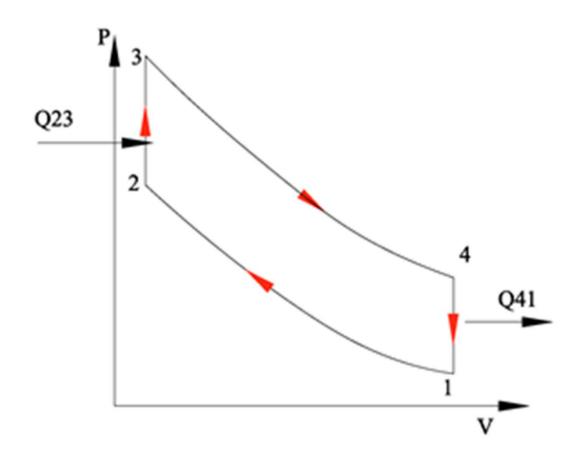
Internal Combustion Engines

Asst. Prof. Dr. Levent YÜKSEK


Below listed data are provided for a four stroke internal combustion engine which operates according to air-standard <u>OTTO</u> cycle. Please calculate the **pressure** and **temperature** of the characteristic cycle points and the indicated mean effective pressure (P_{mi}) of the cycle.

Given parameters,

- Temperature at the beginning of compression stroke= 20°C
- Pressure at the beginning of compression stroke= 1 Bar
- Compression Ratio is 10.5
- Pressure increase ratio is 2
- Ratio of specific heats is 1.41

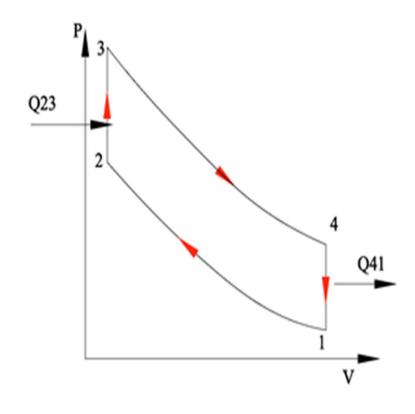
(The SEILIEGER Cycle **Pmi** and η t equations are given below. You can use these equations for calculating **OTTO Cycle Pmi** and η t)

$$Pmi = \eta_T \cdot \frac{P_1 \cdot \varepsilon^k}{(k-1) \cdot (\varepsilon - 1)} \left[\rho - 1 + k \rho \left(\varepsilon_g - 1 \right) \right] \quad \eta_T = 1 - \frac{1}{\varepsilon^{(k-1)}} \cdot \frac{\rho \cdot \varepsilon_g^k - 1}{\rho - 1 + k \cdot \rho \cdot \left(\varepsilon_g - 1 \right)}$$

$$P_1 = 1$$
 Bar $P_2 = P_1 \cdot \varepsilon^k$

$$P_2 = 1.10,5^{1,41} = 27,53$$
 Bar

$$\frac{P_3}{P_2} = \rho$$
, $\frac{P_3}{27,53} = 2$


$$P_3 = 55,06$$
 Bar

$$P_4 = \frac{P_3}{\varepsilon^k}, P_4 = \frac{55,06}{10,5^{1,41}}$$

$$P_4 = 2$$
 Bar

$$T_1 = 293 \text{ K}$$

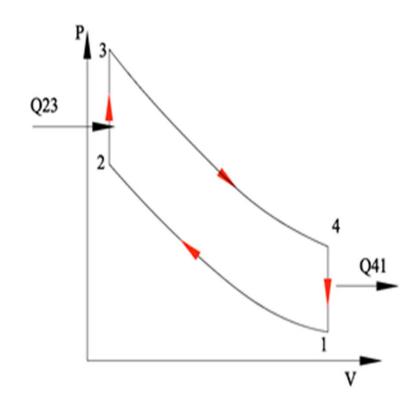
$$T_2 = T_1 \cdot \varepsilon^{k-1}$$

$$T_2 = 293.10,5^{1,41-1}, T_2 = 768,34 \text{ K}$$

$$T_2 = 293.10,5^{1,41-1}, T_2 = 768,34 \text{ K}$$

$$\frac{T_3}{T_2} = \rho$$
, $\frac{T_3}{768,34} = 2$

$$T_3 = 1536,68 \text{ K}$$


$$T_4 = \frac{T_3}{\varepsilon^{k-1}}, \ T_4 = \frac{1536,68}{10.5^{1,41-1}}$$

$$T_4 = 585,99 \text{ K}$$

$$\eta_T = 1 - \frac{1}{\varepsilon^{k-1}}, \ 1 - \frac{1}{10.5^{1.41-1}}, \ \eta_T = 0.6186$$

