KMM 2621 Physical Chemistry for Engineers

Homework 4- Simple Mixtures

P1. The volume of an aqueous solution of NaCl at $25^{\circ} \mathrm{C}$ was measured at a series of molalities b, and it was found that the volume fitted the expression;

$$
v=1003+16.62 x+1.77 x^{3 / 2}+0.12 x^{2}
$$

where $v=V / \mathrm{cm}^{3}, V$ is the volume of a solution formed from 1 kg of water, and $x=b / b^{0}$. Calculate the partial molar volume of the components in a solution of molality $0.1 \mathrm{~mol}_{\mathrm{kg}}{ }^{-1}$.

P2. The molar mass of an enzyme was determined by dissolving it in water, measuring the osmotic pressure at $20^{\circ} \mathrm{C}$, and extrapolating the data to zero concentration. The following data were obtained:

$\left.\mathbf{c (m g / c m} \mathbf{m}^{\mathbf{3}}\right)$	3.221	4.618	5.112	6.722
$\mathbf{h (c m})$	5.746	8.238	9.119	11.99

Calculate the molar mass of the enzyme.
P3. A solution of ethanol (eth) and chloroform (chl) at $45^{\circ} \mathrm{C}$ with $x_{\text {eth }}=0.99$ has a vapor pressure of 177.95 torr. At this high dilution of chloroform, the solution can be assumed to be essentially ideally dilute. The vapor pressure of pure ethanol at $45^{\circ} \mathrm{C}$ is 172.76 torr. (a) Find the partial pressures of the gases in equilibrium with the solution. (b) Find the mole fractions in the vapor phase. (c) Find the Henry's law constant for chloroform in ethanol at $45^{\circ} \mathrm{C}$. (d) Predict the vapor pressure and vapor-phase mole fractions at $45^{\circ} \mathrm{C}$ for a chloroform-ethanol solution with $x_{\text {eth }}=0.98$. Compare with the experimental values $P=183.38$ torr and $y_{\text {eth }}=$ 0.9242 .

