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Heat transfer in a certain direction is driven
by the temperature gradient in that direction.

There will be no heat transfer in a direction
in which there is no change in temperature.

Steady Heat Conduction In Plane Walls

If the air temperatures in and outside the
house remain constant, then heat transfer
through the wall of a house can be modeled
as steady and one-dimensional.

Heat transfer through the wall is in the
normal direction to the wall surface, and no
significant heat transfer takes place in the
wall in other directions.
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• Energy balance:

• The Fourier’s law of heat conduction for the wall:

where dT/dx= constant and T varies linearly with x.

Integrating and rearranging
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The Thermal Resistance Concept

Heat conduction through a plane wall is

where

is the thermal resistance of the wall against heat conduction (conduction
resistance). The thermal resistance of a medium depends on the geometry
and the thermal properties of the medium.

Taking into account analogous to the 
relation for electric current flow I: 

Re = L/σeA : the electric resistance
V1 - V2 : the voltage difference across

the resistance
σe : the electrical conductivity).
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Newton’s law of cooling for convection heat transfer rate:

can be rearranged as

with

which is the thermal resistance of the
surface against heat convection, or simply
the convection resistance of the surface.
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The rate of radiation heat transfer between a surface of emissivity ε and
area As at temperature Ts and the surrounding surfaces at some average
temperature Tsurr can be expressed as

with which is the radiation resistance. 

is the radiation heat transfer coefficient.

Both Ts and Tsurr must  be in K in the evaluation of hrad.
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The convection and radiation resistances are parallel to each other, and may 
cause some complication in the thermal resistance network.

where hcombined is the combined heat transfer coefficient.
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Thermal Resistance Network

The thermal resistance network for heat transfer through a plane wall subjected 
to convection on both sides, and the electrical analogy.
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Under steady conditions

which can be rearranged as

Adding the numerators and denominators 
yields

The thermal resistances are in series, and the equivalent thermal
resistance is determined by simply adding the individual resistances, just
like the electrical resistances connected in series.
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Here, the temperature drop across any layer is equal to the rate of heat
transfer times the thermal resistance across that layer.
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Analogous to Newton’s law of cooling as

U: the overall heat transfer coefficient
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Multilayer Plane Walls
The rate of steady heat transfer
through a plane wall consisting
of two layers

Rtotal: the total thermal resistance
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for the resistances in series.

 It is limited to systems involving
steady heat transfer with no heat
generation.
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GENERALIZED THERMAL RESISTANCE NETWORKS

With the electrical analogy

For the composite wall consisting of
two parallel layers, the total heat transfer
is the sum of the heat transfers through
each layer.

with

Thermal resistance
network for two parallel layers.
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For the combined series-parallel arrangement, the total rate of heat transfer
through this composite system is

with

and

Two assumptions:
(i) any plane wall normal to the x-axis is

isothermal and
(ii) any plane parallel to the x-axis is adiabatic.

These assumptions result in different resistance networks, while the
actual result lies between two assumptions.
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We obtain

HEAT CONDUCTION IN CYLINDERS AND SPHERES

Heat is lost from a hot-water pipe 
to the air outside in the radial 
direction, and thus heat transfer 
from a long pipe is 1-D.

The Fourier’s law of heat conduction for heat
transfer through the cylindrical layer is
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The thermal resistance of the cylindrical layer against heat conduction, or
simply the conduction resistance of the cylinder layer.

which is the thermal resistance of the spherical layer against heat
conduction, or simply the conduction resistance of the spherical layer.
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The rate of heat transfer through a cylindrical or spherical layer under
steady conditions:

for a cylindrical  layer:

for a spherical  layer:

A in the convection resistance relation Rconv=
1/hA is the surface area at which convection
occurs.

It is equal to A = 2πrL for a cylindrical surface
and A = 4πr2 for a spherical surface of radius r.

