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Definition of Stability 

¾ Stability is the most important system specification If a system is unstable¾ Stability is the most important system specification. If a system is unstable, 
transient response and steady-state errors are moot points. 

¾An unstable system cannot be designed for a specific transient response or¾An unstable system cannot be designed for a specific transient response or 
steady-state error requirement.

¾ h d fi i i f bili d di h ki d f¾ There are many definitions for stability, depending upon the kind of system 
or the point of view. In this section, we limit ourselves to linear, time-invariant 
systems.
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Definition of Stability 

The total response of a system is the sum of the forced and natural responses. p y p
Using these concepts, we present the following definitions of stability, 
instability, and marginal stability:

¾A linear, time-invariant system is stable if the natural response 
approaches zero as time approaches infinity.

¾A linear, time-invariant system is unstable if the natural response grows 
without bound as time approaches infinity.

¾A linear, time-invariant system is marginally stable if the natural 
response neither decays nor grows but remains constant or oscillates as 
time approaches infinity.
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Definition of Stability 

The alternate definition of stability one that regards the total response andThe alternate definition of stability, one that regards the total response and 
implies the first definition based upon the natural response, is this:

¾A system is stable if every bounded input yields a bounded output We¾A system is stable if every bounded input yields a bounded output. We 
call this statement the bounded-input, bounded-output (BIBO) definition 
of stability.

The alternate definition of instability, one that regards the total response, is this:

¾A system is unstable if any bounded input yields an unbounded output.
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The Stability of  a Closed‐Loop System

If the closed-loop system poles are in the left half of the plane and hence have aIf the closed loop system poles are in the left half of the plane and hence have a 
negative real part, the system is stable.

¾Stable systems have closed loop transfer functions with poles only in the¾Stable systems have closed-loop transfer functions with poles only in the 
left half-plane. 

¾ U t bl t h l d l t f f ti ith t l t¾ Unstable systems have closed-loop transfer functions with at least one 
pole in the right half-plane and/or poles of multiplicity greater than 1 on the 
imaginary axis. 

¾Marginally stable systems have closed-loop transfer functions with only 
imaginary axis poles of multiplicity 1 and poles in the left half-plane.g y p p y p p
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The Stability of  a Closed‐Loop System
¾ It is not always a simple matter to determine if a feedback control system is
stable. Unfortunately, a typical problem that arises is shown in the figures
below.

¾Although we know the poles of the forward transfer function, we do not
know the location of the poles of the equivalent closed-loop system without
factoring or otherwise solving for the roots.
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Routh‐Hurwitz Criterion

¾ Using this method, we can tell how many closed-loop system poles are in the
l ft h lf l i th i ht h lf l d th j ileft half-plane, in the right half-plane, and on the jω -axis.

¾ Notice that we say how many, not where.

¾We can find the number of poles in each section of the s-plane, but we
cannot find their coordinates.

The method requires two steps:The method requires two steps:

¾ Generate a data table called a Routh table
¾ I h R h bl ll h l d l l i¾ Interpret the Routh table to tell how many closed-loop system poles are in
the left half-plane, the right half-plane, and on the jω -axis.
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Generating Basic Routh Table

¾ Begin by labeling the rows with powers of s from the highest power of the 
denominator of the closed-loop transfer function to s0. 

¾ Start with the coefficient of the highest power of s in the denominator and 
list, horizontally in the first row, every other coefficient. 

¾ In the second row, list horizontally, starting with the next highest power of s, 
every coefficient that was skipped in the first row.
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Generating Basic Routh Table

¾The remaining entries are filled in as follows. 

¾ Each entry is a negative determinant of entries in the previous two rows 
divided by the entry in the first column directly above the calculated row. 
¾ The left-hand column of the determinant is always the first column of the¾ The left hand column of the determinant is always the first column of the 
previous two rows, and the right-hand column is the elements of the column 
above and to the right. 
¾ The table is complete when all of the rows are completed down to s0¾ The table is complete when all of the rows are completed down to s .
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Example 6.1

Make the Routh table for the system shown in

We need to find the equivalent closed-loop system because we want to test the 
denominator of this function, not the given forward transfer function, for pole 
locationlocation.

The Routh-Hurwitz criterion will be applied to this denominator. First label the
rows with powers of s from s3 down to s0 in a vertical column, as shown in
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Example 6.1

¾ Form the first row of the table, using the coefficients of the denominator of the 
closed-loop transfer function. 

¾ Start with the coefficient of the highest power and skip every other power of s. g p p y p

¾ Form the second row with the coefficients of the denominator skipped in the 
previous step.previous step.

¾ For convenience, any row of the Routh table can be multiplied by a positive 
constant without changing the values of the rows belowconstant without changing the values of the rows below. 

¾ This can be proved by examining the expressions for the entries and verifying 
th t lti li ti t t f i l t I th dthat any multiplicative constant from a previous row cancels out. In the second 
row, for example, the row was multiplied by 1/10.

11



Interpreting Basic Routh Table

¾ The Routh-Hurwitz criterion declares that the number of roots of the 
polynomial that are in the right half-plane is equal to the number of sign p y g p q g
changes in the first column.

¾ If the closed-loop transfer function has all poles in the left half of the s-¾ If the closed loop transfer function has all poles in the left half of the s
plane, the system is stable. Thus, a system is stable if there are no sign 
changes in the first column of the Routh table.

Routh-Hurwitz Criterion: Special Cases:

Two special cases can occur:Two special cases can occur:

¾ The Routh table sometimes will have a zero only in the first column of a row.

