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MOMENTUM ANALYSIS OF FLOW SYSTEMS

6—-1 Newton’s Laws and Conservation of Momentum
6—2 Choosing a Control Volume
6—3 Forces Acting on a Control Volume
6—4 The Linear Momentum Equation
Special Cases
Momentum-Flux Correction Factor,
Steady Flow
Steady Flow with One Inlet and One Outlet
Flow with No External Forces
6-5 Review of Rotational Motion and Angular Momentum
6—6 The Angular Momentum Equation
Special Cases
Flow with No External Moments
Radial-Flow Devices
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|ldentify the various kinds of forces and moments acting on a

control volume

Use control volume analysis to determine the forces associated
with fluid flow

Use control volume analysis to determine the moments caused
by fluid flow and the torque transmitted
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Newton’s laws: Relations between motions of bodies and the forces acting on them.

Newton’s first law: A body at rest remains at rest, and a body in motion remains in
motion at the same velocity in a straight path when the net force acting on it is zero.

Therefore, a body tends to preserve its state of inertia.

Newton’s second law: The acceleration of a body is proportional to the net force
acting on it and is inversely proportional to its mass.

Newton’s third law: When a body exerts a force on a second body, the second body
exerts an equal and opposite force on the first.

Therefore, the direction of an exposed reaction force depends on the body taken as
the system.

— dV  dimV)

Newton's second law: F=ma=m =
dt dt

Prof. Dr. Ali PINARBASI Chapter 6: MOMENTUM ANALYSIS OF FLOW SYSTEMS




Linear momentum or just the momentum of the body: The product of the mass and
the velocity of a body.

Newton’s second law is usually referred to as the linear momentum equation.

Conservation of momentum principle: The
momentum of a system remains constant only

¥ when the net force acting on it is zero.
5o
Net force
_’
mV d dt
-

Rate of change
of momentum
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w Conservation of Linear Momentum
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The counterpart of Newton s second law for rotating rigid bodies 1is
expressed as M = la, where M is the net moment or torque applied on the
body, 7 is the moment of inertia of the body about the axis of rotation, and @
is the angular acceleration. It can also be expressed in terms of the rate of
change of angular momentum dH /dr as

_%

_ =5 R dw dlw) dH
Angular momentum equation: M=Ilax=1 = =

. i i dt dt dt

Net torque

The conservation of angular momentum Principle:

_’

— 18 = dw d(Im)

=T
dt dt dt

remains constant when the net torque acting on it
is zero, and thus the angular momentum of such

systems is conserved.

Rate of change
of angular momentum
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R Conservation of Angular Momentum

e 8
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A control volume can be selected as any arbitrary region in space through which fluid
flows, and its bounding control surface can be fixed, moving, and even deforming
during flow.

Many flow systems involve stationary hardware firmly fixed to a stationary surface, and
such systems are best analyzed using fixed control volumes.

When analyzing flow systems that are moving or deforming, it is usually more
convenient to allow the control volume to move or deform.

In deforming control volume, part of the control surface moves relative to other parts.

Fixed control volume [~ - T TTTTT T T 1

Deforming
control volume

(a) (b)
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The forces acting on a control volume consist of

Body forces that act throughout the entire body of the control volume (such as gravity,
electric, and magnetic forces) and

Surface forces that act on the control surface (such as pressure and viscous forces and
reaction forces at points of contact).

Total force actine on control volume: b / = ) ' S ) P e
Control volume (CV) —
__.—"""--.\ /
’r’ \ /
dv

! T

I 1]

- \
: X l da >N
JI t‘ﬂ: 4

/
H_J’-“_J\

Control surface (CS) A

fl=1:
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The most common body force is that of gravity, which exerts a downward force on every
differential element of the control volume.

_}
Gravitational force acting on a fluid element: dF iy = pg dV
%
. + + . . —*
Gravitational vector in Cartesian coordinates: g= — gk

. . - — —
Total body force acting on control volume: ' Fy o4 = [ pg dV = meyg

dy ‘cv
]
E Tyy Oy Oy
l . )
= dz g Stress tensor in =0, o, o,
jdvip Cartesian coordinates: - - -
g 1] .- Ty Oy Oy
e d . . .
2 : ! Surface forces are not as simple to analyze since they consist of
2 dFoy, = dF iy = pE AV both normal and tangential components. .
- Normal stresses are composed of pressure (which always acts
> inwardly normal) and viscous stresses.
V. J . .
. Shear stresses are composed entirely of viscous stresses.