$$Pmi = \eta_T \cdot \frac{P_1}{k-1} \cdot \frac{\varepsilon^k}{\varepsilon - 1} \cdot (\rho - 1)$$

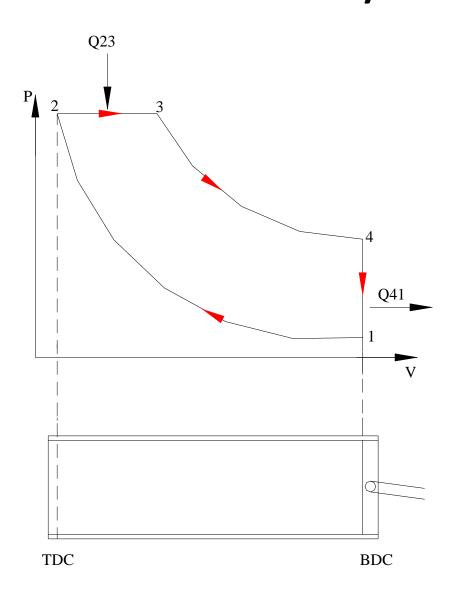
$$Pmi = 0,6186. \frac{1}{1,41-1}. \frac{10,5^{1,41}}{10,5-1}. (2-1) = 4,372 \text{ Bar}$$

Below listed data are provided for a four stroke internal combustion engine which operates according to air-standard **DIESEL** cycle. Please calculate the **pressure** and **temperature** of the characteristic cycle points and the indicated mean effective pressure (P_{mi}) of the cycle.

Given parameters,

Pressure at the beginning of compression stroke is 1 Bar.

Temperature at the beginning of compression stroke is 27°C.

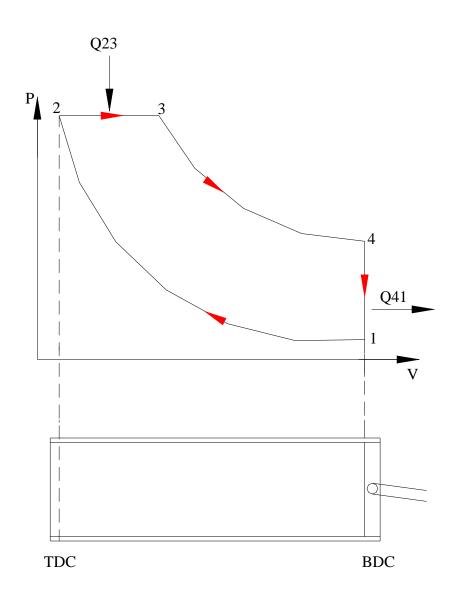

Cut-off Ratio is 1.4

Ratio of specific heats 1.37

Pressure at the <u>beginning</u> of the <u>heat input</u> process is 57.3 Bars.

(The SEILIEGER Cycle **Pmi** and η t equations are given below. You can use these equations for finding OTTO Cycle **Pmi** and η t)

$$Pmi = \eta_T \cdot \frac{P_1 \cdot \varepsilon^k}{(k-1) \cdot (\varepsilon - 1)} \left[\rho - 1 + k \rho \left(\varepsilon_g - 1 \right) \right] \quad \eta_T = 1 - \frac{1}{\varepsilon^{(k-1)}} \cdot \frac{\rho \cdot \varepsilon_g^k - 1}{\rho - 1 + k \cdot \rho \cdot \left(\varepsilon_g - 1 \right)}$$


