Welcome to

KOM3712 Control Systems Design Spring 2023

Prof. Dr. Şeref Naci Engin

Yildiz Technical University
Faculty of Electrical \& Electronics
Control and Automation Engineering Dept.
Davutpaşa Campus
Esenler, Istanbul, Turkey 34320
e-mail: nengin@yildiz.edu.tr serefnaci@gmail.com
http://avesis.yildiz.edu.tr/nengin/
Tel: +90 2123835943
Office: A-202

- Instructor: Dr. Şeref Naci Engin
- Assistant
- Office Hours:

Ms. Buse Tacal Ucun
Mondays 1:00-3:00 pm
and drop-in based short visits

- Grading:
- Midterm exam
: $1 \times 30 \%$
- Assignments/Quizzes
: $3 \times 10 \%$
- Final exam
: 40\%
- Only individual efforts \& submissions allowed!
- No tolerance to cheating!
- Attendance min. 70\%, plus assignments and quizzes

Textbooks

- N. S. Nise, Control Systems Engineering, 6th edition, John Wiley \& Sons, MA, 2011.
- G. F. Franklin, J. D. Powell, and A. EmamiNaeini, Feedback Control of Dynamic Systems, 6th edition, Prentice Hall, NJ, 2010
- K. Ogata, Modern Control Engineering, 5th edition, Prentice Hall, NJ, 2010
- C.L. Phillips, and J. Parr, Feedback Control Systems, 5th Ed., Prentice-Hall, 2010.
- F. Golnaraghi and B. C. Kuo, Automatic Control Systems, 9th edition, John Wiley \& Sons, NJ, 2010 (This book is available in Turkish by A. Bir, Literatür Yayıncılık)
- J. J. D'Azzo, C. H. Houpis, and S. N. Sheldon, Linear Control System Analysis and Design with Matlab, 5th edition, Marcel Dekker, 2003

CONTROL SYSTEMS ENGINEERING

KOM 3712 - Topics by weeks

Week-1 Recap. of Control Systems, RL based design for Cascaded and Feedback Controllers, PID tuning by Ziegler-Nichols, issues in PID implementations
Week-2 Recapture and Introduction to Frequency Response Techniques, Analytical Expressions, Plotting Frequency Response, Bode Plots
Week-3 Bode Plots of $2^{\text {nd }}$ Order Systems, Corrections to Second-Order Bode Plots, Bode plots for higher order systems, Nyquist Diagrams

Week-4 The Nyquist Criterion, Applying the Nyquist Criterion to Determine Stability, Sketching the Nyquist Diagram, Stability via the Nyquist Diagram, Range of Gain for Stability via the Nyquist Criterion, Stability via Mapping only the Positive j ω-Axis, Gain Margin (GM) and Phase Margin (PM) via the Nyquist Diagram
Week-5 Stability, Gain Margin, and Phase Margin via Bode Plots, Range of Gain for Stability via Bode Plots, Evaluating GM and PM, Examples
Week-6 Relation Between Closed-Loop Transient and Closed-Loop Frequency Responses, Response Speed and Closed-Loop Frequency Response, Relation Between Closed- and Open-Loop Frequency Responses, Constant \boldsymbol{M} Circles and Constant \boldsymbol{N} Circles, Relation Between ClosedLoop Transient and Open-Loop Frequency Responses

KOM 3712 - Topics by weeks, cont'd...

Week-7 Damping Ratio From \boldsymbol{M} Circles, Damping Ratio From PM, Response Speed from Open-Loop Frequency Response, Steady-State Error Characteristics (K_{p}, K_{v}, K_{a}) from Frequency Response, Systems with Time Delay, Obtaining Transfer Functions Experimentally

Week-8 Midterm Exam

Week-9 Design via Frequency Response, Transient Response via Gain Adjustment, Lag Compensation Design, Lead Compensation Design, Lag-Lead Compensation Design

Week-10 Design via State Space, State space representations for dynamic systems, Canonical Forms, Controllability, Observability

Week-11 Controller Design, Alternative Approaches to Controller Design, Pole Placement / Assignment, Example Problems, Design of Servo Systems

Week-12 State Observers, Design of Regulator and Control Systems with Observers

Week-13 Steady-State Error Design via Integral Control, Case Study - Antenna Control: Design of Controller and Observer

Week-14 LQR: Quadratic Optimal Regulator Systems (Linear Quadratic Optimal Regulator). A brief intro to LQR with examples.