The gravitational force acting on a differential volume element of fluid is equal to its
weight; the axes have been rotated so that the gravity vector acts downward in the

negative z-direction.
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surface

dF, surface, x

Control \ y
\ L

dF surface, v

dF surface, tangential
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!
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|
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I dF. surface, normal 7
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dF surface
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“ /
S dF, surface, x ;f
~
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— M \._.‘
Control \ :
surface

X

dx

Surface force acting on a differential surface element:

ﬁ

dF surface —

('Tl"_,f‘ N ﬂfA

Tyy

Y

_}
2 F surface

oV

2 F = E Fhmljc + 2 ‘E}hur['m'c = r J”E ”il"j + r (J'” ) 'ﬁ dA

CS

"Cs

Total surface force acting on control surface:

('Te'l_f N dA

Total force: 2 E - 2 Egr;n'n}' + 2 E[m-wurc + 2 E‘-'JHCI.#IIH’ + 2 E'n[h{-r

surface forces

i3

total "['i'l['t.'t.‘ body .lj'l."['t.'t.‘
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A common simplification in the application of Newton’s laws of motion is to subtract the
atmospheric pressure and work with gage pressures.

This is because atmospheric pressure acts in all directions, and its effect cancels out in
every direction.

This means we can also ignore the pressure forces at outlet sections where the fluid is
discharged to the atmosphere since the discharge pressure in such cases is very near
atmospheric pressure at subsonic velocities.

T Fy Bolts—, : CVB |

14 / / - :E\§ ﬁ St

W E Fatm I ;H’J ? [n=——-i _61\':1;
_’_,f—f"f \]\ _ Pl {gﬂge} ] Hh

atm i “ R T
With atmospheric With atmospheric Wea cery v
X

pressure considered pressure cancelled out

Out
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6—4 THE LINEAR MOMENTUM EQUATION _

= =~ dVv d = dBS},S d oL
2 F=ma=m—=—@mYV) = j pb dV +j pb(V. - n)dA
dt  dt dt dt .y -
- d( = . ‘_} .
2F=E PVdV B=mV b=V b=V
i |
d(mV gy,

Newton’s second law can be stated as dt

The sum of all external forces acting on a
system is equal to the time rate of change of
linear momentum of the system.

This statement is valid for a coordinate system
that is at rest or moves with a constant
velocity, called an inertial coordinate system or
inertial reference frame.

d — — = —
=— j pV dV +j pV(V, - 1) dA
g CV S5

The linear momentum equation

1s obtained by replacing B in the
Reynolds transport theorem by the
momentum m\7, and b by the
momentum per unit mass V.
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pV dV + J pV (V. -n)dA
C5

e 2¥ . _— J (V . e —3 . — —
General: 2 F p\ dV + | pV(V, n)dA V.=V = Vg
’CS
The sum of all The time rate of change The net flow rate of
external forces of the linear momentum | + | linear momentum out of the
acting on a CV of the contents of the CV control surface by mass flow
) _ (] i — —3 =¥ .
Fixed CV: 2 F = p pV dV + pV(V -n)dA
.

Cv 'Cs

Note that the momentum equation is a vector equation, and thus each term should
be treated as a vector. Also, the components of this equation can be resolved along
orthogonal coordinates (such as X, y, and z in the Cartesian coordinate system) for

convenience. The force F in most cases consists of weights, pressure forces, and
reaction forces. The momentum equation is commonly used to calculate the forces
(usually on support systems or connectors) induced by the flow.
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(Pressure
force)
FR;} P 1 ,gageA 1
(Reaction
force)

The momentum equation is commonly
used to calculate the forces (usually on
support systems or connectors)
induced by the flow.

W (Weight)

(Reaction force)

FRI

An 180° elbow supported by the ground
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- - =
Steady flow: E F = pV (V,-n)dA
’Cs
Mass flow rate across an inlet or outlet Momentum flow rate across a uniform inlet or outlet:
‘ | h amd =) =y — =
m= | p(V-n)dA.= pV,,A. pYiY ~nyda, = pYVo AV, — 1V .
‘Ac 'Ac
. =" " 7\Out
Voo, ~Jn 7 I iV,
avg, %I — 3Vavg 3
S
\/ Tk N
-~
7 control \
[ volume )

ml ave.1 01117”A x
Out

mS avg,5

wg 4

In a typical engineering problem, the control volume may

contain many inlets and outlets; at each inlet or outlet we
define the mass flow rate and the average velocity.

