
LQR,LQG

1 Symbols
• x t ∈ℝn State variables

u t ∈ℝm System input
y t ∈ℝ p System output
r t∈ℝ p Reference point
e t∈ℝ p Error

• ẋ t =A x t B ut 
y t =C x t 

• A∈ℝn×n

B∈ℝn×m

C∈ℝ p×n

• The symbol 0 is used for the zero matrix with appropriate 
dimensions!

2 State Feedback(LQR)
Task

Find the gain matrix K such that the following quality criterion is 
minimized:

J  x t  , ut =∫
0

∞

xT t ⋅Q⋅x t uT t ⋅R⋅ut ⋅dt

Note: the LQR has no reference signal!

Solution
• Find the positive-definit matrix Φ that satisfies following equation:

⋅B⋅R−1⋅BT⋅−⋅A−AT⋅−Q=0 (Ricatti Equation)
• Compute K:

K=R−1⋅BT⋅
• The control input is then as follows:

u t =−K⋅x t 

Tuning
• Q∈ℝ n×n tells us how to penalize each of the state variable x(t). In 

some cases also the square root of Q is used Q= CT C . In general
C has nothing to do with the state space matrix C. A good ansatz 

is to choose a diagonal Matrix for Q, so each element can be 
interpreted as the factor corresponding to each of the n state 
variables.

• R∈ℝm×m penalizes the input u(t). Here the ansatz can be chosen 

as follows: R=r⋅I
• If R is large compared to Q, then we talk about expensive control. 

The resulting system is rather slow.
• If R is small compared to Q, then we talk about cheap control. The 

resulting system is fast and has quite good robustness. But be 
careful not to choose R  too small. There is a point where the 
system loses its robustness and where the noise attenuation is 
lost.

Conditions
• A ,B  must be controllable
• A , C must be observable ( Q= CT C ). This condition is also met 

if C has full rank.

Open-Loop
Open-loop state space matrices:

ALQR ,OL=A , BLQR ,OL=B , C LQR ,OL=K , D LQR ,OL=0
Loop gain:

LLQR=B⋅ s I−A−1⋅K

Closed-Loop
Closed-loop state space matrices (There is no input to the system, so 
B and D don't really exist):

ALQR ,CL=A−BK , B LQR ,CL=B  , C LQR ,CL=C , DLQR , CL=0
Transfer function (also this does not really exist as there is no input):

T LQR=B⋅s I−A−BK −1⋅C
The resulting system is always asymptotically stable!

Robustness
It is possible to show that following equation holds:

min


min I L LQRi=1

This means that the minimum distance to the critical point is always at 
least 1. Hence, the LQR controller guarantees a very high 
robustness.

3 LQR-I
Aim
It is possible to include some integral action in the system. This is 
done so that if we want to achieve reference tracking the steady state 
error goes towards 0. Therefore generally the output of the system is 
integrated and fed back through the matrix KI. (An alternative is to use 
feedforward action, see chapter 6).

Tuning
• γ is the additional tuning parameter and influences the strength of 

the integral action. Don't push it too high (oscillations)!

Procedure
The procedure is similar to the standard LQR, but applied on an 
augmented state space system. The augmented matrices are 
denoted as A , B , C , Q , K ,  .

Solution

Augmented system:
A=[A 0

−C 0] B=[B0 ]
C=[ C 0

0 ]
Q= CT⋅C

The solution is then found by solving the Ricatti equations on the 
augmented system:

⋅B⋅R−1⋅BT⋅− ⋅A−AT⋅− Q=0
K=R−1⋅BT⋅

And then decomposing the resulting K as follows: [K −K I ]= K

4 Observer(LQG)
Aim
The aim of the observer is to estimate the state variables of the 
system if these are not directly available.

Task

Find the gain matrix L such that the estimated state x t  is as close 
as possible to the real state x t  .  can be used as tuning parameter 
and has not really got any physical interpretation.

