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Steady Heat Conduction In Plane Walls

Heat transfer through the wall is in the
normal direction to the wall surface, and no
significant heat transfer takes place in the
wall in other directions.

c . . . . . 20°C
Heat transfer in a certain direction is driven

by the temperature gradient in that direction.

There will be no heat transfer in a direction
In which there is no change in temperature.

If the air temperatures in and outside the
house remain constant, then heat transfer
through the wall of a house can be modeled
as steady and one-dimensional.




"L + - T,
annd. wall dx = — kA dT
Jxr=0 JI=T,

Integrating and rearranging

T|_T'_-

':-?-.'-Jn-.l. wall — kA I . (W)
* Energy balance: 0
Rate of Rate of Rate of change
heat transfer | —| heat transfer | =| of the energy
into the wall out of the wall of the wall
: : dE, )
Qin o let - At
% = 0 for steady operation and Qcond,wa.ﬁconstant

- The Fourier's law of heat conduction for the wall:

anmi wall — —kA % (W)

4  Where dT/dx= constant and T varies linearly with x.



The Thermal Resistance Concept

Heat conduction through a plane wall is

("C/W)

‘:—i}uc-nd-u'ull _ R
is the thermal resistance of the wall against heat conduction (conduction
resistance). The thermal resistance of a medium depends on the

and the of the medium.

Taking into account analogous to the
relation for electric current flow I:

S R (@) Heat flow o
¢ s ViV,
R-t"
: the electric resistance Vie— AANANANNA—TT SV,
. the voltage difference across R

&

the resistance
. the electrical conductivity).

() Electric current flow




Newton’s law of cooling for convection heat transfer rate:

QLTII]‘.’ S IFAF‘_T.; T T.I}

' Py |

Qeony = —5— (W) with R .=-— (°C/W)

which is the thermal resistance of the Al
surface against heat convection, or simply T
the convection resistance of the surface. L "

When the convection heat transfer

coefficient is very large (h — o), the _
convection resistance becomes zero and | ¢
T.~T,. That is, the surface offers no I, e— A\ NNNN— T

resistance to convection, and thus it does conv = iz

not slow down the heat transfer process.




The rate of radiation heat transfer between a surface of emissivity ¢ and

area A_at temperature and the surrounding surfaces at some average

temperature can be expressed as
. : / T‘-‘ T T‘S-lll'l'
de — &0 AT{T-;-L i Tim'ﬁl - 'hr;u:l ‘Jl-;{?—r = :r:-:lll'f1JI - R . l‘\.‘\.’}
rad
with R, = = (K/W) which is the radiation resistance.
rad<*s
Qraﬂ < 7 7 7
I =iem{ls + T 0 T (W/m- - K)

= AS{TS o Tsurr}

radiation heat transfer coefficient

Both 7, and T, must be in K in the evaluation of

surr



The convection and radiation resistances are parallel to each other, and may
cause some complication in the thermal resistance network.

WhenT,, = T, the radiation effect can properly be accounted for by

replacing h in the convection resistance relation by

JrTv.:u:uml:'u'ru.al:l =h &= IFir-m..-_l {w}.rmz 3 K}

COny

A chnv
L/’ P
— NN T
Q Rcom'
i
Solid %{,
st "AVAVAVAYA Y A Tsurr
Rrad

Q = Qﬁ:nm‘ + Qrad



Thermal Resistance Network

. R e el conv, 2 Thermal
Q= R R R Iz oe— ANNN—— ANNNN—— AN T arwork
conv, | By + Neonv, 2
: ; R R R
; V,-V, . I, e c.2 «3 v Electical
- /| e AN AN —e— AN
R.1tR, ,+R, 5 1 2 analogy

The thermal resistance network for heat transfer through a plane wall subjected

to convection on both sides, and the electrical analogy.




- Rate of Rate of Rate of
Under steady conditions heat convection | =| heat conduction | = | heat convection
into the wall through the wall from the wall

3 | 2

Q=hlA{Tm]_T]}=M T

— hy AT, — T.y)

. T -1, IT1—1T, T)—T.
, C="ThaA ~ LIkA _ A
which can be rearranged as I.-T, T,-T, T,—T.,
- R-:nn‘-', | - Rm—‘al] B R-:-:un'-r.i
Adding the numerators and denominators O = T’*"‘R_ = (W)
toital

yields

l L l _
PR Ly OCIW
o2 = AT kA h,A (/W)

R[-Jl;ﬂ e RI_'-'IH'-._I : R'._'._'u“ + R

The thermal resistances are in series, and the equivalent thermal
resistance is determined by simply adding the individual resistances, just
like the electrical resistances connected in series.