18 Prof. Dr. Ali PINARBASI Chapter 6: MOMENTUM ANALYSIS OF FLOW SYSTEMS




1 CV
I
P I_..
Vive 8 I—'*Ih Vave Nozzle I—'*Ih Ve
L. I
1
\ \
\ \
(a) (b) (c)

Examples of inlets or outlets in which the uniform flow approximation is reasonable:

(a) the well-rounded entrance to a pipe,
(b) the entrance to a wind tunnel test section, and
(c) a slice through a free water jet in air.

19
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l Momentum-

Flux Correction Factor, S -

The velocity across most inlets and outlets is not uniform.
The control surface integral may be converted into algebraic form using a dimensionless
correction factor £, called the momentum-flux correction factor.

- d [ = > = For turbulent flow 8 may have an
2 F = At pV dV + pV(V - n)dA insignificant effect at inlets and
v €5 outlets, but for laminar flow 8 may be
S d = = N important and should not be
2 F = E pV dV + E I{-)J'Ff‘;ifu‘»'g . 2 B'Fni';:a‘»'g neglected. It is wise to include 6 in all
“CV o 5 momentum control volume problems.
- = —
Momentum flux across an inlet or outlet: pV(V -n)dA,. = Bm , o

‘A

B

J pV(V - ii) dA. J pV(V - 7i) dA.

PBis always greater than or equal to 1.

A. A Pis close to 1 for turbulent flow and not very
MV N P Vg A Vg close to 1 for fully developed laminar flow.
V. i) dA, = V dA | on L} (LY
( n) aA, = c Momentum-flux correction factor: B = R ' v dA.
e Jy avg
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EXAMPLE 6-1
Consider laminar flow through a very long straight section of round pipe. The velocity

profile through a cross-sectional area of the pipe is parabolic, with the axial velocity
2

component given by V' = 2V, (1 — %) where R is the radius of the inner wall of the

pipe and V,,, is the average velocity. Calculate the momentum-flux correction factor
through a cross section of the pipe for the case in which the pipe flow represents an
outlet of the control volume, as sketched in Figure.

Solution For a given velocity distribution we are to calculate the

Vo v ! momentum- flux correction factor.
Y e Assumptions 1 The flow is incompressible and steady. 2 The
R — control volume slices through the pipe normal to the pipe axis.
L ! \_—
—— 1 V)2 4 (F r2\?
/ ﬁ:—J' (—) dA,. = EJ' (l——z>2wrdr
f AL‘ Ac Ir}:"l'\"g WR 0 R
= ] — 'r.?‘,."RE — — _ ru ? ITB 0 4
At~ SR PO i
dy = —2rdriR2 Y J, |y 3

Discussion We have calculated g for an outlet, but the same result would have
been obtained if we had considered the cross section of the pipe as an inlet to the
control volume.
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Steady linear momentum equation: MF=S BmV— > BmV
: P — el

oul 1n

The net force acting on the control volume during steady flow is equal to the
difference between the rates of outgoing and incoming momentum flows.

~ . — =+ Out
BamyVs \"If — B33V
\ N
\ ~
P Fixed \‘
/ control

I

I volume
V y,
/ -

v 17

PsinsVs ) 4ty Jr
S F=YpmV — ¥ pmV

ot mn
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w4 — —
One inlet and one outlet: E F=m(3,V,—B,V)
Along x-coordinate: E F.=m(pB,V,,— BV,
BymV, Water flow CS
N
— Hi
3 mv g ~‘il | | ‘ | BV,
o \\: “ | : h
~
\ : | Support
«,Lf’_. Fixed “‘\ | o :
/ control S N e A
\ volume J /;? (Reaction force)

-~ ™
;".I‘ \\\

s

N ~
-— 7 F
Out -~ —
@) ¥ F BmV,

2 I — — . . prd
BomV, Note: Vo2 V,evenif [V,| = V]

— L= =
2F =m(B,V,- BV
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No external forces:

d(mV)cv

+ > BmV — EBmV

out

In the absence of external forces, the rate of change of the
momentum of a control volume is equal to the difference
between the rates of incoming and outgoing momentum

flow rates.
AmV)ey dVey
g MoevT T (ma)cy

Therefore, the control volume in this case
can be treated as a solid body, with a net

force or of acting on the body.