Solution
• Solve the dual Ricatti equation for the positiv-definit matrix  :

1
⋅CT⋅C⋅−⋅AT−A⋅−B⋅BT=0

• Compute K:



L= 1
⋅C⋅

T

Tuning
• Smaller choices of  generally lead to faster observers
• Often a good approach is to choose the observer poles( A−LC ) 3 

times faster than the system's( A−BK ).
• If the observer is chosen too fast it can become instable to 

modeling errors or noise.

Conditions
• A , B  must be controllable
• A , C must be observable.

Error Dynamics
This is the dynamic of the error between x t  and x t  :

e t =x t − x t
ė t =A−L Ce t 

The system matrix A−LC has always negativ eigenvalues and 
therefore the error e t   converges to 0.

5 Output Feedback(OF), LTR

5.1 Simple Output Feedback
Trough combining an observer with a state feedback controller and 
reordering the blocks we obtain the following output feedback 
controller:

Note: the reference signal r t  was included in this diagram. In 
general the resulting control system will have some important steady 
state error (LQR is designed to bring the state to zero). To a good 
reference tracking behavior go to chapter 6.

Open-Loop
Open-loop state space matrices:

ALTR ,OL=[A −BK
0 A−BK−LC] BLTR ,OL=[0−L]

CLTR ,OL=[C 0 ]
Loop gain:

LLTR=C⋅s I−A−1⋅B⋅K⋅ s I−A−BK−LC −1⋅L

Closed-Loop
Closed-loop state space matrices:

ALTR ,CL=[A −BK
LC A−BK−LC] BLTR ,CL=[0−L]

CLTR ,CL=[C 0 ]

5.2 Output feedback with Integral action
If an LQRI state feedback is used the diagram will look as follows:

This system already possesses good reference tracking qualities, so 
feedforward action like in chapter 6 is not absolutely necessary

Open-Loop
Open-loop state space matrices:

ALTR ,OL=[A −BK BK I

0 A−BK−LC BK I

0 0 0 ] B LTR ,OL=[0−L
I ]

CLTR ,OL=[C 0 0 ]

Closed-Loop
Closed-loop state space matrices:

ALTR ,CL=[A −BK BK I

LC A−BK−LC BK I

C 0 0 ] B LTR ,CL=[0−L
I ]

CLTR ,CL=[C 0 0 ]

5.3 Loop Transfer Recovery(LTR)
Using an observer in state of the real state x t  strongly reduces the 
robustness of the controller. By iterating on the tuning parameters, 
part of the robustness can be reobtained.
LTR is called the procedure to design iteratively the LQR and LQG. 
The standard procedure looks as follows:
• Design a state feedback controller for your plant. Adapt the 

parameters Q and R until your specifications are met.
• Design an observer. Iterate on the parameter γ, until your 

specification are recovered to your satisfaction. In general it is 
advisable to begin with a relatively large value and decrease until 
your open-loop and closed-loop behaviors are satisfying.

6 Feedforward Action, Reference 
Tracking
Reference Tracking
The LQR/LQG approach leads in general to systems with very nice 
stabilizing qualities. However it does not guarantee for any good 
reference tracking.
There are two solutions if reference tracking problems are occuring:
• use an LQRI state feedback controller (chapter 3)

• introduce some feedforward action to improve the reference 
tracking

Error dynamic
The feedforward action can also be used to make the error dynamik 
between x t  and x t  independent of changes in the reference
value r t  .

Standard Feedforward Action
To Feedforward signals are included:

To obtain good reference tracking and error independence, the 
matrix G∈ℝn×m and ∈ℝm×m can be computed as follows:

=−[C∗⋅A∗⋅B∗]−1

G=LB
with:

A∗=[A −BK
LC A−BK−LC] B∗=[BB ]

C∗=[C 0 ]
The resulting closed-loop behavior has the same matrices:

ACL=A∗ , BCL=B∗ , C CL=C ∗

Feedforward with integral action
In the case that integral action was included (LQRI), the diagram 
looks as follows:

Here the computation of both matrices simplifies to:
=I
G=LB

And the resulting closed-loop state space representation is:

ACL=[A −BK BK I

LC A−BK−LC BK I

C 0 0 ] BCL=[B
B
I ]

CCL=[C 0 0 ]
Note: This feedforward action can only be applied if the number 
of inputs is equal to the number of outputs!
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