If you assign a character to a variable;

str = input(prompt,'s')

input enter data from keyboard

Syntax x = input(prompt)

Displaying the results-1

disp(' ')
disp(' A-Deg B-Deg C-Deg')
disp(' ===== ===== =====')
disp(rand(4,3))

On screen:
A-Deg B-Deg C-Deg
===== ===== =====

0.1389 0.2722 0.4451
0.2028 0.1988 0.9318
0.1987 0.0153 0.4660
0.6038 0.7468 0.4186

disp Display value of variable

Syntax disp(X)

name = 'Alice';
age = 12;
X = [name,' will be ',num2str(age),' this year.'];
disp(X)

x =
541.45

>> fprintf('x is %f m. \n',x)
x is 541.450000 m.

x =
541.45

>> fprintf('x= %f m. \n',x)
x= 541.450000 m.

Displaying the results-2

fprintf Write data to text file

Syntax fprintf(formatSpec,A1,...,An)

formatSpec Format of the output fields, specified using formatting
operators.

Value (A1,…An) output.

MATLAB

>> x=123.2;
>> fprintf(‘output = %5.1f \n', x)
output= 123.2

fprintf(output = %5.1f \n', x)

Area size Decimal part

fprintf('x= %5.2f m. \n',x)
x= 541.45 m.

>> fprintf('x= %55.2f m. \n',x)
x= 541.45 m.

>> fprintf('x= %0.2f m. \n',x)
x= 541.45 m.

>> fprintf('x= %0.5f m. \n',x)
x= 541.45000 m.

Conversion Details
%e Exponential notation, such as 3.141593e+00 (Use a precision

operator to specify the number of digits after the decimal
point.)

%E Same as %e, but uppercase, such as 3.141593E+00 (Use a
precision operator to specify the number of digits after the
decimal point.)

%f Fixed-point notation (Use a precision operator to specify the
number of digits after the decimal point.)

%s Character vector or string array. The type of the output text is
the same as the type of format.

%d Base 10

fprintf Formatting Operator

Text Before or After Formatting Operators-1

formatSpec can also include additional text before a percent sign, %, or
after a conversion character.

Special Character Representation

Single quotation mark ‘ ‘

Percent character %%

Backslash \\

Backspace \b

Form feed \f

New line \n

Carriage return \r

Horizontal tab \t

Vertical tab \v

Text Before or After Formatting Operators-2

>> a=542.87
a =

542.87
>> out=sprintf('a=%5.2f',a)
out =

a=542.87

>> a=542.87
a =

542.87
>> out=fprintf('a = %5.2f',a)
a = 542.87
out =

10

Count the expression

sprintf Format data into string

Syntax str = sprintf(formatSpec,A1,...,An)

Displaying the results-3

>> a=5;
>> b=6;
>> str=sprintf('The size is %dmx%dm',a,b)
str =
The size is 5mx6m

>> chr = '12.1452 13.8457 10.7841'
chr =

12.1452 13.8457 10.7841

>> A=sscanf(chr,'%f')

A =

12.1452
13.8457
10.7841

Displaying the results-4

sscanf Read formatted data from string

Syntax A = sscanf(str,formatSpec)

ARRAYS

For instance:
c=1999 (numeric array)
d='Yildiz Teknik Universitesi' (character array)
f=[1999 2000] (numeric, matrix)
g=[d ' Insaat Fakultesi'] (character, matrix)

Warning: Numeric and character arrays can not be found in the same
matrix! A matrix can only contain either numeric or character values

Numbers Numeric array

Characters Character array

Cells Cell array

Structures Structure array

Character Arrays
>> lecture='Introductory Computer Sciences'

lecture =

Introductory Computer Sciences

>> code=double(lecture)

code =

Columns 1 through 15

73 110 116 114 111 100 117 99 116 111 114 121 32 67 111
Columns 16 through 30
109 112 117 116 101 114 32 83 99 105 101 110 99 101 115

>> char(code)

ans =

Introductory Computer Sciences

String to ASCII

ASCII to string

>> x='ENF1170';
>> a=[lecture,' lecture code ',x]
a =
Introductory Computer Sciences lecture code ENF1170

Combining
characters

Comparing Character Arrays-1

strcmp Compare strings.
tf = strcmp(s1,s2) compares s1 and s2 and returns 1 (true) if the
two are identical and 0 (false) otherwise. Text is considered
identical if the size and content of each are the same. The return
result tf is of data type logical.

strcmpi Compare strings (case insensitive)

strncmp Compare first n characters of strings (case sensitive)

strncmpi Compare first n characters of strings (case insensitive)

