MAT 5120 - Advanced Algebra - 2023-2024 Spring

Homework Assignment 1

Due March 4th 2024

There are 10 questions each worth 10 points.
(1) Prove that $(\mathbb{R} \backslash\{0\}) \times \mathbb{R}$ is a (nonabelian) group under the operation \star defined as $(a, b) \star(c, d)=$ $(a c, b c+d)$ for all $(a, b),(c, d) \in(\mathbb{R} \backslash\{0\}) \times \mathbb{R}$.
(2) Let G be a group and $a, b \in G$. Suppose that $a^{2}=1$ and $a b^{7} a=b^{13}$. Show that $b^{120}=1$.
(3) Let $D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, r s=s r^{-1}\right\rangle=\left\{s^{i} r^{j} \mid i, j \in \mathbb{Z}, 0 \leq i \leq 1,0 \leq j \leq n-1\right\}$.
(a) Show that for any element $x=s r^{j} \in D_{2 n}$, where $0 \leq j \leq n-1$, we have $r x=x r^{-1}$.
(b) Show that any element $x=s r^{j} \in D_{2 n}$, where $0 \leq j \leq n-1$, has order 2 .
(c) Let $n \geq 3$ and suppose that $s^{i} r^{j}$ is a nonidentity element of $D_{2 n}$ which commutes with all elements of $D_{2 n}$. Show that $i=0, n$ is even, and $j=n / 2$.
(4) (a) Find the order of $(18)(2113710)(4915)(5171613)(61214) \in S_{17}$.
(b) Let $\sigma=\left(1234567891011\right.$ 12) $\in S_{12}$. For which positive integers i is σ^{i} also a 12-cycle?
(c) Let $\tau=\left(\begin{array}{ll}1 & 2\end{array}\right)(34)\left(\begin{array}{ll}5 & 6\end{array}\right)(78)(910)(1112)(1314) \in S_{14}$. Is there a cycle $\sigma \in S_{14}$ such that $\tau=\sigma^{k}$ for some integer k.
(d) Let $\tau=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\left(\begin{array}{ll}4 & 5\end{array}\right)(789)(101112)(131415) \in S_{15}$. Is there a cycle $\sigma \in S_{15}$ such that $\tau=\sigma^{k}$ for some integer k.
(5) (a) Find all numbers n such that S_{7} contains an element of order n. Explain your answer.
(b) Find the number of elements of order 4 in S_{7}. Explain your answer.
(c) Find the smallest value of n such that S_{n} contains an element of order 35. Explain your answer.
(6) (a) Write out the group tables for S_{3}, D_{6}, D_{8}, and Q_{8}.
(b) Compute the order of each of the elements in S_{3}, D_{6}, D_{8}, and Q_{8}.
(7) (a) Show that S_{3} and D_{6} are isomorphic.
(b) Show that D_{8} and Q_{8} are nonisomorphic.
(8) Let $G=G L_{2}\left(\mathbb{F}_{2}\right)$.
(a) Write out all elements of G and compute their orders.
(b) Show that G is nonabelian.
(c) Show that $G \cong S_{3}$.
(9) Let G be a group.
(a) Show that for any $x \in G,|x|=\left|x^{-1}\right|$.
(b) Let $\phi: G \rightarrow G$ be defined as $\phi(x)=x^{-1}$. Show that ϕ is a homomorphism if and only if G is abelian.
(10) Let $G=\left\{z \in \mathbb{C} \mid z^{n}=1\right.$ for some $\left.n \in \mathbb{Z}^{+}\right\}$, let $k \in \mathbb{Z}$ where $k>1$, and define $\phi: G \rightarrow G$ as $\phi(z)=z^{k}$. Show that ϕ is a surjective homomorphism but is not an isomorphism.

