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Objectives

Assess when the spatial variation of temperature is negligible, and
temperature varies nearly uniformly with time, making the simplified
lumped system analysis applicable

Obtain analytical solutions for transient one-dimensional conduction
problems in rectangular, cylindrical, and spherical geometries using
the method of separation of variables, and understand why a one-
term solution is usually a reasonable approximation

Solve the transient conduction problem in large mediums using the
similarity variable, and predict the variation of temperature with time
and distance from the exposed surface

Construct solutions for multi-dimensional transient conduction
problems using the product solution approach.



LUMPED SYSTEM ANALYSIS

Interior temperature of some bodies
remains essentially uniform at all times
during a heat transfer process.

The temperature of such bodies can be
taken to be a function of time only, T (7).

Heat transfer analysis that utilizes this
Idealization is known as lumped system
analysis.

(k) Roast beef

A small copper ball can be

modeled as a lumped system,
but a roast beef cannot.




(Heat transfer into the bod};)

during df :
: & during dt

hA(T., — T) dt = mc, dT
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/= volume
p = density

T = initial temperature
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The geometry and

parameters involved in the
lumped system analysis.

time constant




1) — 1o — o bt||p = hA, « This equation enables us to
i | p\Vc, determine the temperature
T(t) of a body at time t, or
alternatively, the time ¢
required for the temperature
Itn 4 to reach a specified value T(t).

« The temperature of a body
approaches the ambient
temperature T_ exponentially.

* The temperature of the body
changes rapidly at the
beginning, but rather slowly
later on. A large value of b
indicates that the body

The temperature of a lumped system

approaches the environment temperature approaches t.he environ.ment
as time gets larger. temperature in a short time




Q[r} = hAT(t) — T.] (W) The rafe of convection heat transfer
. between the body and its environment
at time t

) = me [T(H) — T kJ The iotal amount of heat transfer
¢ /’[ () 1 Lo between the body and the surrounding
medium over the time interval t =0 to ¢

Y R e OF K] The maximum heat transfer between
Omax = mep(1 i) (KJ) the body and its surroundings

Heat transfer to or from a body reaches its maximum value
when the body reaches the environment temperature.




Criteria for Lumped System Analysis

Convection

" '

' Conduction ‘ 1.

SOLID
BODY

]

- heat convection
heat conduction

A

»

The Biot number can be viewed as

the ratio of the convection at the
surface to conduction within the body.

V
L.= A Characteristic length
Fd <
. hL, Biot number
Bi = X

Lumped system analysis is applicable if

Bi = 0.1

When Bi < 0.1, the temperatures
within the body relative to the
surroundings (i.e., T —T_) remain
within 5 percent of each other.

h AT _ Convection at the surface of the body

Bi

Conduction within the body

L.k

Conduction resistance within the body

Bi =

I/h ~ Convection resistance at the surface of the body




T, = 20°C

h=15W/m2°C

Spherical : _ .
copper Small bodies with high
ball thermal conductivities

and low convection
k=401 W/m-°C coefficients are most
D=12cm likely to satisfy the
criterion for lumped
system analysis.

Convection

h = 2000 W/m2-°C

When the convection coefficient h is
high and k is low, large temperature
differences occur between the inner
and outer regions of a large solid.

Analogy between heat
transfer to a solid and
passenger traffic to an island.




TRANSIENT HEAT CONDUCTION IN LARGE PLANE WALLS,
LONG CYLINDERS, AND SPHERES WITH SPATIAL EFFECTS

consider the variation of temperature with time and position in 1-D problems
such as those associated with a large plane wall, a long cylinder, and a sphere.

T, Initially T. T,| Initially
h tied h & r=1%
I
e ' —_——
L 0 I, X
| | : Initially T
T=T,
: h
| # |
| | !
(a) A large plane wall (b) A long cylinder (c) A sphere Transient temperature

profiles in a plane wall

exposed to convection from
its surfaces for T,>T._.