The thrust needed to lift the space shuttle
is generated by the rocket engines as a

result of momentum change of the fuel as

—* oy o .
thdy = Mpoayd = E ﬁm V E ,Gm V it is accelerated from about zero to an exit
out speed of about 2000 m/s after

combustion.
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EXAMPLE 6-2

A reducing elbow is used to deflect water flow at a rate of 14 kg/s in a horizontal pipe upward
30° while accelerating it. The elbow discharges water into the atmosphere. The cross-
sectional area of the elbow is 113 cm? at the inlet and 7 cm? at the outlet. The elevation
difference between the centers of the outlet and the inlet is 30 cm. The weight of the elbow
and the water in it is considered to be negligible. Determine (a) the gage pressure at the
center of the inlet of the elbow and (b) the anchoring force needed to hold the elbow in place.

Solution A reducing elbow deflects water upward and discharges it to the atmosphere.
The pressure at the inlet of the elbow and the force needed to hold the elbow in place are
to be determined.

Assumptions 1 The flow is steady, and the frictional effects are negligible. 2 The weight of
the elbow and the water in it is negligible. 3 The water is discharged to the atmosphere,
and thus the gage pressure at the outlet is zero. 4 The flow is turbulent and fully developed
at both the inlet and outlet of the control volume, and we take the momentum-flux
correction factor to be $=1.03.
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(a) The gage pressure at the center of the inlet of the elbow

m,=m,=m= 14 kg/s.  m= pAV
m 14 kg/s
Vi = = 2 oo = 1.24 m/s
pA; (1000 kg/m”)(0.0113 m”)
m 14 kg/s
V, = = . — . = 20.0 m/s
pA, (1000 kg/m™)(7 X 10" m~)
PVI B W o _(va—v3+ )
og 28 {1 0g | 2g 42 1 2 = P§ 2g £2 74

P, — P, = (1000 kg/m?)(9.81 m/s?)

(20 m/s)> — (1.24 m/s)? | kN
X g +03-0 :
2(9.81 m/s%) 1000 kg - m/s*

Py gage = 202.2 kKN/m* = 202.2 kPa (gage)

26
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(b) The momentum equation for steady one-dimensional flow is

- - — Fo. + P, ....A, = BmV,cos 8 — BmV
E F = E,G.‘f?v o EB-’J"?V Rx 1. gage' * 1 B 2 18 I
out in FR; = ﬁr}ﬂfg sin 6

FRJ.’ = Bfﬁ?(‘fg COSs 9 - 'Vr]} - P].g'dge‘ﬂl]

. _ | N
= 1.03(14 kg/s)[(20 cos 30° — 1.24) m/s]

kg - m/s”
— (202,200 N/m?%)(0.0113 m?)
= 232 — 2285 = —2053 N
I N

| kg - m/s?

Fgp. = BmV, sin 8 = (1.03)(14 kg/s)(20 sin 30° m!s}( ) = 144 N

Discussion There is a nonzero pressure distribution along the inside walls of
the elbow, but since the control volume is outside the elbow, these pressures do

not appear in our analysis. The actual value of P1, gage will be higher than that
calculated here because of frictional and other irreversible losses in the elbow.
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EXAMPLE 6-3

The deflector elbow in Exp. 6-2 is replaced by a reversing elbow
such that the fluid makes a 180° U-turn before it is discharged, as
shown in Figure. The elevation difference between the centers of
the inlet and the exit sections is still 0.3 m. Determine the anchoring
force needed to hold the elbow in place.

Solution The inlet and the outlet velocities and the pressure at the inlet of the elbow remain
the same, but the vertical component of the anchoring force at the connection of the elbow
to the pipe is zero in this case (Fg,=0) since there is no other force or momentum flux in the
vertical direction (we are neglecting the weight of the elbow and the water). The horizontal
component of the anchoring force is determined from the momentum equation written in the
x-direction. Noting that the outlet velocity is negative since it is in the negative x-direction,
we have

Fpy t+ Pl,gageAl = Bym(—V,) — BymV, = —pm(V, + V)

Solving for Fp, and substituting the known values,

Fre = _Bm(VE + V) — Pl,gageAl
I N

= —(1.03)(14 kg/s Y (20 + 1.24) mf’s](l k ,f ?_) — (202,200 N/m?)(0.0113 m?)
g - m/s

= —306 — 2285 = —2591 N
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Therefore, the horizontal force on the flange is 2591 N acting in the negative x-direction (the
elbow is trying to separate from the pipe). This force is equivalent to the weight of about 260
kg mass, and thus the connectors (such as bolts) used must be strong enough to withstand
this force.