10



The equation Q = AT/R can be rearranged as AT = QR (°C)

Here, the temperature drop across any layer is equal to the rate of heat
transfer times the thermal resistance across that layer.

dy+8y+-- -
bi+b2+'-'
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Analogous to Newton’s law of cooling as

O = UA AT (W)

U: the overall heat transfer coefficient

UA =

)
ﬁ" total



Multilayer Plane Walls

The rate of steady heat transfer Riotai: the total thermal resistance

through a plane wall consisting R.=R_ . 1+Rau+R u>+R
of two layers &
| L| Jf—" I

" = 4 — et
L A kKA kA hA
R toital
Tiie
T T, I
Teey e—AMAMAMN——AMMAN—4——ANAMN—4—MW—s Ty
1 L, L,

R, . = —_—— R . = R Iy Y= = R = L
13 conv, | |'I.E IA wall, 1 klA wall, 2 R')A conv, 2 ,JIZA

cony, 2
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for the resistances in series.

< It is limited to systems involving

steady heat transfer with no heat

generation.

To find Ti:
To find T:

To find T5;

Wall 2

Ryan 2 Reony.

AN AMAN L]
! i T
-

Ri.'['lﬂ'ﬁ".|

o= == T
- Rmm_l +Rw;1[]. l
{-} . T_? = Txl
= Runm 2



GENERALIZED THERMAL RESISTANCE NETWORKS

Insulation

For the composite wall consisting of L
two parallel layers, the total heat transfer -
is the sum of the heat transfers through _— O K -
each layer. — — 1
y N O k&
+_+ * _TI_TE', T]_T;_ l L i
Q=+ 0= R, + R, =(h -1 R1+R3
» L -
With the electrical analogy 0,
oL
:} T| = T Tl *— Q — TQ
= D —
{;_ Rtﬂlul W”Vﬁ‘f"—
with o
Q= Q] + Qg
Thermal resistance
ST R, .. = iy network for two parallel layers.
Row Ry R - RytR,

15



For the combined series-parallel arrangement, the total rate of heat transfer

through this composite system is

Tl = Tm :
— R— /Insulatmn
With total ) '{
| |
(1) &k

R = Rip+ Ry + Ry = 22 s pov | 7 ® | ™
total 12 3 conv Rl an RE 3 conv el @ kz ;

AE—J 3 h T:\-:
and L] Lz

Two assumptions:

(i) any plane wall normal to the x-axis is
isothermal and

(i) any plane parallel to the x-axis is adiabatic.

These assumptions result in different resistance networks, while the
actual result lies between two assumptions.




HEAT CONDUCTION IN CYLINDERS AND SPHERES
0

The Fourier’'s law of heat conduction for heat
transfer through the cylindrical layer is
B . . =—ga B (W)

=cond, cyl dr

Here, A=2ntrL is the heat transfer area at location r

- ﬂ =
2 m di= — | FdF Heat is lost from a hot-water pipe
—x A T=T, to the air outside in the radial
direction, and thus heat transfer
from a long pipe is 1-D.
We obtain 0 it
cond,cyl — <# 11](}"1 /’rl )
TI _ T“J

ch nd, cyl — R - (W)

cyl

St TE

Since Qeongey= CONstant.
17 ’



The thermal resistance of the cylindrical layer against heat conduction, or
simply the conduction resistance of the cylinder layer.

R In(ry/ry) In(Outer radius/Inner radius)
¥ 2Lk 27 X (Length) X (Thermal conductivity)

Repeating the analysis for a spherical layer by taking A=4mr?

=

* T| _ T'n
O = ——

= cond. sph R
sph

o - 5 L Outer radius — Inner radius
0 dmrrimk  4a(Outer radius)(Inner radius)(Thermal conductivity)

which is the thermal resistance of the spherical layer against heat
conduction, or simply the conduction resistance of the spherical layer.



