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SUMMARY

Lumped System Analysis

• Criteria for Lumped System Analysis

Transient Heat Conduction in Large Plane Walls, Long 
Cylinders, and Spheres with Spatial Effects

• Nondimensionalized One-Dimensional Transient Conduction Problem
• Exact Solution of One-Dimensional Transient Conduction Problem
• Approximate Analytical and Graphical Solutions

Transient Heat Conduction in Multidimensional Systems
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Objectives

• Assess when the spatial variation of temperature is negligible, and 
temperature varies nearly uniformly with time, making the simplified 
lumped system analysis applicable

• Obtain analytical solutions for transient one-dimensional conduction 
problems in rectangular, cylindrical, and spherical geometries using 
the method of separation of variables, and understand why a one-
term solution is usually a reasonable approximation

• Solve the transient conduction problem in large mediums using the 
similarity variable, and predict the variation of temperature with time 
and distance from the exposed surface

• Construct solutions for multi-dimensional transient conduction 
problems using the product solution approach.
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LUMPED SYSTEM ANALYSIS

Interior temperature of some bodies 
remains essentially uniform at all times 
during a heat transfer process.

The temperature of such bodies can be 
taken to be a function of time only, T (t). 

Heat transfer analysis that utilizes this 
idealization is known as lumped system 
analysis.

A small copper ball can be 
modeled as a lumped system, 

but a roast beef cannot.
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Integrating with
T = Ti at  t = 0
T = T(t) at  t = t

The geometry and 
parameters involved in the 
lumped system analysis.

time constant
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The temperature of a lumped system 
approaches the environment temperature 
as time gets larger.

• This equation enables us to 
determine the temperature 
T(t) of a body at time t, or 
alternatively, the time t 
required for the temperature 
to reach a specified value T(t).

• The temperature of a body 
approaches the ambient 
temperature T exponentially.

• The temperature of the body 
changes rapidly at the 
beginning, but rather slowly 
later on. A large value of b 
indicates that the body 
approaches the environment 
temperature in a short time
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Heat transfer to or from a body reaches its maximum value
when the body reaches the environment temperature.

The rate of convection heat transfer 
between the body and its environment 
at time t

The total amount of heat transfer 
between the body and the surrounding
medium over the time interval t = 0 to t

The maximum heat transfer between 
the body and its surroundings
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Criteria for Lumped System Analysis

Lumped system analysis is applicable if

When Bi  0.1, the temperatures 
within the body relative to the 
surroundings (i.e., T −T) remain 
within 5 percent of each other.

Characteristic length

Biot number

The Biot number can be viewed as 
the ratio of the convection at the 
surface to conduction within the body.
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Small bodies with high 
thermal conductivities 
and low convection
coefficients are most 
likely to satisfy the 
criterion for lumped 
system analysis.

Analogy between heat
transfer to a solid and
passenger traffic to an island.

When the convection coefficient h is
high and k is low, large temperature
differences occur between the inner
and outer regions of a large solid.
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TRANSIENT HEAT CONDUCTION IN LARGE PLANE WALLS, 
LONG CYLINDERS, AND SPHERES WITH SPATIAL EFFECTS

consider the variation of temperature with time and position in 1-D problems
such as those associated with a large plane wall, a long cylinder, and a sphere.

Schematic of the simple geometries 
in which heat transfer is 1-D.

Transient temperature 
profiles in a plane wall 

exposed to convection from 
its surfaces for Ti >T.
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Nondimensionalized One-Dimensional Transient Conduction 
Problem
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Nondimensionalization
reduces the number of 
independent variables in 1-D 
transient conduction
problems from 8 to 3, 
offering great convenience in 
the presentation of results.
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Exact Solution of 1-D Transient Conduction Problem
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The analytical solutions 
of transient conduction 
problems typically 
involve infinite series, 
and thus the evaluation 
of an infinite number of 
terms to determine the 
temperature at a 
specified location and 
time.
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Approximate Analytical and Graphical Solutions

Solution with one-term approximation

The terms in the series solutions converge rapidly with increasing time, and for 
>0.2, keeping the first term and neglecting all the remaining terms in the series 
results in an error under 2 percent.
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(a) Midplane temperature

Transient temperature and heat transfer charts (Heisler and
Grober charts) for a plane wall of thickness 2L initially at a uniform 
temperature Ti subjected to convection from both sides to an
environment at temperature T with a convection coefficient of h.
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(b) Temperature distribution
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(c) Heat transfer
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The dimensionless temperatures anywhere in a plane wall, cylinder, 
and sphere are related to the center temperature by

The specified surface temperature corresponds to the case of convection 
to an environment at T with with a convection coefficient h that is infinite.
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The fraction of total heat transfer
Q/Qmax up to a specified time t is

determined using the Gröber charts.
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• The Fourier number is a measure 
of heat conducted through a body 
relative to heat stored. 

• A large value of the Fourier 
number indicates faster 
propagation of heat through a 
body.

Fourier number at time t can be viewed as the 
ratio of the rate of heat conducted to the rate of 

heat stored at that time.

The physical significance of the Fourier number
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TRANSIENT HEAT CONDUCTION IN
MULTIDIMENSIONAL SYSTEMS

• Using a superposition approach called the 
product solution, the transient temperature 
charts and solutions can be used to construct 
solutions for the 2-D and 3-D transient heat 
conduction problems encountered in 
geometries such as a short cylinder, a long 
rectangular bar, a rectangular prism or a semi-
infinite rectangular bar, provided that all 
surfaces of the solid are subjected to 
convection to the same fluid at temperature T, 
with the same heat transfer coefficient h, and 
the body involves no heat generation.

• The solution in such multidimensional 
geometries can be expressed as the product of 
the solutions for the one-dimensional 
geometries whose intersection is the 
multidimensional geometry.

The temperature in a short
cylinder exposed to convection 
from all surfaces varies in both the 
radial and axial directions, and 
thus heat is transferred in both 
directions.
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A short cylinder of radius ro and height a is the intersection of 
a long cylinder of radius ro and a plane wall of thickness a.

The solution for a multidimensional geometry is the product of the solutions of the 
one-dimensional geometries whose intersection is the multidimensional body.
The solution for the two-dimensional short cylinder of height a and radius ro is 
equal to the product of the nondimensionalized solutions for the one-dimensional
plane wall of thickness a and the long cylinder of radius ro.
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A long solid bar of rectangular profile a 
b is the intersection of two plane walls of
thicknesses a and b.



27

The transient heat transfer for a two-dimensional geometry formed by 
the intersection of two one-dimensional geometries 1 and 2 is

Transient heat transfer for a three-dimensional body formed by the 
intersection of three one-dimensional bodies 1, 2, and 3 is
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Multidimensional solutions expressed as products of one-dimensional solutions 
for bodies that are initially at a uniform temperature Ti and exposed to convection 
from all surfaces to a medium at T
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Multidimensional solutions expressed as products of one-dimensional 
solutions for bodies that are initially at a uniform temperature Ti and exposed 
to convection from all surfaces to a medium at T