>> a='matematik';
>> b='mathematik';
>> c='MaTematiK';
>> e='matematik';
>> x=strcmp(a,b)

x =

0

>> x=strcmp(a,e)

x =

1
>> x=strcmp(a,c)

x =

0

>> a='matematik';
>> b='mathematik';
>> c='MaTematiK';
>> e='matematik';
>> x=strcmpi(a,b)

x =

0

>> x=strcmpi(a,c)

x =

1

>> a='matematik';
>> b='mathematik';
>> c='MaTematiK';
>> e='matematik';
>> x=strncmp(a,b,4)

x =

0

>> x=strncmp(a,b,2)

x =

1
>> x=strncmp(a,c,1)

x =

0

>> a='matematik';
>> b='mathematik';
>> c='MaTematiK';
>> e='matematik';

>> x=strncmpi(a,c,1)

x =

1

insensitivesensitiveinsensitivesensitive

Comparing Character Arrays-1

>> x='matlab';
>> y='matema';
>> x==y
ans =

1 1 1 0 0 0

>> upper('matLab')

ans =

MATLAB

>> lower('MATlAB')

ans =

matlab

Comparing Character Arrays-2

upper Convert string to uppercase

lower Convert string to lowercase

Comparing arrays one by one The lengths should be the same > , <

>= , <=

== , ~=

>> lecture='ICS Code:1170'

lecture =

ICS Code:1170

>> chr=isletter(lecture)

chr =

1 1 1 0 1 1 1 1 0 0 0 0 0

Comparing Character Arrays-3

isletter Determine which character array elements are letters TF = isletter(A)

isspace Determine which character array elements are space
characters

TF = isspace(A)

ischar Determine if input is character array tf = ischar(A)

>> lecture='ICS Code:1170‘;

>> chr=ischar(lecture)

chr =

1

>> lecture='ICS Code:1170'

lecture =

ICS Code:1170

>> chr=isspace(lecture)

chr =

0 0 0 1 0 0 0 0 0 0 0 0 0

>> code=1170;
>> chr=ischar(code)

chr =

0

Cell Arrays

Example:

C{1}=[1 2;3 5];
C{2}=[4 4 4 4];
C{3}=[('yildiz teknik'),(' insaat')];

C =

[2x2 double] [1x4 double] [1x20 char]

C{1} - Cell C{2} - Cell C{3} - Cell

Each cell is seperately represented

cell array create a cell array using the {} operator

When you have data to put into a cell array, create the array
using the cell array construction operator, {}.

For n=2;
>> C=cell(2)

C =

[] []
[] []

It is possible to add new cells in a cell.
For example:
We can add variables into C.

C{1}{1}=[2 3]
C =

{1x1 cell} []
[] []

Cell Arrays

C=cell(n) is an N-by-N cell array of empty matrices.

C{1,1}

C{2,1}

C{3,1}

C{1,2}

C{2,2}

C{3,2}

C=cell(3,2)

C{1,2}{1,1} C{1,2}{1,2}

C{1,2}{2,1} C{1,2}{2,2}

C{1,2}

C{1,2}{2,2}

New sub-cell(s)

Cell Arrays

Structure Array

Structure arrays used for databases

A.name= ‘Bahattin';

A.sname=‘Erdogan';

A.univ='YTU';

A.city='Istanbul';

A.email= ‘berdogan@yildiz.edu.tr';

A.year=2018;

that provides structure array - A

>>A

A =
name: ‘Bahattin'

sname: ‘Erdogan'
univ: 'YTU'
city: 'Istanbul'

email: ‘berdogan@yildiz.edu.tr'
year: 2017

Recalling A,

Cell and structure arrays can be saved with mat extension (save command)
and recalled by load

Conversion between arrays

num2str(a) Convert numbers to a string. (From numeric to (2) string)

str2num(a) Convert string matrix to numeric array

>> a=25;
>> tr=num2str(a)
tr =
25
>> ischar(tr)

ans =

1

>> val=str2num(tr)
val =

25

>> isnumeric(val)

ans =

1

Conversion between arrays

mat2str(a) Convert a 2-D matrix to a string in MATLAB syntax

int2str(a) Convert integer to string.

>> val=mat2str(rand(2))
val =
[0.63235924622541 0.278498218867048;0.0975404049994095 0.546881519204984]
>> ischar(val)
ans =

1
>> isnumeric(val)
ans =

0

>> a=154.411
a =

154.4110
>> val=int2str(a)
val =

154

Conversion between arrays

char(a) Create character array (string)

>> val{1,1}='7'
val =

'7'
>> val{1,2}='8'
val =

'7' '8'
>> val{2,1}='5'
val =

'7' '8'
'5' []

>> val{2,2}=['1' '2';'0' '3']
val =

'7' '8'
'5' [2x2 char]

>> search=char(val)
search =

7
5
8
12
03

Conversion between arrays

num2cell(a) Convert numeric array into cell array.