The rate of heat transfer through a cylindrical or spherical layer under

steady conditions:

T-_,-_l 2 T,:,.-:
R

0=

total
for a cylindrical layer:

leul o IIiI1-'fn.'-uu.l + R

| In(ry/ry) |

= + +
(27w L)h, 2nlk  Qur,L)h

¥
cyl o3 ﬂ-.-nu.l

for a spherical layer:

JIElf‘[-1l'.|| . Rn_‘-un_ | + R

I = I
T + -
(darihy,  darink  (darih,

3
sph + E‘L"'II'I"-.:

A in the convection resistance relation R~

1/hA is the surface area at which convection
occurs.

It is equal to A = 2mirL for a cylindrical surface

19 and A = 411r2 for a spherical surface of radius r.

AR
LA

conv, 2

R

total — R.;-[-.n-.-_; it RE}'! + Rﬂlnu‘.j

The thermal resistance
network for a cylindrical (or
spherical) shell subjected to
convection from both the inner
and the outer sides.




Multilayered Cylinders and Spheres

Steady heat transfer through multilayered cylindrical or spherical shells is
treated like multilayered plane walls.

7 j j 2 [
Ty e—— AV AN AN —4——ANNNN——ANN—e T,
R R R,
yl, 3

cyl, 1 cyl, 2

three-layered composite cylinder




Ry

otal

is the total thermal resistance, expressed as

Riotd = Rioan | T Byt 1 F Koyiz ¥ Koy § T Kioays

1 In(rs/ry)  In(ry/r;)

In(ry/rs) |

B TR TR v

Here, A, =2T1ir,Land A, =2 1ir,L

The total thermal resistance is simply the

ZWL;’{_?, * f’?j;*‘l_-l

Y o T, T, I3 T.,
AN — AN —8—AMAN— AN —e

Rmnv, l R 1 RE th-m', 2

W T

Q - I'i?'i."lf'l]"-r',l
T, -T,

R oo 1 tR,
I -T,
R, + R,
T,-T,

arithmetic sum of the individual thermal
resistances in the path of heat flow

@ Tﬂ-:l e TE T:c[ == T;n

. R-:u:m‘-', 1 i Rn:}f]- | 1 4 ln{r;frl}
hl(ZTTr]L} ZPTLkl
We can also calculate T, from
. . Tz g - sz . Tg — Tc,.:z
Q= R,+Ry+ R_,..» B In(ry/r5) 5 In(ry/rs) ]
ZTTLRE E-TTij hﬂ{-z?qu_L}
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The ratio AT/R across any layer is
equal to Q which remains constant
in 1-D steady conduction.




CRITICAL RADIUS OF INSULATION

Insulation

The rate of heat transfer from the insulated
pipe to the surrounding air is

. B=TL T,—T.
C=R FR.. Inirir) 1
YLk W)
Performing the differentiation and solving for

r, yields the critical radius of insulation: for
a to be

cony
-Ww—e T

- k . .

cylindrical body Fer, cylinder — n (m) Q1 )
: 2k
spherical body i i = -!—!

k : the thermal conductivity of the insulation
h :the convection heat transfer coefficient on the
outer surface

22




HEAT TRANSFER FROM FINNED SURFACES

The rate of heat transfer from a surface at a temperature T, to the
surrounding medium at T is given by Newton’s law of cooling as

*

Q-.:n:um- — hfjig{rg — 1)

There are two ways to increase the rate of heat transfer:

1) to increase the convection heat transfer coefficient h
2) to increase the surface area A,

Increasing h may require the installation of a pump or fan, or replacing
the existing one with a larger one, but this approach may or may not
be practical. Besides, it may not be adequate.

The alternative is to increase the surface area by attaching to the
surface extended surfaces called fins made of highly conductive
materials such as aluminum.

23



Consider steady operation with no heat generation in the fin with the
following assumptions:

* The thermal conductivity k of the material remains constant.
* The convection heat transfer coefficient h is constant and uniform over
the entire surface of the fin for convenience in the analysis.

Some innovative fin designs




Fin Equation

Under steady conditions, the energy balance on this volume element

can be expressed as

P

the element at x element at x + Ax the element

and, ;e and., I+ Av + anv

Ocony = h(p AX)T — T.)

