YILDIZ TECHNICAL UNIVERSITY
FACULTY OF CIV. ENG. - DIV. OF CIV. ENG.
DYNAMICS
MECHANICS DIVISION
HOMEWORK 1

NAME:
NO:
GROUP:
NOTE: Any homework submitted after the deadline will be void.

1) In a linear motion of a particle, $v=v(s)$ graph is given in the figure. Knowing that $s=0$ at $t=0$, (a) find $s=s(t)$ expression, and (b) determine the acceleration when $s=50 \mathrm{~cm}$.
(Answer: $s=100\left(1-e^{-\frac{1}{2} t}\right), \quad a=-12.5 \mathrm{~cm} / \mathrm{s}^{2}$)

2) In the figure knowing that the coefficient of kinetic friction is 0.25 between the surface and the $1-\mathrm{kN}$ block A, a) determine the weight of the block B in order to cause the block A to move and b) determine the accelerations of the blocks and the tension in the cable if the block B has a weight of 2 kN . Neglect the weight of the pulleys and cord. (Answer: $W_{B} \leq 0.57 \mathrm{kN}$ or $W_{B} \geq 1.43 \mathrm{kN}, \quad a_{A}=-1.85 \mathrm{~m} / \mathrm{s}^{2}$, $\left.a_{B}=0.93 \mathrm{~m} / \mathrm{s}^{2}, T=0.91 \mathrm{kN}\right)$

3) A collar with negligible weight and the weight W connected to the collar slide on a frictionless pipe with the velocity v_{o} as shown in the figure. When the collar hits the obstacle seen in the figure; a) determine the maximum θ angle of the weight W in the oscillation, b) determine the velocity v_{o} when $\theta_{\max }=30^{\circ}$ and $a=2 m$. Answer: $\boldsymbol{\theta}=\arccos \left[1-\boldsymbol{v}^{2} /(2 g a)\right], \boldsymbol{v}=2.29 \mathrm{~m} / \mathrm{s}$)

4) An object with a weight of 10 N is attached to the point O by an elastic rope on a frictionless table in the figure. The distance of the object to the point O is 0.6 m , the unstretched length of the rope is 1.3 m and the spring constant is $\mathrm{k}=5 \mathrm{~N} / \mathrm{cm}$. A velocity v_{1} is given to the object perpendicular to the direction that connects the object to point O as in the figure. Find the initial velocity v_{1} in which the maximum stretch in the spring is to be 1.8 m and find the velocity \boldsymbol{v}_{2} of A when the stretch in the spring is 1.8 m .(Answer: $\boldsymbol{v}_{\boldsymbol{1}}=\mathbf{1 1 . 7 4 ~ m} / \boldsymbol{s}$, $v_{2}=3.91 \mathrm{~m} / \mathrm{s}$)

5) After the $5-\mathrm{N}$ sphere A is released from rest in the position shown, it collides with the $5-\mathrm{N}$ sphere B . Knowing that the coefficient of restitution between the two spheres is $\mathrm{e}=0.70$, determine the θ angle which determines the highest position where the sphere B can reach after the collision. Note: $l=1 \mathrm{~m}$ (Answer: $\theta=73.74^{\circ}$)

HOMEWORK HOURS

Assoc. Prof. Zafer KÜTÜĞ (GROUP: 2) 16. 11.2018 $\quad 10: 00-12: 30] \Rightarrow$ Res. Assist. Yurdakul AYGÖRMEZ
Assoc. Prof. Murat ALTEKİN (GROUP: 3) 15.11.2018 $13: 00-15: 30\} \Rightarrow$ Room: $2-030$
$\left.\begin{array}{cccc}\text { Assist. Prof. Çağrı MOLLAMAHMUTOĞLU (GROUP: 1) } & 13.11 .2018 & 14: 30-16: 30 \\ \text { Assist Prof Yıldırım Serhat ERDOĞAN (GROUP. 4) } & 13.11 .2018 & 10: 00-12.30\end{array}\right\} \Rightarrow \begin{gathered}\text { Res. Assist. Yurdakul AYGÖRMEZ } \\ \text { Room: } 2-030\end{gathered}$ Assist. Prof. Yıldırım Serhat ERDOĞAN (GROUP: 4) $13.11 .2018 \quad 10: 00-12: 30\} \quad$ Room: $2-030$

NOTE: Homeworks will be delivered by hand.