>> a=2;
>> tr=num2cell(a)

tr =

[2]

Conversion between arrays

Example: Assume that the result is a=10.234 .
to represent the expression (character), “The result obtained=10.234”

[‘The result obtained=' num2str(a)]
Both should be string!

Or; it can be written using fprintf:

fprintf(‘The result obtained= %6.3f \n',a)

Trigonometric functions

sin(x) Sine of argument in radians.

asin(x) Inverse sine, result in radians.

cos(x) Cosine of argument in radians

acos(x) Inverse cosine, result in radians.

tan(x) Tangent of argument in radians.

atan(x) Inverse tangent, result in radians..

cot(x) Cotangent of argument in radians.

acot(x) Inverse cotangent, result in radian.

sec(x) Secant of argument in radians.

asec(x) Inverse secant, result in radians.

csc(x) Cosecant of argument in radians.

acsc(x) Inverse cosecant, result in radian.

MATLAB/Expressions in Programming

It is needed that a piece of code that executes a series of commands, if
and only if some condition is met. MATLAB provides several built-in
statements that allow for conditional behavior.

These are:
if/elseif/else
switch, case

try/catch

MATLAB/if, else, elseif, end

if (eğer) Execute statements if condition is true.

if expression
statement

end

Example: If a number entered by user is negative, change the value of it with logarithmic value of
itself:

a=input(' enter a number= ');
if a<0

a=log(a);
else
a=a;
end
a

“otherwise” :

Here, it is a condition
for a>0

a=input(' enter a number= ');
if a<0

a=log(a);
end
if a>0

a=a;
end
a

Without using else

if expression
statement
else
statement

end

if expression
statement

elseif
statement

elseif
statement

end

Example: Enter a number from keyboard and take appropriate action
depending on the number in three options.
First set min and max values.
If your number exceeds max. value, display a message mention that.
If your number is under min value, display a message mention that.
If your number is between the range, display a message mention that.

x = input(‘enter a number = ‘);

minVal = 3;

maxVal = 8;

if (x >= minVal) && (x <= maxVal)

disp('Value within specified range.')

elseif (x > maxVal)

disp('Value exceeds maximum value.')

else

disp('Value is below minimum value.')

end

MATLAB/switch,case
switch (değiştir) evaluates an expression and chooses to execute one of several groups
of statements. Each choice is a case. The switch block tests each case until one of the
case expressions is true.

switch switch_expression
case case_expression

statement
case case_expression

statement
otherwise

statement
end

Example: for a variable namely day, decide whether it is working day or not;

clear,clc
day=input(‘which day=', 's');
switch lower(day)

case {‘monday', ‘tuesday',‘wednesday',‘thursday',‘friday'}
disp(‘working day')
case {‘saturday',‘sunday'}
disp(‘HOLIDAY!')

end

Up to user

MATLAB/switch,case

Assume that a variable is accessed by user (a=10.2424542). Let us propose a GUI (questdlg), which
decides to represent the result with 2 decimals or 3 decimals:

a=10.2424542;

button=questdlg(‘howmany decimals of a?', ‘Result','2 decimals', '3 decimals','3 decimals');

switch button

case {'2 decimals'}

fprintf('%1.2f',a)

case {'3 decimals'}

fprintf('%1.3f',a), end

Click to “2 decimals” ,

give the result as

10.24

button = questdlg(qstring,title,str1,str2,default)

MATLAB/for,end

for,end for loop to repeat specified number of times

for index = values  i=1:n (i (integer))
statements

end

Example: Design a loop for summing numbers from 1 to N

clear,clc
N=input(‘enter a number=');
count=0; %counter
for i=1:N

count=count+i; %cumulative sum of numbers
end
count

MATLAB/while,end

while,end loop to repeat when condition is true

done=0;
while done==0 (expression)

statements
end

Example: Assume that we design a program with while, end to compute the sum of
the numbers from 1 to N.

clear,clc
N=input(enter a number=');
count=0; i=0;done=0;
while done==0

i=i+1; %it corresponds to i (for,end) in the previous example.
if i==N
done=1;
end

count=count+i;
end
count

1. While, end loop can only be processed in case of done is 0.
2. To run while loop, varible done should be assigned as 0.