The thermal resistance 
network for a cylindrical (or 
spherical) shell subjected to 
convection from both the inner 
and the outer sides.
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Multilayered Cylinders and Spheres
Steady heat transfer through multilayered cylindrical or spherical shells is
treated like multilayered plane walls.

three-layered composite cylinder
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Rtotal is the total thermal resistance, expressed as

Here, A1 = 2 πr1L and A4 = 2 πr4L

The total thermal resistance is simply the
arithmetic sum of the individual thermal
resistances in the path of heat flow

We can also calculate T2 from
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CRITICAL RADIUS OF INSULATION

k : the thermal conductivity of the insulation
h  : the convection heat transfer coefficient on the   

outer surface

The rate of heat transfer from the insulated 
pipe to the surrounding air is

Performing the differentiation and solving for
r2 yields the critical radius of insulation: for
a to be

cylindrical body 

spherical body 
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HEAT TRANSFER FROM FINNED SURFACES
The rate of heat transfer from a surface at a temperature Ts to the 
surrounding medium at T is given by Newton’s law of cooling as

As  : the heat transfer surface area
h :  the convection heat transfer coefficient

There are two ways to increase the rate of heat transfer:

1) to increase the convection heat transfer coefficient h 
2) to increase the surface area As

Increasing h may require the installation of a pump or fan, or replacing
the existing one with a larger one, but this approach may or may not
be practical. Besides, it may not be adequate.

The alternative is to increase the surface area by attaching to the
surface extended surfaces called fins made of highly conductive
materials such as aluminum.
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Consider steady operation with no heat generation in the fin with the 
following assumptions:

• The thermal conductivity k of the material remains constant.
• The convection heat transfer coefficient h is constant and uniform over
the entire surface of the fin for convenience in the analysis.

Some innovative fin designs
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Fin Equation

Under steady conditions, the energy balance on this volume element
can be expressed as

Substituting and dividing by Δx, we obtain

Taking the limit as Δx → 0 gives
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From Fourier’s law of heat conduction we have

Ac : the cross-sectional 
area of the fin at location x

In the special case (with constant cross 
section and thermal conductivity):

The function u and its second 
derivative must be constant multiples 
of each other.

where C1 and C2 are arbitrary constants.
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Infinitely Long Fin (Tfin tip = T∞)

For a sufficiently long fin of uniform cross section (Ac= Constant):

p   :  the perimeter
Ac : the cross-sectional area of the fin 
x : the distance from the fin base
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The fin tip can be assumed to be insulated, and the condition at the fin tip can be 
expressed as

The rate of heat transfer from the fin can be determined again from Fourier’s law 
of heat conduction:

The heat transfer relations for the very long fin and the fin with negligible heat
loss at the tip differ by the factor tanh aL, which approaches 1 as L becomes very
large.
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Convection (or Combined Convection and 
Radiation) from Fin Tip

A practical way of accounting for the
heat loss from the fin tip is to replace the
fin length L in the relation for the
insulated tip case by a corrected length
defined as

t:  the thickness of the rectangular fins
D:  the diameter of the cylindrical fins. Corrected fin length Lc is defined such

that heat transfer from a fin of length
Lc with insulated tip is equal to heat
transfer from the actual fin of length L
with convection at the fin tip.
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Fin Efficiency
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Fin efficiency:

For the cases of constant cross section of very
long fins and fins with insulated tips, the fin
efficiency can be expressed as

since Afin = pL for fins with constant cross section.
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Efficiency of straight fins of rectangular, triangular, and parabolic profiles.
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Efficiency of annular fins of constant thickness t.



36

Fins with triangular and parabolic profiles contain less material and are
more efficient than the ones with rectangular profiles, and thus are more
suitable for applications requiring minimum weight such as space
applications.

An important consideration in the design of finned surfaces is the
selection of the proper fin length L. Normally the longer the fin, the larger
the heat transfer area and thus the higher the rate of heat transfer from
the fin.