Decibel vs. Gain and Energy

- A logarithmic scale is used when there is a large range of quantities.
- It is based on orders of magnitude, rather than a standard linear scale, so each mark on the decibel scale is the previous mark multiplied by a value.
- On the decibel scale, the quietest audible sound (perceived near total silence) is 0 dB .
- A sound 10 times more powerful is 10 dB .
- A sound 100 times more powerful than near total silence is 20 dB.
- A sound 1,000 times more powerful than near total silence is $30 \mathrm{~dB}, 40 \mathrm{~dB}$ and so on.

Decibel vs. Gain and Energy, cont.'s...

Change in dB in Gain
 Change in sound energy

3 dB increase

3 dB decrease

10 dB increase

10 dB decrease

20 dB increase

20 dB decrease by a factor of 10
sound energy is decreased by a factor of 10
sound energy is increased by a factor of 100
sound energy is decreased
sound energy is halved

Explanation

$20 \log x=3 \mathrm{~dB} \rightarrow x=\sqrt{2}$ Energy: $x^{2}=2$
$20 \log x=-3 \mathrm{~dB} \rightarrow x=1 / \sqrt{2}$ Energy: $x^{2}=1 / 2$
sound energy is increased $20 \log x=10 \mathrm{~dB} \rightarrow x=\sqrt{10}$ Energy: $x^{2}=10$ by a factor of 100
$20 \log x=-10 \mathrm{~dB} \rightarrow x=1 / \sqrt{10}$ Energy: $x^{2}=1 / 10$
$20 \log x=20 \mathrm{~dB} \rightarrow x=10$ Energy: $x^{2}=100$
$20 \log x=-20 \mathrm{~dB} \rightarrow x=1 / 10$
Energy: $x^{2}=1 / 100$

Example Problems from the past! - 1 of 2

Problem 1. Considering the Bode plots given below,
a) Determine the gain in linear unit at low frequencies.
b) Determine the break frequency using the Bode magn. and phase plots.
c) Fill in the table at the bottom by writing the gain values in dB at the corresponding frequencies from the plots.
d) What are the slopes at low and high frequencies in dB/octave and $\mathrm{dB} /$ decade?

e) Propose a transfer function that would give this Bode plot.

Freq. (r / s)	0.1	1	30	500	1000	4000

Example Problems from the past! - Solution:

Freq. (r/s)	0.1	1	30	500	1000	4000
Gain (dB)	-14	-14	-17	-38.4	-44.4	-56.5

Example Problems from the past! - Solution, cont. 's:

Solution 1. Considering the Bode plots given below,
a) $20 \log K_{\text {lin }}=-14 \mathrm{~dB} \rightarrow K_{\text {lin }}=10^{-14 / 20}=0.2$
b) We can draw asymptotes on the Bode magnitude plot and find the break frequency at their crossing point as $\omega_{c}=30 \mathrm{rad} / \mathrm{s}$. The same result for the break frequency can be found using the Bode phase plot, where the phase angle is -45° at $\omega_{c}=30 \mathrm{rad} / \mathrm{s}$.
c) Table was filled in the previous slide.
d) The slope at LF: 0 , at HF: $-6 \mathrm{~dB} /$ octave or equivalently $-20 \mathrm{~dB} /$ decade.

- Because the magnitude at $1000 \mathrm{rad} / \mathrm{s}$ is -44.4 dB , and doubling the frequency twice magnitude drops to -56.5 dB .
- The difference at magnitude is 12 dB , hence the slope is
$-6 \mathrm{~dB} /$ octave or equivalently $-20 \mathrm{~dB} /$ decade.

Example Problems from the past! - Solution, cont. 's:

Solution 1. Considering the Bode plots given below,
e) Propose a transfer function that would give this Bode plot.

We found that the linear gain at LF (dc gain) is $K_{\text {lin }}=0.2$ and break frequency is $\omega_{c}=30 \mathrm{rad} / \mathrm{s}$, which is the pole. Therefore, the transfer function that produces the above Bode plots should be,

- $G(s)=\frac{K}{s+a}=\frac{\frac{K}{30}}{\frac{s}{30}+1} \rightarrow \frac{K}{30}=0.2 \rightarrow K=6 \rightarrow G(s)=\frac{6}{s+30}$

Or,

- $G(s)=\frac{K}{s+a}$, at the dc gain where $s=0, \frac{K}{a}=0.2 \rightarrow$

$$
\frac{K}{30}=0.2 \rightarrow K=6 \rightarrow G(s)=\frac{6}{s+30}
$$

Example Problems from the past!-2 of 2

Problem 2. Considering the Bode plots given below,
a) Determine the gain in linear unit at low frequencies.
b) Determine the break frequency using the Bode magn. and phase plots.
c) Fill in the table at the bottom by writing the gain values in dB at the corresponding frequencies from the plots.
d) What are the slopes at low and high frequencies in dB/octave and dB/decade?

e) Propose a transfer function that would give this Bode plot.