When i is the last number (N), a number differs from 0 is assigned to
variable done.
So, in the command line of while, while, end loop does not work
(because done is not 0 at this situation).
The program continues running after the end command line of this loop.
(Here, variable count is represented in the command window)

MATLAB/
break

for i=1:n
statement

if condition
break;

end
end
statement

done=0;
while done==0

statement

if condition
break;

end
end
statement

break Terminate execution of for or while loop

MATLAB/
return

for i=1:n
statement

if condition
return;

end
end
program ends
here

done=0;
while done==0

statement

if condition
return;

end
end
program ends
here

Return control to invoking function

MATLAB/Graphics

Abscissa (X)

O
rd

in
at

e
(Y

)

X

Y

Z

2 Dimensional Coordinate System 3 Dimensional Coordinate System

In Matlab, graphics are drawn in “figure” window.

2D or 3D graphics are available. Also, graphics can be drawn in polar coordinate
system (see, polar).

2D Graphics

plot function
The basic command for graphics is plot.

plot 2-D line plot

plot(X,Y)
plot(X,Y,LineSpec)
plot(X1,Y1,...,Xn,Yn)
plot(X1,Y1,LineSpec1,...,Xn,Yn,LineSpecn)
plot(Y)
plot(Y,LineSpec)

plot(X,Y) creates a 2-D line plot of the data in Y versus the corresponding
values in X.

For example:

Compute the values of y using the function (y=x.^3+x.^2) that correspond to
x=0:0.1:5 (array vector).

To draw the graphic for x and y  plot(x,y)

You can edit the graphic.

For editing, click the button of “Edit plot”.

The related object (arc drawn, axes etc.)
can be changed by double-clicking the
related object to be edited via “Property
Editor” window.

Also, commands can be used to realize
changes on the figure.

For example, plot(x,y,'-o') draw the
figure both connecting the successive
points and marked as “o” symbol.

Edit plot

FIGURE

plot(x,y,'-o'):

Repeat plotting using below
properties:
plot(x,y,'-o')
plot(x,y,'-*')
plot(x,y,'-+')
plot(x,y,'-^')
plot(x,y,'-.')

Such symbols (o,*,+) on figure are
called as marker.

Also, the color of the graphic can be
changed :

plot(x,y,'r') (red)
plot(x,y,'k') (black)
plot(x,y,'b') (blue)
plot(x,y,'g') (green)

title, xlabel, ylabel

We can add graphic title and labels for axes. To represent them in a figure, we
use “title”, “xlabel” and “ylabel” functions.

>> x=[0:0.1:5];
>> y=x.^3+x.^2;
>> plot(x,y)
>> title(‘Graphic for x.^3+x.^2')
>> xlabel('x axis’)
>> ylabel('y axis')

axis

Matlab allows to change only specific configurations of plot. Such as:

Function Description
axis([xmin xmax ymin ymax]) Set axis limits and aspect ratios.

axis equal Use the same length for the data units along each axis

axis square Use axis lines with equal lengths. Adjust the increments
between data units accordingly.

axis normal Restore the default behavior.

axis off Axis visibility is off

axis on Axis visibility is on

scatter function

Example:

X=rand(100,1)*5;

Y=rand(100,1)*2;

scatter(X,Y,’r*’)

grid on

xlabel(‘X’)

ylabel(‘Y’)

scatter(X,Y) Scatter/bubble plot.

-20 -15 -10 -5 0 5 10 15
-6

-4

-2

0

2

4

6

8

X

Y

Save and Copy

To save the graphics:
On the Figure window, click “File” menu; Use “Save” or “Save As” options.
The extension of graphics is “fig” .

To transfer the graphics to another environment;
Click “Edit” menu; Use “Copy Figure” option.
(PS: To change the color of background, see “Copy Options” .)

Example:
x=[0:0.2:10]

y1=x-x.^5;

y2=2*x.^5-x.^2;

y3=3*x.^4-x.^5;

Title: Several Functions

X label: x values

Y label: y values

Legend

Red +

Green o

Blue *

>> x=[0:0.2:10];
>> y1=x-x.^5;
>> y2=2*x.^5-x.^2;
>> y3=3*x.^4-x.^5;
>> plot(x,y1,'r+',x,y2,'go',x,y3,'b*')
>> title('Several Functions')
>> xlabel('x values')
>> ylabel('y values')
>> legend('y1','y2','y3')

0 1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

1

1.5

2
x 10

5 Several Functions

x values

y
va

lu
es

y1=x-x.5

y2=2*x.5-x.2

y3=3*x.4-x.5

Example:
t=[-2*pi:0.01:2*pi]

x=sin(t);

y=cos(t);