$$T_1 = 300K$$

$$P_1 = 1 Bar$$

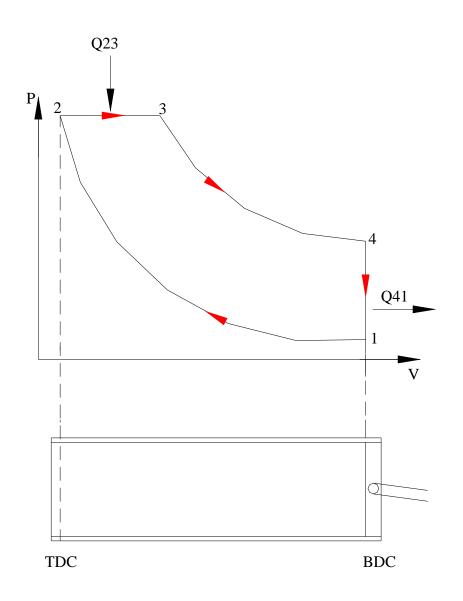
$$P_2 = 57.3 \, Bars$$

$$\varepsilon_g = 1.4$$

$$k = 1.37$$

$$P_2 = P_1 \cdot \varepsilon^k$$

$$57.3 = 1 \cdot \varepsilon^{1.37}$$


$$57.3 = 1.\varepsilon^{1.37}$$

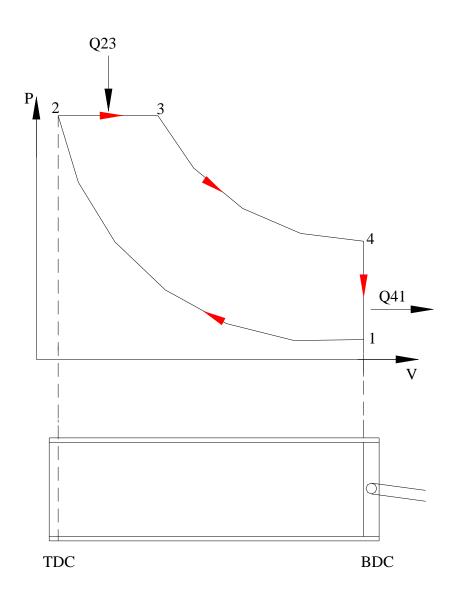
$$\varepsilon = 19.2$$

$$P_{2} = P_{3}$$

$$P_3 = 57.3 \, Bars$$

$$P_{4} = \frac{P_{3}}{\left(\frac{\mathcal{E}}{\mathcal{E}_{g}}\right)^{k}} = \frac{57.3}{\left(\frac{19.2}{1.4}\right)^{1,37}} = 1.57 \, Bars$$

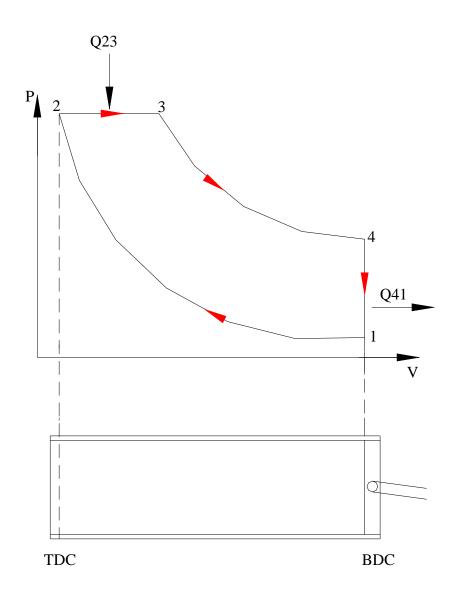
$$T_2 = T_1 \cdot \varepsilon^{k-1}$$


$$T_2 = 300.19.2^{1.37-1}$$

$$T_2 = 895.24K$$

$$T_3 = T_2 \cdot \varepsilon_g$$

$$T_3 = 895.24x1.4$$


$$T_3 = 1253.3K$$

$$T_4 = \frac{T_3}{\left(\frac{\mathcal{E}}{\mathcal{E}_g}\right)^{k-1}}$$

$$T_4 = \frac{1253.3}{\left(\frac{19.2}{1.4}\right)^{1.37-1}}$$

$$T_4 = 475.81K$$

$$\eta_{T} = 1 - \frac{1}{\varepsilon^{(k-1)}} \cdot \frac{\rho \cdot \varepsilon_{g}^{k} - 1}{\rho - 1 + k \cdot \rho \cdot (\varepsilon_{g} - 1)}$$