Rate of heat Rate of heat Rate of heat
conduction into | = | conduction from the | + | convection from

Substituting and dividing by Ax, we obtain

25

Q cond, x + Ax Q cond, x
Ax

+ hp(T— T.) = 0

Taking the limit as Ax — 0 gives

dQ cond
dx

+ hp(T—T.)=0

Volume
element




From Fourier’s law of heat conduction we have

y g 4T A.: the cross-sectional
Ceond € dx area of the fin at location x
d dT
I (ﬁm,_, dx) hp(T—T.) =0
In the special case (with constant cross 4’0 _ .5 _ 0 - hp
section and thermal conductivity): & T “ T kA,
and @ =T — T, is the temperature
excess. At the fin base we have T
9b= Tb - TOO . Tb oo
; ; L
The function u and its second 0" + e
derivative must be constant multiples R : \
Specified
of each other. _ /
temperature
B(x) = Cie™ + Cre (a) Specified temperature
(b) Negligible heat loss

where C, and C, are arbitrary constants. (¢) Convection

(d) Convection and radiation

26 Boundary condition at fin base: #HO)=86,=T,—T.



Infinitely Long Fin (T, 4, = T.)

For a sufficiently long fin of uniform cross section (A,= Constant):

Boundary condition at fintip:  8(L)y=T(L) — T, =10
: iy —T
Very long fin: . —71. ¥ = g— XV hplkA
§ g dT s .
Verv long fin: ”| wgto = — KA, ¢ Tx = VhpkA_ (T, — T.)
i =0

p : the perimeter

A_ : the cross-sectional area of the fin
x :the distance from the fin base

27

O = | W[T(x) — T.] dAs, = |  ho(x) dAg,
JAgn JAg
Qﬁn
JLr 4
base
YV ey
Qha.ac:Qﬁn

as I. — oo

|
|
|
|
|
0 ¥
|
|
|
|
|
|
|
|
|
|

\ ID
|
/
8 |
| ) Af} = Ai- |
! |
(p=nD.A_ = nD?4 for a cylindrical fin)
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Negligible Heat Loss from the Fin Tip
(Insulated fin tip, Qg ¢, =0)

The fin tip can be assumed to be insulated, and the condition at the fin tip can be
expressed as

du
dx

=0

Boundary condition at fin tip:
=L

Adiabatic fin ti T(x)— T, cosha(l — x)
Adiabartic 1in 1ip. —
: I;If I!r T":- s T*:-: L\Lﬂhf":li-i {!II_.

The rate of heat transfer from the fin can be determined again from Fourier’s law
of heat conduction:

o . T
;4iff{e'flfe'ff{'lf!ﬁ' Tn’f}: 1:(r:-'llinuulul-:-.l tip I _'ﬂ:"q'- ;'_1{
- =Lk

= VhpkA,. (T, — T,.) tanh aL

The heat transfer relations for the very long fin and the fin with negligible heat
loss at the tip differ by the factor tanh aL, which approaches 1 as L becomes very

large.
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Convection (or Combined Convection and

Radiation) from Fin Tip

A practical way of accounting for the
heat loss from the fin tip is to replace the
fin length L in the relation for the
insulated tip case by a corrected length
defined as

JJI.L-
LL. — L <+ !—}

t: the thickness of the rectangular fins
D: the diameter of the cylindrical fins.

Qﬁn
Convection
e,
|
Z I
(a) Actual fin with I
convection at the tip |
I A
i | C
Or, 7.
I |
| | TInsulated
-
|
L
[

(b) Equivalent fin with insulated tip

Corrected fin length L, is defined such
that heat transfer from a fin of length
L. with insulated tip is equal to heat
transfer from the actual fin of length L
with convection at the fin tip.
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Fin Efficiency

In the limiting case of zero thermal
resistance or infinite thermal
conductivity, (k = o) the temperature
of the fin will be uniform at the base
value of T,.

The heat transfer from the fin will be

maximum in this case and can be
expressed as

’;_}r'i|1_ max "Il'i'-"qfin (I — I.)