Add

Title: Trigonometry

X label: time

Y label: amplitude

Legend

>> t=[-2*pi:0.01:2*pi];
>> x=sin(t);
>> y=cos(t);
>> hold on
>> plot(t,x,’b’,t,y,‘r')
>> title(‘Trigonometry')
>> xlabel(‘time')
>> ylabel(‘amplitude')
>> legend(‘sin(t)',‘cos(t)')

For example: For two different observation data,

x=[1;2;3;4];
ya=[1;1.2;2.4;4.5]
yb=[0.5;0.8;1.8;0]

Draw the graphic corresponds to the x values

OR
plot(x,ya,x,yb)

plotyy(x,ya,x,yb)

hold on – hold off
adding different graphics in a figure

>> hold on
>> plot(ya,‘b')
>> plot(yb,'r')
>> hold off
>> grid on

1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

Example

Plot y1 = sin(x) and y2 = cos(x) with x in [0; 2pi] on the same graph.
Use a solid line for sin(x) and the symbol + for cos(x). The first step is
to define a set of values for x at which the functions will be defined.

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

>> x=[0:0.1:2*pi];
>> y1=sin(x);
>> y2=cos(x);
>> plot(x,y1,'-',x,y2,'+')

Example:

np=100
t=-1:2/(np*100):1;
r=(1-abs(t)).*(1+3*abs(t));
xx=r.*sin(t);
yy=r.*cos(t);
plot(xx,yy)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Draw multiple graphics

figure function create figure window.

x=[0:0.1:5];
y1=x.^3+x.^2;
y2=x.^4+x.^2;
figure(1)
plot(x,y1)
figure(2)
plot(x,y2,'r')

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

700

Draw subplots

Display multiple plots in different sub regions of the same window using subplot
function.

subplot(a,b,c)

The size of graphic window: axb

The related graphic window: c

x=[0:0.1:5];
y1=x.^3+x.^2;
y2=x.^4+x.^2;
y3=x.^4+x.^3;
y4=x.^5+x.^2;
subplot(2,2,1)
plot(x,y1)
title('y1=x.^3+x.^2','fontsize',14)
subplot(2,2,2)
plot(x,y2)
title('y2=x.^4+x.^2','fontsize',14)
subplot(2,2,3)
plot(x,y3)
title('y3=x.^4+x.^3','fontsize',14)
subplot(2,2,4)
plot(x,y4)
title('y4=x.^5+x.^2','fontsize',14)

1 2

3 4

Draw subplots

0 2 4 6
0

50

100

150
y1=x.3+x.2

0 2 4 6
0

200

400

600

800
y2=x.4+x.2

0 2 4 6
0

200

400

600

800
y3=x.4+x.3

0 2 4 6
0

1000

2000

3000

4000
y4=x.5+x.2

DATA GENERATION
Example: Generate 2 dataset;

ya=randn(1000,1)
yb=randn(1000,1)*3

Randn function generates data with a given standard deviation (1 and
3) and mean 0.

>> ya=randn(1000,1);
>> yb=randn(1000,1)*3;
>> hold on
>> plot(ya)
>> plot(yb,'r')
>> hold off

0 100 200 300 400 500 600 700 800 900 1000
-15

-10

-5

0

5

10

15To see which dataset has
lower standard deviation
(more reliable), represent
them on the same
graphic:

To see the correlation between these dataset;

plot(ya,yb,‘*')

From the related dataset, it can
be seen that there are no
reliable correlation. Because,
as the mean value is 0 for both
of them, they scatter regularly
around 0.

To provide the correlation;
these data should be around a
straight line.

-4 -3 -2 -1 0 1 2 3 4
-15

-10

-5

0

5

10

15

Let us generate the yb; according to ya values using below equation:

yb=2+3*ya+randn(1000,1)*1

plot(ya,yb,'.')

-4 -3 -2 -1 0 1 2 3 4
-10

-5

0

5

10

15
yb

ya

Basic Fitting Tool

Depending on x and y values;
this define the function y=f(x)
which fits the best.

ya=randn(1000,1)

yb=2+3*ya+randn(1000,1)*1

plot(ya,yb,'.')

Example:

x 0 1 2 3 4 5

y 10.06 9.46 16.69 22.25 25.44 27.75

On the table given below, y values are given corresponding to time (x). Find the
best fitting model to the observations using the function y=a+bx.