Discussion The reaction force in the x-direction is larger than that of Exp. 6-2 since the
walls turn the water over a much greater angle. If the reversing elbow is replaced by a

straight nozzle (like one used by firefighters) such that water is discharged in the positive x-
direction, the momentum equation in the x-direction becomes

Fpe + Py gugeAy = PV, — pmVy,  —  Fpo = pm(V, — V}) — P A,

I, gage

since both V;and V, are in the positive x-direction. This shows the importance of using the

correct sign (positive if in the positive direction and negative if in the opposite direction) for
velocities and forces.
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EXAMP LE 6-4 P atm

Water is accelerated by a nozzle to an average speed of 20 m/s, | - ]|
and strikes a stationary vertical plate at a rate of 10 kg/s with a |
|
|

normal velocity of 20 m/s. After the strike, the water stream _ -
splatters off in all directions in the plane of the platg. Determine the 1’\’1 In
force needed to prevent the plate from moving horizontally due to j—'—- — K

the water stream.

Solution A water jet strikes a vertical stationary plate normally. The force needed to

hold the plate in place is to be determined.

Assumptions 1 The flow of water at nozzle outlet is steady. 2 The water splatters in
directions normal to the approach direction of the water jet. 3 The water jet is exposed
to the atmosphere, and thus the pressure of the water jet and the splattered water
leaving the control volume is atmospheric pressure, which is disregarded since it acts
on the entire system. 4 The vertical forces and momentum fluxes are not considered
since they have no effect on the horizontal reaction force. 5 The effect of the
momentum-flux correction factor is negligible, and thus (=1.
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The momentum equation for steady one-dimensional flow

EE: Eﬁmﬁ— 2[33?’11?

out in

V, =V, and V, = 0 —F,=0— BV,

- | N
Fp=PBmV, = (1)(10 kg/s)(20 mfs}( ,}) =200 N

kg - m/s*

Discussion The plate absorbs the full brunt of the momentum of the water jet
since the x-direction momentum at the outlet of the control volume is zero. If the
control volume were drawn instead along the interface between the water and

the plate, there would be additional (unknown) pressure forces in the analysis.
By cutting the control volume through the support, we avoid having to deal with
this additional complexity. This is an example of a “wise” choice of control

volume.

31
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EXAMPLE 6-5

An orbiting satellite has a mass of mg,; = 5000 kg and is traveling at a constant velocity of V. To
alter its orbit, an attached rocket discharges m; =100 kg of gases from the reaction of solid fuel at a
velocity V; =3000 m/s relative to the satellite in a direction opposite to V,. The fuel discharge rate is
constant for 2 s. Determine (a) the acceleration of the satellite during this 2-s period, (b) the change
of velocity of the satellite during this time period, and (c) the thrust exerted on the satellite.

SOLUTION The rocket of a satellite is fired in the opposite
direction to motion. The acceleration, the velocity change,
and the thrust are to be determined.

Assumptions 1 The flow of combustion gases is steady
and one-dimensional during the firing period. 2 There are
no external forces acting on the satellite, and the effect of
the pressure force at the nozzle exit is negligible. 3 The

N N N O O

Mgqt

mass of discharged fuel is negligible relative to the mass of
the satellite,

and thus the satellite may be treated as a solid body with a
constant mass. 4 The nozzle is well-designed such that the
effect of the momentum flux correction factor is negligible,
and thus g= 1.

;
4
G,
=
=l
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(a) the acceleration of

the satellite during d“”'"’f > B AV 7
this 2-s period 0= 7 - E B m‘p E Bm\ — m""m—dr = —nm;V;

out in
dv, + dv.,, Mg melAt
Mgy - = =mV: — == Ve=— V;
o dt . dt Moy - Mgy
av,, mg/At (100 kg)/(2s) ,_‘
A = — = — Ve = (3000 m/s) = 30 m/s~
' dt Mgy 5000 kg

(b) Knowing acceleration, which is constant, the velocity change of the satellite
during the first 2 s is determined from the definition of acceleration

AV, = Qg dt — AV, = a. Ar = (30 m/s?)(2 s) = 60 m/s

(c) The thrust exerted on the satellite is,

| | KN
F.. =0 — i1, (—V,) = —(100/2 ke/s)(—3000 m/s = 150 kN
s (=) = &) - ”(10@0 ke 1]1;*&)

Discussion Note that if this satellite were attached somewhere, it would exert a force of 150 kN

(equivalent to the weight of 15 tons of mass) to its support. This can be verified by taking the
satellite as the system and applying the momentum equation.
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Rotational motion: A motion during which all points in
the body move in circles about the axis of rotation.