Schematic of the simple geometries

in which heat transfer is 1-D.
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Nondimensionalized One-Dimensional Transient Conduction

Problem

y Initially
T'=T.
h t

a = kipc,
X = x/L

11

920  L* a0

F*T 10T
Differential equation: _j_ e __‘__
dx- « ot
w a0 aT(L. 1)
Boundary conditions: - =0 and —k— = h|T(L.t) — T_]
ox X
Initial condition: Tix.0)=T,
O(x, 1) =[Tx, ) — T T, — T,]
00 90 L 0T
X od(x/L) T;,—1T1,9x
%0 [2 oT ’ 0 1 aT
= an =
0x* 1i— 1. gx ar 1, — 1. or

al(1. 1) _hL

X2 a ot aX

and O(1.
an P (L, 7)
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Bi = k/hL T = at/L?

Dimensionless differential equation:

Dimensionless BC's:

000, 7 do(1.
( T}:D q (1, 7)

dnc

0X

Dimensionless initial condition:

3’0 a0
aX2 ot
= —Bi6(1,
X 160(1, 7)
6(X,.0) =1
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X, )= . 7 Dimensionless temperature
o i
X : . ; :
X = T Dimensionless distance from the center
. _hL o . ‘
B1 = ? Dimensionless heat transfer coefficient (Biot number)
ol : . : :
T= E = Fo Dimensionless time (Fourier number)
(a) Original heat conduction problem:
PT _ 14T _
E—afar, T(I.D)—T:-
aT(0, t dT(L, t
; )ZD, — ( )zh[T(L,r)—Tm]
X

T: F(I., L, T, k, C'., h& T;)

Nondimensionalization

(b) Nondimensionalized problem: reduces the number of
i) . . .
09 _ 2_95_ 60X, 0)= 1 Independent variables in 1-D
dt- BE transient conduction
396(0, 7) =10 961, 7) = —Bif(1. 7) prOblemS from 8 to 3,
aX ; ax * : : :
offering great convenience in
6 = fiX, Bi, 7) the presentation of results.




Exact Solution of 1-D Transient Conduction Problem

TABLE 18-1

Summary of the solutions for one-dimensional transient conduction in a plane wall of
thickness 2L, a cylinder of radius r, and a sphere of radius r, subjected to convention from
all surfaces.*

Geometry Solution A,'s are the roots of
* 4 sin A, A2 .
Plane wall 6 = 22)\ TR e~ """ cos (Ax/L) A,tan A, = Bi
= 2 Jl (An) — A%t Jl Mn) .
. 0= > —— S e " Jy(\rir) A = Bi
Cylinder nzz:lAn Jo (Ap) + Ji (Ap) o " Jo(Ap)

Z 4(sin A, — A, C0S A,) o~ Mo sin (A, x/ L)

- | — A, cot A, = Bi
Sphere ! nzl 2), — sin(2A,) Ay x/ L ! "

*Here H = (T — TH)AT,_ — T) is the dimensionless temperature, Bi = hL/k or hr, /k is the Biot number, Fo = 7 = at/ L?
or ar/ r? is the Fourler number and J, and J, are the Bessel functions of the flrst kind whose values are glven in
Table 18—3
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n

g.=A.e™

A, = .
" 2A, + sin(2A,)
A, tan A,= Bi

ForBi=5X=1,andt = 0.2:

) cos(A, X)
4 sin A,

n A, A, 0,

I 1.3138 1.2402 0.22321
2 4.0336 —0.3442 0.00835
3 6.9096 0.1588 0.00001
4 9.8928 —0.876 0.00000

The term 1n the series solution of
transient conduction problems decline
rapidly as n and thus A, increases
because of the exponential decay
function with the exponent —A,,7.

The analytical solutions
of transient conduction
problems typically
involve infinite series,
and thus the evaluation
of an infinite number of
terms to determine the
temperature at a
specified location and
time.



Approximate Analytical and Graphical Solutions

The terms in the series solutions converge rapidly with increasing time, and for
1>0.2, keeping the first term and neglecting all the remaining terms in the series
results in an error under 2 percent.