The larger the fin, the bigger the mass, the higher the price, and the
larger the fluid friction. Therefore, increasing the length of the fin beyond
a certain value cannot be justified unless the added benefits outweigh
the added cost.

Fin lengths that cause the fin efficiency to drop below 60% percent
usually cannot be justified economically and should be avoided. The
efficiency of most fins used in practice is above 90%.
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Fin Effectiveness

The performance of fins expressed in terms of the fin effectiveness εfin is 
defined
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 An effectiveness of εfin= 1 indicates that the addition of fins to the 
surface does not affect heat transfer at all.

 An effectiveness of εfin < 1 indicates that the fin actually acts as
insulation, slowing down the heat transfer from the surface.

 An effectiveness of εfin > 1 indicates that fins are enhancing heat
transfer from the surface, as they should.

Finned surfaces are designed on the basis of maximizing effectiveness
for a specified cost or minimizing cost for a desired effectiveness.

The fin efficiency and fin effectiveness are related to each other by
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The effectiveness of a sufficiently long fin of uniform cross section under steady 
conditions  is determined to be

since Ac = Ab.

In the design and selection of the fins, the following should be taken into account:

 The thermal conductivity k of the fin material should be as high as possible. Thus
it is no coincidence that fins are made from metals, with copper, aluminum, and
iron being the most common ones. Perhaps the most widely used fins are made
of aluminum because of its low cost and weight and its resistance to corrosion.

 The ratio of the perimeter to the cross-sectional area of the fin p/Ac should be as
high as possible. This criterion is satisfied by thin plate fins and slender pin fins.

 The use of fins is most effective in applications involving a low convection heat
transfer coefficient.
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The rate of heat transfer for a surface containing n fins can be expressed as

The overall effectiveness for a finned surface is
defined as the ratio of the total heat transfer from
the finned surface to the heat transfer from the
same surface if there were no fins.

Ano fin : the area of the surface when there are no 
fins
Afin : the total surface area of all the fins on the 
surface
Aunfin : the area of the unfinned portion of the 
surface
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Proper Length of a Fin
To get a sense of the proper length of a fin, we compare heat transfer from a fin
of finite length to heat transfer from an infinitely long fin under the same
conditions. The ratio of these two heat transfers is

Studies have shown that the error
involved in one-dimensional fin analysis
is negligible (less than about 1%) when

The heat transfer performance of heat 
sinks is usually expressed in terms of 
their thermal resistances R in oC/W, 
which is defined as
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HEAT TRANSFER IN COMMON CONFIGURATIONS
• We have dealt with 1-D simple geometries.
The question:What happens if we have 2- or 3-D complicated geometries?
• The steady rate of heat transfer between two surfaces at constant temperatures
T1 and T2 is expressed as

S : the conduction shape factor (which has the dimension of length) 
k :  the thermal conductivity of the medium between the surfaces

 The conduction shape factor depends on the geometry of the system only.

A comparison of the following equations reveals that the conduction shape factor
S is related to the thermal resistance R by R = 1/kS or S = 1/kR.
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Concluding Points:

 Steady and One-Dimensional Modeling of Heat Transfer through a Wall

 Conduction and Convection Resistances

 Analogy between Thermal and Electrical Resistances

 Radiation and Combined Heat Transfer Coefficients

 Overall Heat Transfer Coefficient

 Heat Transfer through a Plane and Multilayer Plane Walls

 Thermal Contact Resistance

 Generalized Thermal Resistance Networks

 Heat Conduction in Multilayered Cylinders and Spheres

 Critical Radius of Insulation  for Cylindrical and Spherical Bodies

 Heat Transfer from Finned  Surfaces

 Fin Efficiency, Fin  Effectiveness  and Overall Effectiveness

 Important Considerations in the Design and Selection of Fins

 Heat Transfer in Common Configurations and Conduction Shape Factors