Solution:
Assign x and y values to arrays.
Draw graphics. plot(x,y,'o')
Use «Basic Fitting» window. Select “linear”, “show equation”, “plot residuals”

residuals

According to the Least
Squares Method, this
is the best fitting model
to data

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-4

-2

0

2

4
residuals

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
5

10

15

20

25

30

y = 4.0557*x + 8.469

data 1

 linear

bar & stem graphics

Example:
For x=[15;20;25;25;5]

bar(x)
stem(x)

1 2 3 4 5
0

5

10

15

20

25

30

35
bar graphic

1 2 3 4 5
0

5

10

15

20

25

30

35
stem graphic

pie function

pie([array]) draws a pie plot of the data in the vector X.

a=[15 25 35 45];
pie(a)

13%

21%

29%

38%

pie function

Draw the percentage distribution of the students according to the classes.

clear
clc
a=[250, 225, 400, 212, 225];
b={‘preparation class','1.class', '2.class','3.class','4.class'};
pie(a,b)

preparation class

1.class

2.class

3.class

4.class

pie function

clear
clc
a=[250, 225, 400, 212, 225];
pie(a)
legend(‘preparation class','1.class', '2.class','3.class','4.class');

19%

17%

30%

16%

17%

preparation class

1.class

2.class
3.class

4.class

Histogram Plot
To determine the statistical distribution of observations, the frequency values are
computed and histogram graphic is plotted.

For example,
Generate a dataset with
normal distribution
using x=randn(100,1)*3

Draw the histogram
using hist(x)

-10 -5 0 5 10 15
0

5

10

15

20

25

x

fr
eq

ue
nc

y

quiver function
quiver(X,Y,U,V) plots velocity vectors as arrows with components (u,v) at the points (x,y).
The matrices X,Y,U,V must all be the same size and contain corresponding position and
velocity components (X and Y can also be vectors to specify a uniform grid). Quiver
automatically scales the arrows to fit within the grid.

To scale vectors, add s as scale factor

quiver(y,x,dy,dx,s)

Example: Assume that coordinates
and displacements of two
benchmarks are given in geodetic
coordinate system.

Coordinates:
x=[5000;3000],
y=[2000;2500]

Displacements:
dx=[2;1.2]
dy=[-1.8;0.5]

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800
3000

3500

4000

4500

5000

5500

6000

Y (m)

X
 (

m
)

Sketch Draw

Draw the points according to given geodetic coordinates (x,y) with located triangle symbol.

plot(y,x,'^')
axis([200 1700 200 1500])
axis equal

Point P1 P2 P3 P4

x (m) 500.00 550.00 1000.00 1200.00

y (m) 500.00 750.00 1500.00 800.00

axis([Xmin Xmax Ymin Ymax])
arrange the minimum and
maximum values of axes,

axis equal Use the same
length for the data units along
each axis.

line Function
Create line
line([x1 x2],[y1 y2])

clear
clc
ad=[1 2 3 4];
x=[500 550 1000 1200];
y=[500 750 1500 800];
hold on
plot(y,x,'^')
axis([200 1700 200 1500])
axis equal
for i=2:length(x)

line([y(i-1) y(i)],[x(i-1) x(i)]);
end
for i=1:length(ad)

text(y(i),(x(i)+50),num2str(ad(i)))
end
hold off

200 400 600 800 1000 1200 1400 1600 1800
200

400

600

800

1000

1200

1400

1
2

3

4

text(X,Y,'string')

Patch Function

Create patch
filled 2-D polygon defined by vectors X and Y to the current axes
patch(X,Y,C).
C specifies the color of the face(s)

clear
clc
x=[400 300 1100 1200];
y=[500 750 1500 800];

patch(y,x,'m')

500 600 700 800 900 1000 1100 1200 1300 1400 1500
300

400

500

600

700

800

900

1000

1100

1200

500 600 700 800 900 1000 1100 1200 1300 1400 1500
300

400

500

600

700

800

900

1000

1100

1200

fplot Function
fplot(‘fonksiyon’,[xmin xmax ymin ymax])
Plot function
fplot(FUN,LIMS) plots the function FUN between the x-axis limits specified by
LIMS = [XMIN XMAX].
Using LIMS = [XMIN XMAX YMIN YMAX] also controls the y-axis limits. FUN(x) must
return a row vector for each element of vector x

fplot('x^3+x^2-x+1',[0 10])

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

To define x axes for limitation is
enough

3D Graphics

plot3
meshgrid

mesh
surf

contour

plot3 function

Plot lines and points in 3-D space.
plot3(x,y,z), where x, y and z are three vectors of the same length, plots a line in 3-
space through the points whose coordinates are the elements of x, y and z.