=W Xl

(a) Surface without fins

(b) Surface with a fin

A =2xwxXL+wxt

=2 wxlL



Fin efficiency:

o Ciin _ Actual heat transfer rate from the fin
Vim - So—— I[deal heat transfer rate from the fin
if the entire fin were at base temperature
':-_}t'in — Tifin (—_}r'in- max — 'lfin "Il'r-'"jifjn {T."ﬁ = )
For the cases of constant cross section of very |, 14eal

long fins and fins with insulated tips, the fin

efficiency can be expressed as

Mong fin =

Minsulated tip

Q fin A% I'ri'f:'kr':ll. ( TI.-, - T.) .
ﬁ::;'nn_.m - WA (T,—T.) L \ hp  alL

Onn  VhpkA.(T,— T.)tanhal  tanh al

Q fin, max "Il'r"qi'in ( Th = Tﬂ:} alL (D) Actual

since Ag, = pL for fins with constant cross section.

31

80°C
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Efficiency and surface areas of common fin configurations

Straight rectangular fins

m = \/2h/kt
L,=L+t2
A = 2wl

Straight triangular fins
m= N/ 2hl/kt
A = 2wV L2 + (1/2)

Straight parabolic fins

m= \/2h/kt

Asn = WL[C, + (L/D)In(t/L + Cy)]
Cy= V1 + (t/L)?

Circular fins of rectangular profile

m= \/2h/kt
M. = + 12
Aﬁn = zﬁ{rfc = rf}

32

tanh mL,
Min = T
_ L L(2mL)
i = L 1,(2mL)
2
}?fll'l - —
1+v@2mL)+1
- Ki(mn)L{mr,) — L{mn) K, (mr,.)
i = 2l (m) Ky(miag) + Kotmm) 1(mr,))
_2n/m
’ r22c - Jr'12




Efficiency and surface areas of common fin configurations

Pin fins of rectangular profile

m= \4h/kD
tanhmL
L.=L+ D4 ]}MZ—C % B
oy = DL, L, (0P
L]

Pin fins of triangular profile
m = \/Ah/kD T

=D mL [ (2mL)
Asn =—V L* + (DI2)*

2
Pin fins of parabolic profile
m = \/4hlkD 5

Ta".l"_3 L i Nfin = 7 5
Aprn = E[C@Q — E!anDCJL + C3)] 1+V(E2mL/3Y +1

C3= 1+ 2(D/L)?
Ci=V1+ (DL

Pin fins of parabolic profile

(blunt tip)

e L(4mLI3
m = \/AhkD i ]

D (. . 2mL Io(4mL/3)
A= 2{ 16(L/D)? + 172 — 1}

9612 :

33



Fin efficiency, 1 g,

34

0.9

0.8

0.7

0.6

‘ L=f
\\

A,=Lf?2
L =L+l
—AF' = ,."_,Lf "_
B /\f/J\‘ H.If,-" o
] ‘-.---
=L e ——
0 02 04 0.6 08 1 1.2 1.4 1.6 1.8 2 2.2 24 2.6 2.8 3

&=L (kA"

Efficiency of straight fins of rectangular, triangular, and parabolic profiles.
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Fin efficiency, n fin

N I
\\\\\ <) —
0.6 \\\'\\\.
0.5 S&,\\\ﬂ_. 5
ol ; AN

.=+ 12 ﬁ B
93 %TF f:=.-£2+rf2 \ﬁ\H:}Hh_H
02 — ’Ll —t A=yt e |
N

0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3
&=L (kA )"

Efficiency of annular fins of constant thickness t.
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Fins with triangular and parabolic profiles contain less material and are
more efficient than the ones with rectangular profiles, and thus are more
suitable for applications requiring minimum weight such as space
applications.

An important consideration in the design of finned surfaces is the
selection of the proper fin length L. Normally the longer the fin, the larger
the heat transfer area and thus the higher the rate of heat transfer from
the fin.

The larger the fin, the bigger the mass, the higher the price, and the
larger the fluid friction. Therefore, increasing the length of the fin beyond
a certain value cannot be justified unless the added benefits outweigh
the added cost.

Fin lengths that cause the fin efficiency to drop below 60% percent
usually cannot be justified economically and should be avoided. The
efficiency of most fins used in practice is above 90%.
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Fin Effectiveness

The performance of fins expressed in terms of the fin effectiveness ¢, is

defined

2 ; Heat transfer rate from
Qi ors the fin of base area A,
Efin =

0o hA, (T, — T..)  Heat transfer rate from
k I " -
the surface of area A,

A, : the cross-sectional area of the fin at the base
Q.o fin - the rate of heat transfer from this area if no
fins are attached to the surface.

an- fin
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% An effectiveness of ;.= 1 indicates that the addition of fins to the
surface does not affect heat transfer at all.

