Block diagram

Transfer Function

Consists of Blocks
Can be reduced

Reduction techniques

1. Combining blocks in cascade or in parallel

2. Moving a summing point behind a block

3. Moving a summing point ahead of a block

4. Moving a pickoff point behind a block

5. Moving a pickoff point ahead of a block

6. Eliminating a feedback loop

7. Swap with two neighboring summing points

Example 1

Find the transfer function of the following block diagrams

Solution:

1. Moving pickoff point A ahead of block G_{2}
2. Eliminate loop I \& simplify

3. Moving pickoff point B behind block $G_{4}+G_{2} G_{3}$

4. Eliminate loop III

U Using rule 6

$$
T(s)=\frac{Y(s)}{R(s)}=\frac{G_{1}\left(G_{4}+G_{2} G_{3}\right)}{1+G_{1} G_{2} H_{1}+H_{2}\left(G_{4}+G_{2} G_{3}\right)+G_{1}\left(G_{4}+G_{2} G_{3}\right)}
$$

(b)

Solution:

1. Eliminate loop I

2. Moving pickoff point A behind block $\frac{G_{2}}{1+G_{2} H_{2}}$

3. Eliminate loop II

$$
T(s)=\frac{Y(s)}{R(s)}=\frac{G_{1} G_{2}}{1+G_{2} H_{2}+G_{1} G_{2} H_{3}+G_{1} H_{1}+G_{1} G_{2} H_{1} H_{2}}
$$

(c)

Solution:

2. Eliminate loop I and Simplify

II R feedback
$\frac{G_{2} G_{3} G_{4}}{1+G_{3} G_{4} H_{4}+G_{2} G_{3} H_{3}}$
III Not fee
$\frac{H_{2}-G_{4} H_{1}}{G_{4}}$

3. Eliminate loop II \& IIII

$$
\begin{aligned}
& R(s) \xrightarrow{+} \text { P } \xrightarrow{\frac{G_{1} G_{2} G_{3} G_{4}}{1+G_{3} G_{4} H_{4}+G_{2} G_{3} H_{3}}} \xrightarrow{\quad Y(s)} \\
& \underline{H_{2}-G_{4} H_{1}} \\
& G_{4} \\
& \text { - Using rule } 6
\end{aligned}
$$

$$
T(s)=\frac{Y(s)}{R(s)}=\frac{G_{1} G_{2} G_{3} G_{4}}{1+G_{2} G_{3} H_{3}+G_{3} G_{4} H_{4}+G_{1} G_{2} G_{3} H_{2}-G_{1} G_{2} G_{3} G_{4} H_{1}}
$$

Solution:

1. Moving pickoff point A behind block G_{3}

I

2. Eliminate loop I \& Simplify

3. Eliminate loop II

$$
T(s)=\frac{Y(s)}{R(s)}=G_{4}+\frac{G_{1} G_{2} G_{3}}{1+G_{2} H_{1}+G_{2} G_{3} H_{2}+G_{1} G_{2} H_{1}}
$$

Example 2

Determine the effect of R and N on Y in the following diagram

In this linear system, the output Y contains two parts, one part is related to R and the other is caused by N :

$$
Y=Y_{1}+Y_{2}=T_{1} R+T_{2} N
$$

If we set $\mathrm{N}=0$, then we can get Y 1 :

$$
Y_{1}=Y_{N=0}=T_{1} R
$$

The same, we set $R=0$ and $Y 2$ is also obtained:

$$
Y_{2}=Y_{R=0}=T_{2} N
$$

Thus, the output Y is given as follows:

$$
Y=Y_{1}+Y_{2}=Y_{N=0}+Y_{R=0}
$$

Solution:

1. Swap the summing points A and B

2. Eliminate loop II \& simplify

Rewrite the diagram:

$$
G_{1} G_{3}+\frac{G_{1} G_{2}}{1+G_{2} H_{1}} \quad \longrightarrow \stackrel{+\downarrow}{\otimes} O \quad Y
$$

$$
1
$$

$R+$

We can easily get Y_{1}

$$
Y_{1}=\frac{G_{1} G_{2}+G_{1} G_{3}+G_{1} G_{2} G_{3} H_{1}}{1+G_{2} H_{1}+G_{1} G_{2}+G_{1} G_{3}+G_{1} G_{2} G_{3} H_{1}} R
$$

4. Let $\mathrm{R}=0$, we can get:

5. Break down the summing point M :

6. Eliminate above loops:

$$
\xrightarrow[N]{1+G_{1} G_{3} G_{4}+\frac{G_{1} G_{2} G_{4}}{1+G_{2} H_{1}}} \longrightarrow \frac{1}{1+G_{1} G_{3}+\frac{G_{1} G_{2}}{1+G_{2} H_{1}}} \ggg
$$

$$
Y_{2}=\frac{1+G_{2} H_{1}+G_{1} G_{2} G_{4}+G_{1} G_{3} G_{4}+G_{1} G_{2} G_{3} G_{4} H_{1}}{1+G_{2} H_{1}+G_{1} G_{2}+G_{1} G_{3}+G_{1} G_{2} G_{3} H_{1}} N
$$

7. According to the principle of superposition, Y_{1} and Y_{2} can be combined together, So:

$$
\begin{aligned}
& Y=Y_{1}+Y_{2} \\
& =\frac{1}{1+G_{2} H_{1}+G_{1} G_{2}+G_{1} G_{3}+G_{1} G_{2} G_{3} H_{1}}\left[\left(G_{1} G_{2}+G_{1} G_{3}+G_{1} G_{2} G_{3} H_{1}\right) R\right. \\
& \left.+\left(1+G_{2} H_{1}+G_{1} G_{2} G_{4}+G_{1} G_{3} G_{4}+G_{1} G_{2} G_{3} G_{4} H_{1}\right) N\right]
\end{aligned}
$$