Rotational motion is described with angular quantities
such as the angular distance 6, angular velocity @, and
angular acceleration c.

Angular velocity: The angular distance traveled per unit
time.

Angular acceleration: The rate of change of angular

velocity.

de d(lry 1dl Vv T -

) = = = —— = —
dt dt rdrf r

> The relations between angular

o = do _ d-9 _ 1dv _ 4 distance 6, angular velocity o, and

dt dt*> rdt r linear velocity V.
V=rw and a, = rua
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e Newton’s second law requires that there must be a force acting in the tangential
direction to cause angular acceleration.

e The strength of the rotating effect, called the moment or torque, is proportional to the
magnitude of the force and its distance from the axis of rotation.

* The perpendicular distance from the axis of rotation to the line of action of the force is
called the moment arm, and the torque M acting on a point mass m at a normal
distance r from the axis of rotation is expressed as

M = rF, = rma, = mra Mass, m < Moment of inertia, ]
] ] Linear acceleration, @ = Angular acceleration, of
M = ' riadm = { ' r’ Q’H?}ﬂ' = o Lincar velocity, V «—— Angular velocity, &
Linear momentum «<—» Angular momentum
" INASs " IAss -
. ) ] m? lw
| is the moment of inertia of the body about
the axis of rotation, which is a measure of Rorce, ¥ <—+ Torque, M
the inertia of a body against rotation. P=ma =g

Unlike mass, the rotational inertia of a body Moment of force, ¥ <— Moment of momentum, &
also depends on the distribution of the M=rXF—n H=FxmV

mass of the body with respect to the axis of
rotation.
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H = Flw dm = { 2 dﬁ?}m = Jw

=
Angular momentum H=]o
“IMAsS T IMAss
. . —>
— . dow dllw) dH .
M=o =] - - Angular momentum equation

dt dt dt

21T

Angular velocity versus rpm

w = (rad/s)

60

H=rmV

= rm(rw)
2
= r<mw

=lw w=2mThn

~
_— (
\ s

Wpare = @M = 2nM

shaft —
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ﬁéhﬂﬂ = FV = Fro = Mw

Shaft power. W= oM=2miM (W)

 shaft

Rotational kinetic energy: KE, = %imz

During rotational motion, the direction of velocity changes even when its magnitude
remains constant. Velocity is a vector quantity, and thus a change in direction constitutes a
change in velocity with time, and thus acceleration. This is called centripetal acceleration.

Centripetal acceleration is directed toward the axis of rotation (opposite direction of radial
acceleration), and thus the radial acceleration is negative. Centripetal acceleration is the
result of a force acting on an element of the body toward the axis of rotation, known as
the centripetal force, whose magnitude is F, = mV?/r.

Tangential and radial accelerations are perpendicular to each other, and the total linear
acceleration is determined by their vector sum:

a=d,+d,
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. 6—6 THE ANGULAR MOMENTUM EQUATION

Many engineering problems involve the moment of the linear momentum of flow streams,
and the rotational effects caused by them.

Such problems are best analyzed by the , also called the
moment of momentum equation.

An important class of fluid devices, called turbomachines, which include centrifugal
pumps, turbines, and fans, is analyzed by the angular momentum equation.

A force whose line
of action passes
through point O

Sense of the
moment

produces zero Direction of
moment about rotation
point O.
— —=
M=FxF
Axis of
M= Frsin® rotation

The moment of a force F about a point O The determination of the

is the vector product of the position
vector r and F

direction of the moment by
the right-hand rule.
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_} 5
Moment of momentum: H=r XmV

Moment of momentum (system):

H,, = | (r X V)pdV

stwx {i"r [ — —
Rate of change of moment of momentum: h" - " ' (r X V)pdV
(i (i
T5ys
. — de\; — _ —3
Angular momentum equation for a system EM = EM - E(r X F)
dt
{?rHWS d ~ — . — -
— =— (r X V)pdV + (r X V)p(V, n)dA
dt dt Jev Jos
. — d i = - [ _ - =2
General: EM - 0 (r X V)pdV + r (r X V)p(V,-n)dA
C
‘cv “CS

. I he net How rate ol
The sum of all

The time rate of change

angular momentum
external moments | =

of the angular momentum | + )
. I . . s out of the control
acting on a CV of the contents of the CV

surface by mass flow
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[ L - [ . = = _
Fixed CV- Y\ M=— (r X \"/J d\/ + ‘ (r X \'U){ V - n)dA
P

N o B

dB._ . =
ys _ _d J pb dV +J pb(V, - 1) dA
it )y Cs

FXV

o J (r' X L-’}mwa (r X V)p(V, - 7i) dA
dt dt oy CS

XV b=
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During steady flow, the amount of angular momentum within the control volume
remains constant, and thus the time rate of change of angular momentum of the
contents of the control volume is zero.