% An effectiveness of &;, < 1 indicates that the fin actually acts as
insulation, slowing down the heat transfer from the surface.

% An effectiveness of &;, > 1 indicates that fins are enhancing heat
transfer from the surface, as they should.

Finned surfaces are designed on the basis of maximizing effectiveness
for a specified cost or minimizing cost for a desired effectiveness.

The fin efficiency and fin effectiveness are related to each other by

——

lt:r_:'Jlr'in e Ui L M fin -"I-r:"ji1'i,1 '[TIH - i) - M
hA, (T, — T,.) hA, (T, — T.) A, iin

Efin — ‘,}

= no fin



The effectiveness of a sufficiently long fin of uniform cross section under steady
conditions is determined to be

":_} fin
= = M~ Nk since A, = A,.

= no fin o

VhpkA (T, — 1) | kp

“long fin

In the design and selection of the fins, the following should be taken into account:

s The thermal conductivity k of the fin material should be as high as possible. Thus
it is no coincidence that fins are made from metals, with copper, aluminum, and
iron being the most common ones. Perhaps the most widely used fins are made
of aluminum because of its low cost and weight and its resistance to corrosion.

% The ratio of the perimeter to the of the fin p/A, should be as
high as possible. This criterion is satisfied by thin plate fins and pin fins.

39
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The rate of heat transfer for a surface containing n fins can be expressed as

Qt-:uml. fin — Qunfin + Qﬂn

= hAunfin {T,r; = T:n:\j + T?fjnh‘difjn {Tb = Tﬂ’}

= MApfin T M As) (T — 1)

The overall effectiveness for a finned surface is
defined as the ratio of the total heat transfer from
the finned surface to the heat transfer from the
same surface if there were no fins.

't._}[-.-ml- fin "Il'r{"ﬂlunfin ¥ fin "ﬂlr'i n ) T — T:-:}
'E-._}ll ital. no fin '”"4”“ fin {T-i-‘ i T:C )

Efin, overall —

A, sin - the area of the surface when there are no
fins

A;, :the total surface area of all the fins on the
surface

A,.sn : the area of the unfinned portion of the
surface

A
A

no fin

:'I‘I.'XH
um—m:u‘xH—Bxwa}
Agp=2XLxw+ixw
= 2 x L x w (one fin)
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Proper Length of a Fin

To get a sense of the proper length of a fin, we compare heat transfer from a fin
of finite length to heat transfer from an infinitely long fin under the same
conditions. The ratio of these two heat transfers is

Heat transfer Oc. \ hﬁ/\A (T, — T..) tanh mL
g | = tanh mL
rano. O long fin \\/ f.'j?)i;:lf {Th - T.__,_}
Studies have shown that the error £ _
involved in one-dimensional fin analysis T, e _
is negligible (less than about 1%) when ga=T AT=low| AT=0
| I
*-..:I | |
LR, ol | |
. 1T T T
The heat transfer performance of heat | | L
sinks is usually expressed in terms of 0 High | Low | No | ¥
their thermal resistances R in °C/W, di e |
which is defined as ' | e
T.ﬁ , :I ‘I I
=t i s
Oim — R - J""‘J‘I’in Mfin {T!:' s T
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Combined natural convection and radiation tharmal resistance of various
haat sinks wsed In the cooling of electronic devices betwean the heat sink and
the surroundings. &l fins are mada of sluminum B063T-5, are black anodized

znd are 7& mm (3 in) long.

HE 5030

R = 0.9°C/'W {vertical)
R = 1.2°CI'W {horizontat)

Dimenskons: 76 mm = 105 mm = 44 mm
Surface ares: &77 cm®

= 5CM'W

Dimensions: 76 mm »x 38 mm « 24 mm
Surface area: 387 cm®

A= 1.4°CI'W {varical)
R = L.B"C/'W {horizontal)

Dimensions: 76 mm = 92 mm = 2& mm
Surface ares: 968 cm®

R = 1.B"CI'W tvertical)
R = 2.1°CI'W {horizontal)

Dimenskons: 76 mm = 127 mm = 91 mm
Surface area: 677 cm?

