

MAK 3031- Internal Combustion Engines

Asst. Prof. Dr. Levent YÜKSEK
Yıldız Technical University-Automotive
Sub-Division
Internal Combustion Engine Laboratory

Inline and V-type cylinder arrangement

Radial piston engine cylinder arrangement

Boxer engine cylinder arrangement

Opposite piston engines

Rotary piston engines-Wankel engine

- Classification based upon cooling system
 - Liquid cooled engines (Water/oil)
 - Air cooled engines
- Classification based upon operation area
 - Lawn movers/power generators
 - Diesel generator engines
 - Marine applications
 - Automotive applications
 - Railway applications
 - Non-road construction engines and farm tractor app.
 - Aviation engines

Week-1/Homework-1.2

- Prepare a study about below-listed topics.
- Stirling engine, how it works, why it hasn't operated widely today?
- What is the benefits and drawbacks of Wankel rotary engine?


```
Top Dead Centre (TDC)- Üst Ölü Nokta (Ü.Ö.N.)
Bottom Dead Centre(BDC)- Alt Ölü Nokta (A.Ö.N.)
Middle Centre (MC)- Orta ölü nokta (O.Ö.N.)
Stroke- Piston Stroku (H)
Displacement volume/Stroke volume-- Strok Hacmi (Vh)
Clearance Volume--Sıkıştırma Hacmi veya ölü hacim (Vo)
Total cylinder volume-- Toplam Hacim (Vt)
Compression ratio--Sıkıştırma oranı (ε)
Cycle--İş Çevrimi:
```


TDC

MC

BDC

• Stroke

Cylinder diameter-Silindir Çapı (D)

Displacement volume/Strok hacmi (Vh)=
$$\frac{H}{4}$$

Clearance Volume/ Ölü hacim-(Vo)

Total cylinder volume (Vt)=Displacement Volume (Vh)+Clearance Volume (Vo)

Compression ratio/Sıkıştırma oranı=Maksimum silindir içi hacmin, minimum hacme oranıdır.

Compression ratio/Sıkıştırma oranı=Vt/Vo

Week-1/Homework-1.3

 Investigate the above listed parameters of a mass-production car engine.