Freq. (r/s)	1	4	20	200	400	1000
Gain (dB)						

Solution 2.

(a) $20 \log K_{\text {lin }}=40 \mathrm{~dB}$
$K_{\text {lin }}=10^{40 / 20}=100$
(b) We can draw asymptotes on the Bode magnitude plot and find the break frequency at their crossing point as $\omega_{c}=20 \mathrm{rad} / \mathrm{s}$. The same result for the break frequency can be found using the Bode phase plot, where the phase angle is 45° at $\omega_{c}=20 \mathrm{rad} / \mathrm{s}$.
(c) Table is filled as follows.

Frequency (rad/s)	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{2 0}$	$\mathbf{2 0 0}$	$\mathbf{4 0 0}$	$\mathbf{1 0 0 0}$
Gain (dB)	40	40	43	60	66	74

(d) The slope at LF: 0, at HF: 6 dB /octave or equivalently 20dB/decade.

Because the magnitude at $200 \mathrm{rad} / \mathrm{s}$ is 60 dB , and doubling the frequency twice magnitude rises to 72 dB . The difference at magnitude is 12 dB , hence the slope is 6 dB /octave or equivalently $20 \mathrm{~dB} /$ decade.

(e) We found that the linear gain at LF (dc gain) is $K_{\text {lin }}=40$ and break frequency is $\omega_{c}=20 \mathrm{rad} / \mathrm{s}$, which is the zero. Therefore, the transfer function that produces the above Bode plots should be, $G(s)=K(s+a)=K a(s / a+1)=20 K(s / 20+1) \rightarrow 20 K=100 \rightarrow K=5 \rightarrow G(s)=5(s+20)$

Alternatively, $G(s)=K(s+a)$, at the dc gain where $s=0, K a=100 \rightarrow 20 K=100 \rightarrow K=4$ $G(s)=5(s+20)$

Bode Plots for Ratio of First-Order Factors - A Simple Example

- Obtain Bode plots of $\boldsymbol{G}(\boldsymbol{s})=\boldsymbol{K} /[(\boldsymbol{s}+\mathbf{2})(\boldsymbol{s}+4)]$
- by hand (asymptotical plot) and
- in MATLAB (actual plot):
- Solution for $K=1$
- $G(s)=\frac{1}{(s+2)(s+4)}=\frac{1}{8} \frac{1}{(s / 2+1)(s / 4+1)}$
- We can now think of $G(s)$ consisting of three components: a gain of $\frac{1}{8}, \frac{1}{(s+2)}$ and $\frac{1}{(s+4)}$
- The first component is the gain and contributes to the magnitude plot as a constant level of

$$
20 \log \frac{1}{8}=-18.062 \mathrm{~dB}
$$

- The next two components contribute a $-20 \mathrm{db} / \mathrm{dec}$ at $2 \mathrm{rad} / \mathrm{s}$ and another $-20 \mathrm{db} / \mathrm{dec}$ at $4 \mathrm{rad} / \mathrm{s}$

Bode Plots for Ratio of First-Order Factors - A Simple

Example, solution cont.'s...

- Now, the phase plot of $G(s)=\frac{1}{(s+2)(s+4)}=\frac{1}{8} \frac{1}{(s / 2+1)(s / 4+1)}$
- The gain component does not contribute to the phase since it is just a real number, $\frac{1}{8} \angle 0^{\circ}$.
- The phase plots of the terms of $\frac{1}{(s+2)}$ and $\frac{1}{(s+4)}$ are the same:
- Starts from 0° and remains the same up to $\omega=0.2 \mathrm{rad} / \mathrm{s}$,
- Drops to -45° at $\omega=2 \mathrm{rad} / \mathrm{s}$
- Then, to -90° at $\omega=20 \mathrm{rad} / \mathrm{s}$ and remains there at -90°.
- The last term will be the same for $\omega=0.4,4$ and $40 \mathrm{rad} / \mathrm{s}$.
- Therefore, the total or final plot will change from $\phi=0^{\circ}$ at low frequencies and reaches at -180° at high frequencies.

Bode plots of $G(s)=1 /[(s+2)(s+4)]$ by hand (asymptotical) and MATLAB (actual)

End of Week-1 for

KOM3712 Control Systems Design

Spring 2023

Week-2 starts with

- Bode plots for ratio of first-order factors
- Bode plots for systems with two complex poles and/or zeros: $G(s)=\left(s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}\right)^{\mp 1}$
- Bode plots for nonminimum-phase systems
- Steady-state errors from Bode magnitude plot

Please refer to
Chapter 10.1 Frequency Response Techniques
(from slide 51 of Chap-10-1-Freq_Resp_Avesis.pdf)