Solution with one-term approximation

ME D =T . _
P/ff”t.’ H'H.’,!’.' 9‘#'1” -— - ;”11{"' ALt COS {AE\/L} g ”2
“ {,— I,
s {0 5% ¢l &7 ik ik
Cylinder: O = T —T, = Ae M7 Jy(Aylr,), T>0.2
I.1) — 1 2_sin(Ar/r,)
51 o re: : — _ = Y. , AT = l o —- , ‘2
Sphere O oh T —T, A€ T r >0
. . - ba = Ia ke
Center of plane wall (x = 0): 00 wat = ﬁ = A e
2 - : do —1 e
Center of cylinder (r = 0): B o1 = ﬁ = Aje A1
; , Iy =1 2
Center of sphere (r = 0): 0o, sph = T“T = Aje M7
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TABLE 18-2 TABLE 18-3

Coefficients used in the one-term approximate solution of transient one-
dimensional heat conduction in plane walls, cylinders, and spheres (Bi = hil/k
for a plane wall of thickness 2L, and Bi = hr,/k for a cylinder or sphere of

The zeroth- and first-order Bessel
functions of the first kind

n

Jom)

Ji(m)

radius r,)
Plane Wall Cylinder Sphere

Bi A A Ay A, Aq A,
0.01 0.0998 1.0017 0.1412 1.0025 0.1730 1.0030
0.02 0.1410 1.0033 0.1995 1.0050 0.2445 1.0060
0.04 0.1987 1.0066 0.2814 1.0099 0.3450 1.0120
0.06 0.2425 1.0098 0.3438 1.0148 0.4217 1.0179
0.08 0.2791 1.0130 0.3960 1.0197 0.4860 1.0239
0.1 0.3111 1.0161 0.4417 1.0246 0.5423 1.0298
0.2 0.4328 1.0311 0.6170 1.0483 0.7593 1.0592
0.3 0.5218 1.0450 0.7465 1.0712 0.9208 1.0880
0.4 0.5932 1.0580 0.8516 1.0931 1.0528 1.1164
0.5 0.6533 1.0701 0.9408 1.1143 1.1656 1.1441
0.6 0.7051 1.0814 1.0184 1.1345 1.2644 1.1713
0.7 0.7506 1.0918 1.0873 1.1539 1.3525 1.1978
0.8 0.7910 1.1016 1.1490 1.1724 1.4320 1.2236
0.9 0.8274 1.1107 1.2048 1.1902 1.5044 1.2488
1.0 0.8603 1.1191 1.2558 1.2071 1.5708 1.2732
2.0 1.0769 1.1785 1.5995 1.3384 2.0288 1.4793
3.0 1.1925 1.2102 1.7887 1.4191 2.2889 1.6227
4.0 1.2646 1.2287 1.9081 1.4698 2.4556 1.7202
5.0 1.3138 1.2403 1.9898 1.5029 2.5704 1.7870
6.0 1.3496 1.2479 2.0490 1.5253 2.6537 1.8338
7.0 1.3766 1.2532 2.0937 1.5411 2.7165 1.8673
8.0 1.3978 1.2570 2.1286 1.55626 2.7654 1.8920
9.0 1.4149 1.2598 2.1566 1.5611 2.8044 1.9106
10.0 1.4289 1.2620 2.1795 1.5677 2.8363 1.9249
20.0 1.4961 1.2699 2.2880 1.5919 2.9857 1.9781
30.0 1.5202 1.2717 2.3261 1.5973 3.0372 1.9898
40.0 1.5325 1.2723 2.3455 1.5993 3.0632 1.9942
50.0 1.5400 1.2727 2.3572 1.6002 3.0788 1.9962
100.0 1.5552 1.2731 2.3809 1.6015 3.1102 1.9990
@™ 1.5708 1.2732 2.4048 1.6021 3.1416 2.0000