$$\eta_{T} = 1 - \frac{1}{19 \cdot 2^{(1 \cdot 37 - 1)}} x \frac{1x(1 \cdot 4^{1 \cdot 37}) - 1}{1 - 1 + (1 \cdot 37) x 1x(1 \cdot 4 - 1)}$$
TDC

BDC

Below listed data are provided for a four stroke internal combustion engine which operates according to air-standard <u>**DUAL**</u> cycle. Please calculate the **pressure** and **temperature** of the characteristic cycle points and the indicated mean effective pressure (P_{mi}) of the cycle.

Given parameters,

Pressure at the beginning of compression stroke is 1 Bar.

Pressure and temperature at the end of heat input process are 43.05x10⁵ Pa and 2410K respectively.

Temperature at the end of expansion stroke is 1150K.

Compression ratio is 11.

Ratio of specific heats 1.41

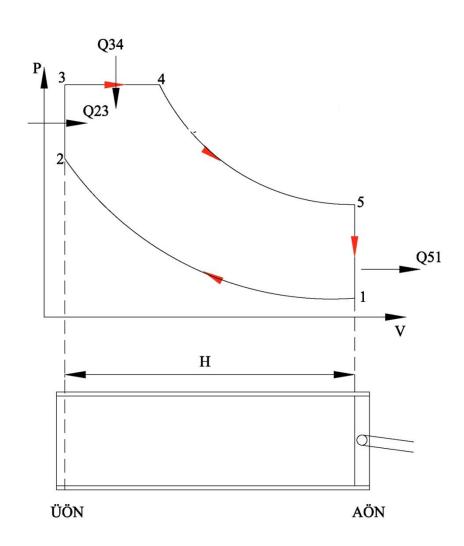
(The SEILIEGER Cycle **Pmi** and ηt equations are given below. You can use these equations for finding OTTO Cycle **Pmi** and ηt)

$$Pmi = \eta_T \cdot \frac{P_1 \cdot \varepsilon^k}{(k-1) \cdot (\varepsilon - 1)} \left[\rho - 1 + k \rho \left(\varepsilon_g - 1 \right) \right] \qquad \eta_T = 1 - \frac{1}{\varepsilon^{(k-1)}} \cdot \frac{\rho \cdot \varepsilon_g^k - 1}{\rho - 1 + k \cdot \rho \cdot \left(\varepsilon_g - 1 \right)}$$

$$P_1 = 1.01.10^5 Bars$$

$$P_2 = P_1 \cdot \varepsilon^k$$

$$P_2 = 1.01.10^5 \, x11^{1.41} = 29.6 \, Bars$$

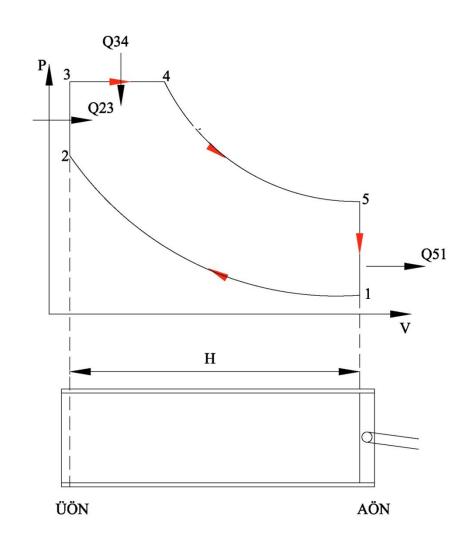

$$P_3 = P_4 = 43.05 Bars$$

$$T_4 = 2410 \, K$$

$$T_5 = 1150 K$$

$$T_5 = \frac{T_4}{\left(\frac{\varepsilon}{\varepsilon_g}\right)^{k-1}} \quad 1150 = \frac{2410}{\left(\frac{11}{\varepsilon_g}\right)^{1,41-1}}$$

