YILDIZ TECHNICAL UNIVERSITY

NAME:	NO:	GROUP:
DEADLINE: 07.11.2017 GROUP: $1-2$ DEADLINE: 08.11.2017 GROUP: $3-4$	NOTE: Any homework submitted after the deadline will be void.	

1) Knowing that at the instant shown block A has a velocity of $8 \mathrm{~m} / \mathrm{s}$ and an acceleration of $6 \mathrm{~m} / \mathrm{s}^{2}$ both directed down the incline, determine (a) the velocity of block B, (b) the acceleration of block B. (Answer: $\left.v_{B}=8.53 \mathrm{~m} / \mathrm{s}, \quad a_{B}=6.40 \mathrm{~m} / \mathrm{s}^{2}\right)$

2) A $10-\mathrm{kg}$ block B rests on a $5-\mathrm{kg}$ bracket A , as shown below. The coefficients of friction are $\mu_{s}=0.40$ and $\mu_{k}=0.30$ between block B and bracket A , and there is no friction in the pulley or between the bracket and the horizontal surface. (a) Determine the maximum force F that can be applied if block B is not to slide on bracket A. (b) Determine the corresponding acceleration of the bracket A. (Answer : $\boldsymbol{F}_{\max }=\mathbf{2 4} \boldsymbol{N}, \boldsymbol{a}_{\boldsymbol{A}}=$ $1.6 \mathrm{~m} / \mathrm{s}^{2}$)

3) A $0.3-\mathrm{kg}$ block rests on the smooth semicylindrical surface. An elastic cord having a stiffness $k=2 \mathrm{~N} / \mathrm{m}$ is attached to the block at B and to the base of the semicylinder at point C. If the block is released from rest at $\mathrm{A}\left(\theta=0^{\circ}\right)$, determine the unstretched length of the cord so that the block begins to leave the semicylinder at the instant $\theta=45^{\circ}$. Neglect the size of the block. (Answer: $\boldsymbol{l}_{\boldsymbol{o}}=\mathbf{2 . 1 3} \mathbf{~ m}$)

4) A pan of negligible mass is attached to two identical springs of stiffness $\mathrm{k}=250 \mathrm{~N} / \mathrm{m}$. If a $10-\mathrm{kg}$ box is dropped from a height of 0.5 m above the pan, determine the maximum vertical displacement d . Initially each spring has a tension of 50 N . (Answer: $\mathbf{d = 1 . 3 4} \mathbf{~ m}$)

5) The triple jump is a track-and-field event in which an athlete gets a running start and tries to leap as far as he can with a hop, step, and jump. Shown in the figure is the initial hop of the athlete. Assuming that he approaches the takeoff line from the left with a horizontal velocity of $10 \mathrm{~m} / \mathrm{s}$, remains in contact with the ground for 0.18 s , and takes off at a 50° angle with a velocity of $12 \mathrm{~m} / \mathrm{s}$, determine the vertical component of the average impulsive force exerted by the ground on his foot. Give your answer in terms of the weight W of the athlete. (Answer: 6.21 W)

6) A girl throws a ball at an inclined wall from a height of 1.2 m , hitting the wall at A with a horizontal velocity v_o of magnitude $15 \mathrm{~m} / \mathrm{s}$. Knowing that the coefficient of restitution between the ball and the wall is 0.9 and neglecting friction, determine the distance d from the foot of the wall to the point B where the ball will hit the ground after bouncing off the wall. (Answer: $\mathbf{d = 1 5 . 9 4} \mathbf{~ m}$)

HOMEWORK HOURS

Assist. Prof. Zeynep ALEMDAR (GROUP: 1) 07.11.2017 11:00-17:00 $\} \Rightarrow$ Res. Assist. Yurdakul AYGÖRMEZ
Assoc. Prof. Murat ALTEKİN (GROUP: 2) 07.11.2017 11:00-17:00 $\Rightarrow \Rightarrow$ Room: 2-030

Assist. Prof. Çağrı MOLLAMAHMUTOĞLU (GROUP: 3) 08.11.2017 Assist. Prof. Yıldırım Serhat ERDOĞAN (GROUP: 4) 08.11.2017
$\left.\begin{array}{c}\text { 13:00-18:00 } \\ \text { 13:00-18:00 }\end{array}\right\} \Rightarrow \begin{gathered}\text { Res. Assist. Yurdakul AYGÖRMEZ } \\ \text { Room: } 2-030\end{gathered}$