t = 0:pi/100:10*pi;
plot3(sin(t),cos(t),t,'r','LineWidth',2);
grid on
xlabel('x axis');
ylabel('y axis');
zlabel('z axis');

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
0

10

20

30

40

x axisy axis

z
ax

is

scatter3 function

t = 0:pi/100:10*pi;
scatter3(sin(t),cos(t),t, 'm','LineWidth',2);
grid on
xlabel('x axis');
ylabel('y axis');
zlabel('z axis');

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
0

10

20

30

40

x axisy axis

z
ax

is

meshgrid & mesh functions

meshgrid : replicates the grid vectors x and y to produce the coordinates of a
rectangular grid (X, Y).
[X,Y]=meshgrid(x,y)
mesh: plots the colored parametric mesh defined by four matrix arguments.
mesh(X,Y,Z,C)

[X,Y] = meshgrid(-2:0.2:2, -2:0.2:2);
Z = Y .* exp(-X.^2 - Y.^2);
mesh(X,Y,Z)

For -2 < x < 2, -2 < y < 2

meshc and meshz functions!!!

-2
-1

0
1

2

-2

-1

0

1

2
-0.5

0

0.5

surf function

Surf: 3-D colored surface
surf(X,Y,Z) or surf(Z)

[X,Y] = meshgrid(-2:0.2:2, -2:0.2:2);
Z = Y .* exp(-X.^2 - Y.^2);
surf(X,Y,Z)

For -2 < x < 2, -2 < y < 2

surfl and surfc functions !!

-2
-1

0
1

2

-2

-1

0

1

2
-0.5

0

0.5

contour function

contour(Z) is a contour plot of matrix Z treating the values in Z as heights above a
plane.
[C, H] = contour(...) returns contour matrix C as described in CONTOURC and a
handle H to a contourgroup object. This handle can be used as input to CLABEL.
clabel(C,H)

[X,Y] = meshgrid(-2:0.2:2, -2:0.2:2);
Z = Y .* exp(-X.^2 - Y.^2);
[C,H]=contour(X,Y,Z);
clabel(C,H)
colorbar

-0.4

-0
.3

-0.3

-0
.2

-0.2

-0.2-0.2

-0
.1

-0.1

-0
.1

-0.1-0.1
0 0 0 0

0.1 0.1

0.1
0.1

0.
1 0.2 0.2

0.2

0.
2

0.3

0.3

0.
3

0.4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

MATLAB- write & read

 Write data to text file  scan
 Read data from text file  input data

The basic function for writing data to the text file: diary

 The diary function creates a log of keyboard input and the resulting text output, with
some exceptions.

 The output of diary is an ASCII file, suitable for searching in, printing, inclusion in most
reports and other documents.

 If you do not specify filename, the MATLAB® software creates a file named diary in the
current folder

a=10;
diary sonuc.txt

disp('-----------------')
disp(a)

diary end

MATLAB- write & read

All of the info that will be written on
command window between two
diary commands, will be on
sonuc.txt file. Matlab creates a file
named diary in the current folder.

Different file names and extensions
instead of sonuc.txt can be used.

If the file has already been created,
then the outputs would be added
after the text written on file.

MATLAB- write & read

fopen: Open file, or obtain information
about open files

fprintf: Write data to text file

fclose: Close one or all open files

Syntax

fileID = fopen(filename)

fprintf(fileID,formatSpec,A1,...,An)

fclose(fileID)

While using these functions, No
need to show the text to be written
on ‘command window’.

For instance: Assume that a side, namely ‘a’ is computed by a program. For writing the value ‘a’ computed
by this program on kenar.txt file; the following codes can be written:

a=150.0234234;
fid=fopen('kenar.txt','w');
fprintf(fid,'kenar uzunluğu=%1.4f',a);
fclose(fid);

w refers that it will be
written on this file.

permission — File access type

'r' (default) | 'w' | 'a' | 'r+' | 'w+' | 'a+' | ...

'r' Open file for reading.

'w' Open or create new file for writing. Discard existing contents, if any.

'a' Open or create new file for writing. Append data to the end of the file.

'r+' Open file for reading and writing.

'w+' Open or create new file for reading and writing. Discard existing contents, if any.

'a+' Open or create new file for reading and writing. Append data to the end of the file.

