YTU ELECTRICAL & ELECTRONICS FACULTY **DEPARTMENT OF CONTROL & AUTOMATION ENGINEERING** KOM3712 CONTROL SYSTEM DESIGN, Midterm Exam

Name and Surname:

Student number:

Signature:

Date: April 10, 2019

Duration: 80 mins.

Grades:

Problem-1. 20

Problem-2. 30

Problem-3. 30

Problem-4. 20

Problem-1. Considering the feedback system on the right,

- (a) Sketch the Bode magnitude and phase plots with asymptotes on the logarithmic planes provided.
- (b) Write the slopes of each asymptotes on the plots.
- (c) Calculate the correction value in dB and show it on the magnitude plot for the underdamped components.

The contribution of $\frac{120.3}{64s} = \frac{5.7656}{s}$; the magnitude at $\omega = 1 \rightarrow 20 \cdot \log 5.7656 = 15.22$ dB and at $\omega = 0.1$, the magnitude will be 35.22 dB

Problem-2. For the Bode plots on the right, which were obtained experimentally from a subsystem G(s) for the gain K=600,

- (b) and Phase Margin in degrees when it is connected to a feedback system.
- (c) What is the value of gain, K_{cr} , that makes the system marginally stable?
- (d) What would be the period of oscillation, T_{cr}, in sec at this gain?
- (e) Write the range of gain *K* to keep the system stable.
- (f) Determine the system type then find the appropriate static error constant and the corresponding steady state error.

- (a) Find the range of gain K for stability using the Nyquist criterion.
- (b) Find the Gain Margin in dB.
- (c) What would be value of gain to get a gain margin of 20 dB?
- (d) What would be the real-axis crossings value at that gain?

Tolution- 3

(c)
$$20 \text{ lgpx} = 20 \text{ JB} \Rightarrow x = 10 = 10$$

The goin value for this GM = $\frac{440}{10} = \frac{44}{10}$

(d) Real-axis crossings for
$$K = 44$$
:

for $K = 120 \rightarrow Re() = -0.273$

= $44 \rightarrow \times 1$

$$x_1 = -0.273 \frac{44}{120} = -0.1$$

$$x \times 2 = 0.375 \frac{44}{120} = 0.137$$

on simply, -jois2
for full range,

$$K = 440 \Rightarrow Re = -1$$

 $= 44 \Rightarrow -1/10$
 $= -0.1$

Imag-axis crossings for
$$x = 44$$
: $y_{1,2} = \frac{1}{10.415} \frac{44}{120} = \frac{1}{10.152}$

Problem-4. Considering the unity feedback system on the RHS, where the open-loop transfer function is,

$$G(s) = \frac{200,000}{s(s+40)(s+100)}$$

G(s) has the following Bode plots. As the phase margin indicates, the system produces a very high percent overshoot (over 40%). Determine the value of gain, K, to increase the phase margin to 50° so that the closed-loop step response can produce below 20% overshoot ($\zeta = 0.48$).

Solution-4

New PM = 50° \Rightarrow $\phi_{new} = 130°$ @ $\omega = 21.2$ rad/s

at this frequency M = 6.17 dB

This magnitude should be lowered to $O dB ext{ fo accomplish } \phi_{new} = -130° 8$ pM = 50°20 lagr = 6.17/20 x = 10° x = 10°So the new gain should be 200,000/2 $(401/2) \Rightarrow 4 = 100,000$

Wish you all the success, 10th April 2019, Dr. Ş. N. Engin ©

page 4 of 4