Steady flow: Eﬂ? a J (7 X ;}p( ‘:’: - 1) dA
Ccs

An approximate form of the angular momentum equation in terms of average properties

at inlets and outlets:

— d [ ~ — . o= . o=
EMZ— (r X V)pdV + EJ’XH?V— EerV
‘dr 17 out in
“CY
— — . — — - -
Steady flow: EM - E r X mV — E rxXmV
out in

difference between the outgoing and incoming angular momentum flow rates.

M = rmV — rmV :
E % ; scalar form of angular momentum equation
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(IH
”C\ + 2’ ><mV— 21 ><mV
(

out

No external moments: () =

In the absence of external moments, the rate of change of the angular momentum of a
control volume is equal to the difference between the incoming and outgoing angular
momentum fluxes.

When the moment of inertia / of the control volume remains constant, the irst term on
the right side of the above equation becomes simply moment of inertia times angular
acceleration. Therefore, the control volume in this case can be treated as a solid body,
with a net torque of

M =1 a=>FXmV)—= D ((FXmV)

body body in out

This approach can be used to determine the angular acceleration of space vehicles and

aircraft when a rocket is fired in a direction different than the direction of motion.
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Radial-flow devices: Many rotary-flow devices such as centrifugal pumps and fans
involve flow in the radial direction normal to the axis of rotation.

Axial-flow devices are easily analyzed using the linear momentum equation.

Radial-flow devices involve large changes in angular momentum of the fluid and are
best analyzed with the help of the angular momentum equation.

Casing Out
Impeller 2
shroud il
b, 2
51| A
n A — I
A Shatt @

Impeller
blade

Scroll
Side view Frontal view

Eye
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. The conservation of mass equation for steady incompressible flow I

‘J] = \:fz =\ — (2mrb)V, , = Q2mryby)V, ,

Vl,u — — zmd Vz,n —

angular momentum equation
ZM = Z rmV — Zm‘?v

out in

21r>b,

Euler’s turbine formula

Toar = m(?'zvz,r — I Vl,r)

VNe Vi, = o V, | = wr,)

Topare = m(ryVasin ay — 1V sin ay)

S S
Tihatt, ideat = M(rs — ry)

Winatt = @ Tgage = 2770 T 5
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EXAMPLE 6-8

Underground water is pumped to a sufficient height through a 10-cmdiameter pipe that consists of a
2-m-long vertical and 1-m-long horizontal section. Water discharges to atmospheric air at an
average velocity of 3 m/s, and the mass of the horizontal pipe section when filled with water is 12 kg
per meter length. The pipe is anchored on the ground by a concrete base. Determine the bending
moment acting at the base of the pipe (point A) and the required length of the horizontal section that
would make the moment at point A zero.

Solution Water is pumped through a piping
section. The moment acting at the base and the

' ﬁ: “_'-_—_—':_'—_'—_— required length of the horizontal section to make

| | I this moment zero is to be determined.

| i A Assumptions 1 The flow is steady. 2 The water

2'm ﬂ'* 10 cm ry=2m l/'i’-_WA is discharged to the atmosphere, and thus the

} TR gage pressure at the outlet is zero. 3 The pipe

E e i : i "L diameter is small compared to the moment arm,

; . ’“‘*\Irﬁk and thus we use average values of radius and
— " 1'4 T, : velocity at the outlet.

FR
A

ml:mzzm,andVIZVEZV

m = pA,V = (1000 kg/m*)[77(0.10 m)*/4](3 m/s) = 23.56 ke/s

): 117.7N

W =mg = (12 kg/m)(1 m)(9.81 1’1’1!52)< >
I kg - m/s
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EM = Erffﬂf — Errfﬂf M, — rW = —rymV,

out in

1'14‘._1 S .-rl u"f - .-*'.E”tf'*’fg

I N
= (0.5 m)(118 N) — (2 m)(23.56 kg/s)(3 mf‘.u;}( )

