Half car model

Half car model assumptions

- Vehicle is defined as a two wheeler which has 4 DOF.
- Tire can be modeled as single spring or springdamper sub-system.
- Spring rate and damper coef. can be modeled with linear equations.
- CG of the vehicle, spring rates and damper coef., mass of sprung and unsprung masses are inputs.

Half car model schematic

Symbols

```
X_s = Displacement \ of \ CG
X_{s1} = Displacement of body at front wheel axis
X_{s2} = Displacement of body at rear wheel axis
X_{u1} = Displacement of front unsprung mass
X_{u2} = Displacement of rear unsprung mass
X_{r1} = Road input acting on front wheel
X_{r2} = Road input acting on rear wheel
 I_s = Mass moment of inertia of the vehicle body
 m_s = Mass \ of \ vehicle \ body \ (considered \ as \ sprung \ mass)
 m_{u1} = Unsprung \ mass \ of \ front \ wheel \ system
 m_{u2} = Unsprung \ mass \ of \ rear \ wheel \ system
 \theta_s = Rotation of vehicle body
 l_1 and l_2 = Distance of wheel axis to CG
 k = Rate\ of\ an\ individual\ spring
```

C = Coefficient of an individual damper

$$1 m_s \ddot{x}_s + c_{s1} (\dot{x}_{s1} - \dot{x}_{u1}) + c_{s2} (\dot{x}_{s2} - \dot{x}_{u2}) + k_{s1} (x_{s1} - x_{u1}) + k_{s2} (x_{s2} - x_{u2}) = 0$$

$$2 I_s \ddot{\theta}_s + l_1(c_{s1}(\dot{x}_{s1} - \dot{x}_{u1}) + k_{s1}(x_{s1} - x_{u1})) - l_2(c_{s2}(\dot{x}_{s2} - \dot{x}_{u2}) + k_{s2}(x_{s2} - x_{u2})) = 0$$

$$3 m_{u1}\ddot{x}_{u1} - c_{s1}(\dot{x}_{s1} - \dot{x}_{u1}) - k_{s1}(x_{s1} - x_{u1}) + k_{t1}(x_{u1} - x_{r1}) = 0$$

$$+ x_s = (l_2 x_{s1} + l_1 x_{s2})/l$$

$$\theta_s = (x_{s1} - x_{s2})/l$$

$$[M]{\ddot{X}} + [C]{\dot{X}} + [K]{X} = \{P\}$$

$$[M] = \begin{bmatrix} l_2 m_s / l & 0 & l_1 m_s / l & 0 \\ I_s / l & 0 & -I_s / l & 0 \\ 0 & m_{u1} & 0 & 0 \\ 0 & 0 & 0 & m_{u2} \end{bmatrix}$$

$$\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} c_{s1} & -c_{s1} & c_{s2} & -c_{s2} \\ l_1 c_{s1} & -l_1 c_{s1} & -l_2 c_{s2} & l_2 c_{s2} \\ -c_{s1} & c_{s1} & 0 & 0 \\ 0 & 0 & -c_{s2} & c_{s2} \end{bmatrix}$$

$$[K] = \begin{bmatrix} k_{s1} & -k_{s1} & k_{s2} & -k_{s2} \\ l_1 k_{s1} & -l_1 k_{s1} & -l_2 k_{s2} & l_2 k_{s2} \\ -k_{s1} & k_{s1} + k_{t1} & 0 & 0 \\ 0 & 0 & -k_{s2} & k_{s2} + k_{t2} \end{bmatrix}$$

$$\{P\} = \begin{cases} 0 \\ 0 \\ k_{t1}x_{r1} \\ k_{t2}x_{r2} \end{cases}, \quad \{X\} = \begin{cases} x_{s1} \\ x_{u1} \\ x_{s2} \\ x_{u2} \end{cases}$$

Vehicle specs

Parameters	Mean values
m_s	1794.4 kg
I_s	3443.05 kgm ²
m_{u1}	87.15 kg
m_{u2}	140.4 kg
l_1	1.271 m
l_2	1.716 m

Vehicle specs

<u>-</u>	
Parameters	Mean values
k_{s1}	66824.4 N/m
k_{s2}	18615.0 N/m
c_{s1}	1190 Ns/m
c_{s2}	1000 Ns/m
k_{t1}	101115.0 N/m
k_{t2}	101115.0 N/m

Response to a bump input