$$\varepsilon_g = 1.81$$

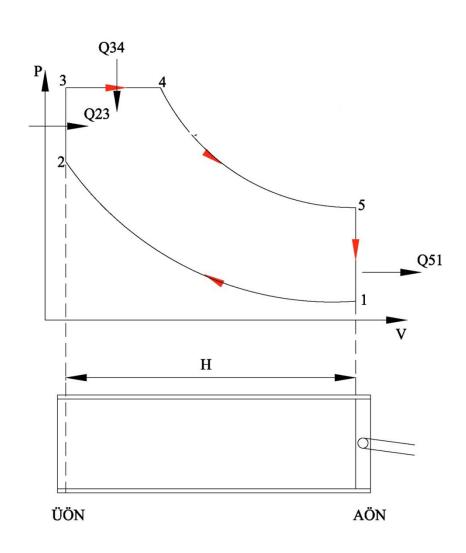

$$T_4 = T_3.\varepsilon_g$$

$$2410 = T_3 x 1.81$$

$$T_3 = 1331.4K$$

$$\frac{P_3}{P_2} = \rho$$
 $\frac{43.5}{29.6} = \rho$

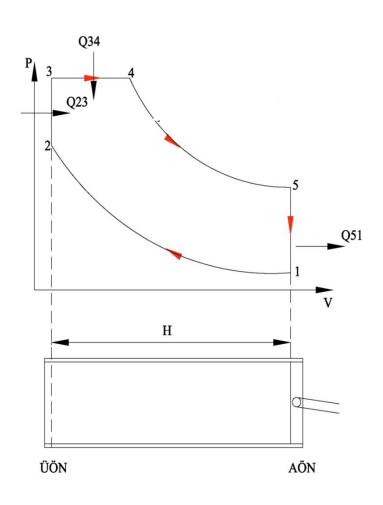
$$\rho = 1,469$$



$$\frac{T_3}{T_2} = \rho \qquad \frac{1331.4}{T_2} = 1.469$$

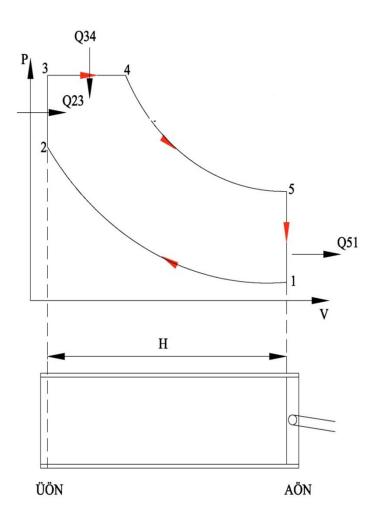
$$T_2 = 906.39K$$

$$T_2 = T_1 \cdot \varepsilon^{k-1}$$
 906,39 = $T_1 \cdot 11^{0.41}$


$$T_1 = 339,11K$$

$$\eta_T = 1 - \frac{1}{\varepsilon^{k-1}} \cdot \frac{\rho \cdot \varepsilon_g^k - 1}{\rho - 1 + k \cdot \rho \cdot (\varepsilon_g - 1)}$$

$$\eta_T = 1 - \frac{1}{11^{0.41}} \cdot \frac{1,469.1,81^{1.41} - 1}{1,469 - 1 + 1,41.1,469.(1,81 - 1)}$$


$$\eta_T = 0.5832$$

$$Pmi = \eta_T \cdot \frac{P_1 \cdot \varepsilon^k}{(k-1) \cdot (\varepsilon - 1)} \left[\rho - 1 + k \rho \left(\varepsilon_g - 1 \right) \right]$$

$$Pmi = 0,5832. \frac{1,01.11^{1,41}}{(1,41-1).(11-1)} [1,469-1+1,41.1,469(1,81-1)]$$

Pmi = 9.06 Bars