HS 6115

B = L.I"C/'W tvertical)
R = 1.3°CI'W (horizontaf)

Dimenskons: 76 mm = 102 mm = 25 mm
Surface ares: 929 cm?

R = 2.9°C/'W {vertical)
R = 3.1"CI'W {horizontal)

Dimensions: 76 mm = 97 mm < 19 mm
Surface area: 290 cm?



HEAT TRANSFER IN COMMON CONFIGURATIONS

* We have dealt with 1-D simple geometries.
% The question:What happens if we have 2- or 3-D complicated geometries?

* The steady rate of heat transfer between two surfaces at constant temperatures
T, and T, is expressed as

i':_,-’ = Ski T| e T:]'

S : the conduction shape factor (which has the dimension of /length)
k : the thermal conductivity of the medium between the surfaces

% The conduction shape factor depends on the geometry of the system only.

A comparison of the following equations reveals that the conduction shape factor
S is related to the thermal resistance R by R = 1/kS or S = 1/kR.

* T . T'.' =
Cucnttioid = (W) Q = SKT, — Ty)

wall
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Conduction shape factors S for several configurations for use in @ = kS(T, — T.) to determine the steady rate of heat

transfer through a medium of thermal conductivity k between the surfaces at temperatures 7, and T,

44

(1) Isothermal cylinder of length L
buried in a semi-infinite medium
(L>>Dand z >1.50)

In (4z/D)

*.

(2

(2) Vertical isothermal cylinder of length L
buried in a semi-infinite medium T

(L>=D) G {2

5= _ 2L D
In(4L/D) i

(3) Two parallel isothermal cylinders
placed in an infinite medium
(L>>D,, D,. z)

(4) A row of equally spaced parallel isothermal
cylinders buried in a semi-infinite medium
(L>=D, z, and w=1.5D)

i

T . [y P
In -‘é’% sinh -‘—JFL-

e S

{per cylinder)




45

(Continued)

(5) Circular 1sothermal cylinder of length L
in the midplane of an infinite wall
(z > 0.5D)

5= 2L
In(8Bz/mD)

(6) Circular isothermal cylinder of length L

at the center of a square solid bar of the

same length
g rL
In (1.08w/D)

(7) Eccentric circular isothermal cylinder
of length L in a cylinder of the same
length (L > D)

s 2xL
D2+ DI 477
e
CosNn EDlDE

(8) Large plane wall




(Continued)

(9) A long cylindrical layer

X 2rL
= (D,/D,)

(10) A square flow passage
. [ e ;
(a) Foralb> 1.4, Ty /:

2xL / §

S =093 Tn (0.048a75)

(b)Foralb< 141,

2L

5 (.785 In (a/b) b V
a

(11) A spherical layer

2nD\D,
Dy—-D,

R

(12) Disk buried parallel to
the surface in a semi-infinite
medium (7 >> D) T

§5=4D

(§=2Dwhenz=0)
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(Continued)

(13) The edge of two adjoining
walls of equal thickness

(14) Corner of three walls
of equal thickness

S=054w : o> S=0.15L
/ L 4l

(16) Isothermal sphere buried
in a semi-infinite medium at T

e T, whose surface 1s insulated tisnbited

(15) Isothermal sphere buried in a
semi-infinite medium

_ [ i _. : Ta_.. ﬁ.]'l'k.t.‘diktt‘l.'lj' :

__ 2=D
| +0.25D/z

2xD

S=1_025D%

5
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Concluding Points:

/ / / / / / / / / / / / /
0’0 0’0 0’0 0’0 0’0 0’0 0’0 0’0 0’0 0’0 0’0 0’0 0’0

/
0’0

Steady and One-Dimensional Modeling of Heat Transfer through a Wall
Conduction and Convection Resistances

Analogy between Thermal and Electrical Resistances

Radiation and Combined Heat Transfer Coefficients

Overall Heat Transfer Coefficient

Heat Transfer through a Plane and Multilayer Plane Walls

Thermal Contact Resistance

Generalized Thermal Resistance Networks

Heat Conduction in Multilayered Cylinders and Spheres

Critical Radius of Insulation for Cylindrical and Spherical Bodies

Heat Transfer from Finned Surfaces

Fin Efficiency, Fin Effectiveness and Overall Effectiveness

Important Considerations in the Design and Selection of Fins

Heat Transfer in Common Configurations and Conduction Shape Factors