0.0
0.1
0.2
0.3
0.4

0.5

1.0000
0.9975
0.9900
0.9776
0.9604

0.9385
0.9120
0.8812
0.8463
0.8075

0.7652
0.7196
0.6711
0.6201
0.5669

0.5118
0.4554
0.3980
0.3400
0.2818

0.2239
0.1666
0.1104
0.0555
0.0025

—0.0968
—0.1850
—-0.2601
-0.3202

0.0000
0.0499
0.0995
0.1483
0.1960

0.2423
0.2867
0.3290
0.3688
0.4059

0.4400
0.4709
0.4983
0.5220
0.5419

0.5579
0.5699
0.5778
0.5815
0.5812

0.5767
0.5683
0.5560
0.5399
0.5202

-0.4708
-0.4097
-0.3391
—-0.2613

17



2
= =
= gl
8
T z ok ML
.\\\ — —
A Zam \aﬂ MJT:
P 28 e
I £ = som - ——
2 ._\......\\- ._.._...\..\..._. ...:.........-.... .1...1..1:1..1 m m T 0
\.H - =T ,
FIF - T I ......1....1.1 =
4 x...\....\ g = - HE =T m L
o TRH 1 e =1 Y & =
o R < R
AT e i Sanr=s om P
%. .Km__ﬁ....u - & x..\ - F = m m
e 1A i L4 —
T fnmwm._ muu#xl AT 14 = .
T ._____"___ __._. ﬁh__._}._ v.mu \._\\ — ..._..\\ ....._\....\. rm h
s FA— WA - r FT = c S
I - \x‘_,. d J.J-l.\;%_. 1 i m © m - o
a7 FARARF = 1 L 1 P .....\._.1._.. e
</ A T o AT Cg®5
0 ETirav xx < P di AT o, P z — o2
/ i + 'O
___.__..__..___ - \.._.\...___.\ ...\\ = 1 _/r_..m-._.\l..ﬂ...fm..._..\ [ = Qr-v a S .plv
.__ .__._. d ..1.\. \. \\\..... P .\\. .\..1.\. 1...”. I ...1....1........1 ...,....1.... T y ﬁ
ATEI Il E Cr< =<t = = L Qo
Ve e SRS O S 2 8
E L] = - - —
e e 220
| 1] 1 . =1 =
AR T - Bt CET T Hﬂxm = c £ &
‘:1___:_mx. ra = L == = ) ..ﬁl_ OA|U
i m e - y ] = r2bt
HI __—.1.____. __.__.-”-m_r .___x.__ﬂt_ u_\. ......______.. = .\.\.\.. L] Nm a C
HHLH ,_:_h_uxlnu P 5 o & I L 0 - o
_‘____h_ Ty m.f_m-_uulb, \\ P = O O O >
I AT ] A
- _:,xm\_x\"._‘\ 7 i rern
(AT Y - AR 7 o C = O
A1 £ B FATAPA AT XTI A ] 1] = :IknC
fe AT Z e 2
._.__.__. F \. A 1 .\\. Y\_. .....\._._. i C O a
SR R feeme s
o e i P ut ] » " = m = 9 ..|m
= :_: IV ¥ A Z1F El — = T S O°S
w :_____._.q_q\_. u..._.ﬂ__\ ull .\\\ ..1_\.\\ = n5 ..1....1..1.. = o > W
21 g 1 M,
© ninre A AT N T =58
== - T
— T178AAA X PR A= 4.6 - L c © ~
e .___.“.x_.\.\.\.. P E 21 = ..-.......1.“ = —- =t .___.r..u._._.nlﬂ.l W C
p “M»W\.x F = \....\\ = - == .1.1.1.1.. __,u.\ = ()]
pre et Ae=Clll © o 2 5
A R e i g F—— o+
= e - R
E VAV RIAVA T EEEc==a —— =
A 7 /] e b=
lw 5._____.5_ r ._\._.x\\ B ﬂ....u 7 .\..._..__.1 \.\.\. 7 - ..I....I..ll.l e ﬂla e m
Flri N .nu_ 1 I = = i
H F A7~ b -1 — =1 = P o
O HH 7777 Lk o LT > S o O
c it CATAA SRR BT = —g | = © n_|u.. o
. =i w g
;: LA Ao ] 27 0k =8 © = 2 S
a ___. .__.g.\ I a ...\_ﬁn._ ﬂ_ ' " [ar —
e by oo Nz o = 50 2 2
Q. A ArS 2 P e AT O\ ST = 0D
W AAA A A = ...l...;....... = p) —
o) AL L 1= v I~
= 2 rsa o o e~ O
{1 e b
2 M= S52%
= LB =52 2
= [ )
o s -
., SSdco 8 oS85 n O 0 O
o 9 =Z=8&8IS E Z & c O Q.
EE R — O S 2
S S S O 9 o