2
kg - m/s

= —825N'm

w= WL=117.7 N 0=rW-—rmmV, — 0= (L2)Lw— rmV,

L = .| —
N w \ 117.7 N/m

Rryinv,  [2(2 m)(23.56 kg/s)(3 nm( N )
k

g - m/s

Discussion Note that the pipe weight and the momentum of the exit stream cause opposing
moments at point A. This example shows the importance of accounting for the moments of

momentums of flow streams when performing a dynamic analysis and evaluating the
stresses in pipe materials at critical cross sections.
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EXAMPLE 6-9

A large lawn sprinkler with four identical arms
is to be converted into a turbine to generate
electric power by attaching a generator to its
rotating head. Water enters the sprinkler from
the base along the axis of rotation at a rate of
20 L/s and leaves the nozzles in the tangential
direction. The sprinkler rotates at a rate of 300
rpm in a horizontal plane. The diameter of
each jet is 1 cm, and the normal distance
between the axis of rotation and the center of
each nozzle is 0.6 m. Estimate the electric
power produced.

Electric

generator - Myozz1eVr
. -
mnozz]e‘?‘," i N
’ - \
/ ! \
| \
Ll Tshaft \
w .:' i |
et Y — e — el fe—— -
\ | r= 0.6mTY
AY ]
\ |
N\ -/
~ | ,mnozzlet’;
|| _-
mnozzle“f;‘

Solution A four-armed sprinkler is used to
generate electric power. For a specified flow
rate and rotational speed, the power produced
is to be determined.

Assumptions 1 The flow is cyclically steady (i.e., steady from a frame of reference rotating with
the sprinkler head). 2 The water is discharged to the atmosphere, and thus the gage pressure at
the nozzle exit is zero. 3 Generator losses and air drag of rotating components are neglected. 4
The nozzle diameter is small compared to the moment arm, and thus we use average values of

radius and velocity at the outlet.

. "":jnozz]e . SL/s
Vie = T4 7 [7(0.01 m)¥/4]
jet .
47 Prof. Dr. Ali PINARBASI

1 m?
= 63.66 m/s
1000 L

Chapter 6: MOMENTUM ANALYSIS OF FLOW SYSTEMS




I min
) = 31.42 rad/s

w = 2mn = 2 (300 rev/min) (

S

Viore = o = (0.6 m)(31.42 rad/s) = 18.85 m/s

V, = Vi = Viouie = 63.66 — 18.85 = 44.81 m/s

M= D rmv—- "> rmv

o = _Tstmft — _4’}?”[101119,“' or Tslmﬂ — ’}Ammta]l{*'

N
| kg - m/s?
Mgt = PViora = (1 kg/L)(20 L/s) = 20 kg/s

Tor = MgV, = (0.6 m)(20 kg/s)(44.81 111;’5)( ) =337 7N - m

| KW
1000 N - m/s

W = 2T = O T s = (31.42 rad/s)(537.7 N - 111}( ) = 16.9 KW
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Discussion To put the result obtained in perspective, we
consider two limiting cases. In the first limiting case, the
sprinkler is stuck and thus the angular velocity is zero. The
torque developed will be maximum in this case since V, ,,,.=
and thus V, =V, = 63.66 m/s, giving T ,¢ ma =764 N - m. But
the power generated will be zero since the shaft does not
rotate.

In the second limiting case, the shaft is disconnected from the
generator (and thus both the torque and power generation
are zero) and the shaft accelerates until it reaches an
equilibrium velocity. Setting T, s, =0 in the angular
momentum equation gives V, =0 and thus Vi, =V, =63.66

m/s. The corresponding angular speed of the sprinkler is

0

Power produced, kW

60 s
I min

. () H]DIZ]E‘! 63+66 1111"{")(
n=—_—= =

2. 2or

, ) = 1013 rpm
27(0.6 m)

200 400 600 800 1000 1200

rpm

At this rpm, the velocity of the jet will be zero relative to an observer on earth (or relative to the
fixed disk-shaped control volume selected). The variation of power produced with angular speed
is plotted. Note that the power produced increases with increasing rpm, reaches a maximum (at
about 500 rpm in this case), and then decreases. The actual power produced will be less than

this due to generator inefficiency.
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* Newton’s Laws

* Choosing a Control Volume
* Forces Acting on a Control Volume
* The Linear Momentum Equation
— Special Cases
— Momentum-Flux Correction Factor, 3
— Steady Flow
— Flow with No External Forces
* Review of Rotational Motion and Angular Momentum
* The Angular Momentum Equation
— Special Cases
— Flow with No External Moments

— Radial-Flow Devices
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