Examples
Ex.1: Write a program that writes the following matrix

a=[3.12356 4.12456 1;5.8463 6.45111 2;4 5 6]
with 4 digits of its elements on mat.out file.

a=[3.12356 4.12456 1;5.8463 6.45111 2;4 5 6]
fid = fopen('mat.out','w');
fprintf(fid,'%1.4f%10.4f%10.4f\n',a);
fclose(fid);

Ex.2: Write these two variables; side=1500.123 m & azimuth=103.3367 grad, to the
result.out file one under the other.

side=1500.123;
azimuth=103.3367;
fid=fopen('result.out','w');
fprintf(fid,'side=%1.3f m\n',side);
fprintf(fid,'azimuth=%1.4f grad',azimuth);
fclose(fid)

Ex.3: Write a program that makes conversion between Fahrenheit and centigrade
units for a given interval and writes the results on a file with extension ‘.txt’.

TIP: Fahrenheit=1.8*centigrade+32;

Examples

fscanf: Read data from text file

A = fscanf(fileID,formatSpec)
A = fscanf(fileID,formatSpec,sizeA)
[A,count] = fscanf(___)

Exp. Use the same matrices produced at the previous example (mat.out) and read it in Matlab.

fid=fopen('mat.out','r+');
[dizi,sayi]=fscanf(fid,'%f',inf)

dizi =

3.1236
5.8463
4.0000
4.1246
6.4511
5.0000
1.0000
2.0000
6.0000

sayi =

9

fid=fopen('mat.out','r+');
[dizi,sayi]=fscanf(fid,'%f',[3 3])

dizi =

3.1236 4.1246 1.0000
5.8463 6.4511 2.0000
4.0000 5.0000 6.0000

sayi =

9

MATLAB- write & read

textread: Read data from text file; write to multiple outputs
For example: Read the data on below file, namely koordinat.txt.

P1 1000.1234 1300.23423
P2 1300.5673 1450.98563
P3 2000.1500 2000.11000
P4 3500.3100 1000.12000

Station Name x coordinate y coordinate

To do this;

[nokta,x,y]=textread('koordinat.txt','%s%f%f')

The above function is used.
nokta is assigned as a cell containing station names;
x includes x coordinates’ vector and,
y includes y coordinates’ vector.

[a, b, c,…]=textread('dosya_adi', 'format')

MATLAB- write & read

nokta =

4×1 cell array

'P1'
'P2'
'P3'
'P4'

x =

1000.1234
1300.5673

2000.15
3500.31

y =

1300.23423
1450.98563

2000.11
1000.12

Example: Use the below file (koordinat.txt) containing coordinates of the stations and assign
the variables to the names of ‘nokta’, ‘x’, ‘y’, by using textread function.

Nirengi koordinatları
NN x(m) y(m)
P1 1000.1234 1300.23423
P2 1300.5673 1450.98563
P3 2000.1500 2000.11000
P4 3500.3100 1000.12000

[nokta,x,y]=textread('koordinat.txt','%s%f%f','headerlines',2)

'headerlines' Ignores the specified number of lines at the beginning of the file.

 In koordinat.txt file, the first two rows are ignored.

MATLAB- write & read

num = xlsread('filename', sheet, 'range')

xlsread: Read Microsoft Excel spreadsheet file

A = xlsread('deneme.xlsx', 1, 'C4:D7')

A =

1 6
2 7
3 8
4 9

MATLAB- write & read

FUNCTION

Declare function name, inputs, and outputs

function [y1,...,yN] = myfun(x1,...,xM) declares a function named myfun that accepts
inputs x1,...,xM and returns outputs y1,...,yN.

This declaration statement must be the first executable line of the function.

Valid function names begin with an alphabetic character, and can contain letters, numbers, or
underscores.

Function is stored in m-file and this file uses the same name with function.

The advantages of use of function are;

 Avoid code repetition if loops are required. (e.g., assume that there is a function for computing the
azimuth angle namely, azimuth; in the related part of the program, if this function is defined, the
function will compute the azimuth angles for given two points just coding azimuth(X1,Y1,X2,Y2)

 the variables given in functions are local variables, which means that they are not stored as global
variables in workspace as the other program types.

MATLAB/Function Files

Example: Write a function, namely ‘kenar’, to compute the horizontal distance between given
two points with x and y coordinates.

The only difference for function from
the other program is that;

function output=func_name(input)

It is start with the above statement, and
is completed with end

The next row after the function
command is the explanation of the
function (prompt).

The file name and the function name
should be the same.

MATLAB/Function Files

Example: Write a function, namely aci_kenar; to compute both azimuth angle and horizontal
distance, for given any two points.

There can be several outputs of the
function.
In this example, there are two, a and S.

a, is the azimuth angle, S is the distance.

[a,S]=aci_kenar(1500,5210,4521,5842)

	tbb_0
	tbb1_3
	TBB4_5
	TBB_6_7
	TBB_8_11
	Tbb_12
	TBB_13