19

i v 5
1.0 /L = 0.2 e
09 O 4 4/"' « ,/// /4//
AL A
0.8 4
0.7 P /
0.6 LT+ /}
0.6 = 1//
/
0-5 1/ /‘/
iy
0.4 0.8’:71"""/ / /
0.3 -1
1 ", ‘/
- .0.9/ / %
0.1 1.0 g1
o[ TH < Plate
0.01 0.1 1.0 10 100
| &
Bi AL

(b) Temperature distribution

h

Initially | 7
T=. Ti h
0 +—




Qmax

1.0 il e i eyl i el 7 FTTT] pZitll
_ / /1/ /T YA /T 1/ A/ A
0.9 B kLl il it Ay
A 1A A

0.8 f i / / Tl /
0.7 ' / / :

: I/ I/ ]' / {/ / / f // / // / /
0.6 §.§'—-_§+%'—9«’——$r -..’I—nl _ 7 / /
05 SIS 5SS Sii S~ I8 e[S 5

- u J1y / / | / | / N /
04 ) / A / [ / / }'

I /11 vp’ ST T4 / /

0.3 Aavi Al / /1 1f i

- AT / / I / / )4 /
0.2 / F d / / )4 _

1/ d‘/ 1/ / [’ 1/ / /’ / L

0.1 A/ A AL LA / dii

’ o ’, e "‘: /; A /' AL 1/ A agfilt Plate

0 . =2 L1 1] — -""/ #ﬂ{-" -

105 104 103 102 107! ! 10 102 103

Bi2tr = hPoat/k?

T:c Imtially T::c

h T=T; h
(c) Heat transfer D

I

e 2] —
|
|




The dimensionless temperatures anywhere in a plane wall, cylinder,
and sphere are related to the center temperature by

gwall /\.1.\' gcyl A]i’ Bsph Si]l(/\]l‘/ro)
= cos|{— . =Jo| — ). and =

00. wall L 90. cyl r 90. sph Al 1/ 0

0

T T I
s S|l h o
T.=T,
(a) Finite convection coefficient (b) Infinite convection coefficient

The specified surface temperature corresponds to the case of convection

to an environment at T with with a convection coefficient h that is infinite.




QI]]&IX = ’11(1[?( T’J2= o T{) = I)V([)( T:c o T':) (I\J)

P l ( < ) | —g, SO
ane wall: e =1 — 6y
Qmu.\ wall Lhae A ]
- Q | Ji(Ay)
Cvylinder: = | =1=205
' anx vi N Al
ax/ cy
Sphere: —— =1 — 36, .
! Qmux sph O, sph /\;
Ql'ﬂﬂ.‘( Q
t=0 t=0
_.. _b
h h
j I,
(a) Maximum heat transfer (1t — %) Bi=... Q B
. hoct —Bi?r = 0. .
The fraction of total heat transfer k>

Q/Q,., Up to a specified time tis (Gréber chart)
determined using the Grober charts.

(b) Actual heat transfer for time t



The physical significance of the Fourier number

The rate at which heat 1s conducted
at  kL* (I/LYy AT across L of a body of volume L’
2 pe, 13/ AT The rate at which heat is stored
in a body of volume L*
L

T:

 The Fourier number is a measure
of heat conducted through a body 0

. Qconduclcd
relative to heat stored. -

« Alarge value of the Fourier ,J‘_ e
number indicates faster R ¢ -
propagation of heat through a
body.

ot _ annd ucted
) - .

“—

Fourier number: 7 =

Qslorcd

Fourier number at time t can be viewed as the

ratio of the rate of heat conducted to the rate of
heat stored at that time.
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TRANSIENT HEAT CONDUCTION IN
MULTIDIMENSIONAL SYSTEMS T T

h h

Using a superposition approach called the & 71 wmp Heat
product solution, the transient temperature AEARSieE
charts and solutions can be used to construct
solutions for the 2-D and 3-D transient heat
conduction problems encountered in
geometries such as a short cylinder, a long
rectangular bar, a rectangular prism or a semi-

(a) Long cylinder

T, /“]‘\

infinite rectangular bar, provided that all "

surfaces of the solid are subjected to Heat
convection to the same fluid at temperature T_, N T(rxn) W o
with the same heat transfer coefficient h, and

the body involves no heat generation. \_I/

The solution in such multidimensional (b) Short cylinder (two-dimensional)
geometries can be expressed as the product of | Ry I R RIalelt

the solutions for the one-dimensional cylinder exposed to convection
geometries whose intersection is the from all surfaces varies in both the
multidimensional geometry. radial and axial directions, and

thus heat is transferred in both
directions.