¾ The Routh table sometimes will have an entire row that consists of zeros.
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Zero Only in the First Column

¾ If the first element of a row is zero, division by zero would be required to 
form the next rowform the next row. 

¾ To avoid this phenomenon, an epsilon, ε, is assigned to replace the zero in 
the first columnthe first column. 

¾ The value ε is then allowed to approach zero from either the positive or the 
ti id ft hi h th i f th t i i th fi t l bnegative side, after which the signs of the entries in the first column can be 

determined.

Example 6.2:

Determine the stability of the closed-loop transfer functiony p
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Example 6.2

¾¾ Begin by assembling the Routh table down to the row where a zero 
appears only in the first column (the s3 row). 

¾ Next replace the zero by a small number, ε, and complete the table.

¾ To begin the interpretation, we must first assume a sign, positive or g p , g , p
negative, for the quantity ε. 
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Example 6.2

The table above shows the first column of the previous table along with the 
resulting signs for choices of ε positive and ε negative.

¾ If ε is chosen positive, the Routh table will show a sign change from the 
s3 row to the s2 row, and there will be another sign change from the s2 row to 

1the s1 row. 

¾ Hence, the system is unstable and has two poles in the right half-plane.
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Entire Row is Zero

¾ Sometimes while making a Routh table, we find that an entire row¾ Sometimes while making a Routh table, we find that an entire row
consists of zeros because there is an even polynomial that is a factor of the
original polynomial.

Example 6.4:

Determine the number of right-half-plane poles in the closed-loop transfer 
function
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Example 6.4

¾ At the second row we multiply through by 1/7 for convenience.
¾We stop at the third row since the entire row consists of zeros and use the¾We stop at the third row, since the entire row consists of zeros, and use the
following procedure.

¾We return to the row immediately above the row of zeros and form an
ili l i l i th t i i th t ffi i tauxiliary polynomial, using the entries in that row as coefficients.

¾ The polynomial will start with the power of s in the label column and
continue by skipping every other power of s.
¾¾ The polynomial formed for this example is

¾We differentiate the polynomial with respect to s and obtain
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Finally, we use the coefficients to replace the row of zeros. For convenience,
the third row is multiplied by 1/4 after replacing the zeros.



Example 6.7
Find the number of poles in the left half-plane, the right half-plane, and on
the jw-axis for the system of

The closed-loop transfer function is

¾A zero appears in the first column of the s3 row. Replace the zero with app p
small quantity, ε, and continue the table.
¾ Permitting ε to be a small, positive quantity, we find that the first term of
the s2 row is negative.
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the s row is negative.
¾ There are two sign changes, and the system is unstable, with two poles in
the right half-plane. The remaining poles are in the left half-plane.



Example 6.8
Find the number of poles in the left half-plane, the right half-plane, and on 
the jw-axis for the system

The closed-loop transfer function for the system is
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Example 6.8
¾ A row of zeros appears in the s5 row. Thus, the closed-loop transfer function 
denominator must have an even polynomial as a factor. Return to the s6 row and 
form the even polynomial:p y

¾ Differentiate this polynomial with respect to s to form the coefficients that will
replace the row of zeros:

¾ Replace the row of zeros at the s5 row by the coefficients and multiply through by 1/2¾ Replace the row of zeros at the s5 row by the coefficients and multiply through by 1/2 
for convenience. 
¾ There are two sign changes from the even polynomial at the s6 row down to the end of 
the table Hence the even polynomial has two right half plane polesthe table. Hence, the even polynomial has two right–half- plane poles. 
¾ Because of the symmetry about the origin, the even polynomial must have an equal 
number of left–half-plane poles. Therefore, the even polynomial has two left–half-plane 
polespoles. 
¾ Since the even polynomial is of sixth order, the two remaining poles must be on the 
jω-axis.
¾ There are no sign changes from the beginning of the table down to the even g g g g
polynomial at the s6 row, the rest of the polynomial has no right–half plane poles. 
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Example 6.9
¾ Find the range of gain, K, for the system of

that will cause the system to be stable, unstable, and marginally stable. 
Assume K > 0

¾ First find the closed-loop transfer function as

Assume K > 0.

¾ Next form the Routh table shown as

¾ Since K is assumed positive, we see that all elements in the first column are 
always positive except the s1 row. 
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y p p
¾ This entry can be positive, zero, or negative, depending upon the value of K.



Example 6.9
¾ If K < 1386, all terms in the first column will be positive, and since there are 
no sign changes, the system will have three poles in the left half-plane and be 
stable.

¾ If K > 1386, the s1 term in the first column is negative. There are two sign 
changes, indicating that the system has two right–half-plane poles and one 
left–half-plane pole, which makes the system unstable.

¾ If K = 1386, we have an entire row of zeros, which could signify jw poles. 
Returning to the s2 row and replacing K with 1386, we form the even 
polynomialpolynomial

¾ Differentiating with respect to s, we have
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Example 6.9
¾ Replacing the row of zeros with the coefficients, we obtain the Routh-
Hurwitz table shown as

for the case of K = 1386for the case of K 1386.

¾ Since there are no sign changes from the even polynomial (s2 row) down
to the bottom of the table the even polynomial has its two roots on theto the bottom of the table, the even polynomial has its two roots on the
jω‐axis of unit multiplicity.

¾ Si h i h b h l i l h¾ Since there are no sign changes above the even polynomial, the
remaining root is in the left half‐plane. Therefore the system is marginally
stable.
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