The solution for a multidimensional geometry is the product of the solutions of the
one-dimensional geometries whose intersection is the multidimensional body.

The solution for the two-dimensional short cylinder of height a and radius r is
equal to the product of the nondimensionalized solutions for the one-dimensional

plane wall of thickness a and the long cylinder of radius r,.

T(r,x, 1) — T, (T, 1) —T., I(r, 1) — T,
-7, Jom, ~\T-7, Jue\"T,—T, e

cylinder

- Plane wall
h L I (\——-"\N\
| | |

*— Long
cylinder

A short cylinder of radius r, and height a is the intersection of

25 a long cylinder of radius r, and a plane wall of thickness a.
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bar

T('\-‘ .\“ [) o T:c .
T‘ . T rectangular o 9\\";|II("“ ”H\\fuil(.\“ f)
i 00

/ Plane wall

h

T

b

=
—a

A long solid bar of rectangular profile a x

i

]
|

/ Plane wall

b is the intersection of two plane walls of
thicknesses a and b.

N 1y =T,
Hwall(x‘- I) - T.—T
(T, —T,
(s D) =\ 72
s
Qsemi—inf(x‘- I) = T—T

plane
wall

infinite
cylinder

semi-infinite
solid
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The transient heat transfer for a two-dimensional geometry formed by
the intersection of two one-dimensional geometries 1 and 2 is

(c.)lllil\ total. 2D Q)ln;l\ ] Q)m;l\ y. (;.,)I]];l\ ]

Transient heat transfer for a three-dimensional body formed by the
intersection of three one-dimensional bodies 1, 2, and 3 is

QO

=

: =1 = o b | -f =
O max total. 3D Cmax l O max . Q max l
O max 3 O max l Cmay 2




Multidimensional solutions expressed as products of one-dimensional solutions
for bodies that are initially at a uniform temperature T; and exposed to convection
from all surfaces to a medium at 7

6(r.1) =6, (r.1)
Infinite cylinder

e
-

O xrt)=08,n00 .. (x)

Semi-infinite cylinder

@(xr.1) = BL..F.I (r,1) 8, (x.1)
Short cylinder

Semi-infinite medium

28

(x,1) =0

semi-inf (%> 9]

6(x, 1) = 6

SeMmi-

() 6

semi-inf
Ouarter-infinite medinm

(v.1)

44U -
S,
‘%“-.
- ““..\“‘
-“-“-.
X
Ox.y.z,1) =
l'E""rcccrni-inl' (x, ”H.ﬁcmi—inf t.“ I) H::-:mi-inl' (z.1)

Corner region of a large medium



Multidimensional solutions expressed as products of one-dimensional
solutions for bodies that are initially at a uniform temperature T, and exposed
to convection from all surfaces to a medium at T__
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M,
. L oL \\M
\‘-.
y 5
P %
- X i
[|]_‘L l -! f"ﬁr-“‘
= i
X
e(x,y,z,1)
O(x,1) = 19“.3“'[.‘&'. 1) 6 (x, i = ﬂwall (X, 1) Hw;nn inf ! ﬂ' HWJ“ X, 1) '9- 2mi-inf AL 1 Hktml mJ z,0)
Infinite plate (or plane wall) Semi-infinite plate Quarter-infinite plate
Y ;
. i P
[ | | 44
| ‘ ke
| 1' l /
' | —
| : ! x
I | I
| ¥: L
/)_ =ty //'” f" - i i
& X
b
H{{ 1|. - f] = 8':‘.1-.}'-.:.-11‘.] =
i 0, a8, w(y,NO, (2,1
B(x, 3, 1) = By (X, )84y (V. 1) Oyatt (6. 1) Byany 0 ) Eenmicing (2,1 wall wall (1) Oy {

Infinite rectangular bar

Semi-infinite rectangular bar

Rectangular parallelepiped



