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Apply the conservation of mass equation to balance the incoming
and outgoing flow rates in a flow system.

Recognize various forms of mechanical energy, and work with
energy conversion efficiencies.

Understand the use and limitations of the Bernoulli equation, and
apply it to solve a variety of fluid flow problems.

Work with the energy equation expressed in terms of heads, and
use it to determine turbine power output and pumping power
requirements.
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You are already familiar with numerous
such as the laws of

e conservation of mass

, and

Historically, the conservation laws are first
applied to a fixed quantity of matter called

a or just a system, and then
extended to regions in space called

The conservation relations are also called

since any conserved Many fluid flow devices such as this Pelton
guantity must balance during a process. wheel hydraulic turbine are analyzed by
applying the conservation of mass,
momentum, and energy principles.
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undergoing a change is expressed
/dt =0, which is the statement that the mass of the system remains

as mg,=Const or dmy

constant during a process.

Mass balance for a control volume (CV) in rate form: : L dmcy
My, — Mgy = dt

the total rates of mass flow into and out of the

m. and m
in out control volume

the rate of change of mass within the control

dmeyldt volume boundaries.

In fluid mechanics, the conservation of mass relation written for a

differential control volume is usually called the continuity equation.
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Linear momentum: The product of the mass
and the velocity of a body is called the linear
momentum or just the momentum of the
body.

W Conservation of Momentum

The momentum of a rigid body of mass m
moving with a velocity Vis mV.

Newton’s second law: The acceleration of a
body is proportional to the net force acting on
it and is inversely proportional to its mass,
and that the rate of change of the momentum
of a body is equal to the net force acting on
the body.

Conservation of momentum principle:

Linear momentum equation:
linear momentum equation
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The conservation of energy principle (the energy balance): The net energy transfer

to or from a system during a process be equal to the change in the energy content of
the system.

Energy can be transferred to or from a closed system by heat or work.

Control volumes also involve energy transfer via mass flow.

+ + + dEcy
Conservation of energy: Eyn—Eq= r
- I

the total rates of energy transfer into and out

Eiﬂ ﬂnd E-Dllt

of the control volume

the rate of change of energy
dEcv"rdf within the control volume boundaries

In fluid mechanics, we usually limit our consideration to mechanical
forms of energy only.

8 Prof. Dr. Ali PINARBASI Chapter 5: MASS, BERNOULLT AND ENERGY EQUATIONS




. 5—2 CONSERVATION OF MASS _

Conservation of mass: Mass, like energy, is a conserved property, and it cannot be
created or destroyed during a process.

Closed systems: The mass of the system remain constant during a process.

Control volumes: Mass can cross the boundaries, and so we must keep track of the
amount of mass entering and leaving the control volume.

2 kg 16 kg 18 kg
-+ —

Mass is conserved even during chemical reactions.

Mass m and energy E can be converted to each other:

E = mc?

c is the speed of light in a vacuum, ¢ = 2.9979x10% m/s

The mass change due to energy change is negligible.
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Mass flow rate: The amount of mass flowing through a cross section per unit time.

The differential mass flow rate

N
~ 5
~ s » — \
om = pV, dA, .. 4 \
'\\ A%
5 h!
. . . . \\.
Point functions have exact differentials N
L) 7
dA, —__ Vi
2 “3 “3 _h E
J dA, = A, — A, =m(r; —r7)
I ‘\
A}
L
III’4.
Path functions have inexact differentials Control surface '
. O ace 1
i}
J O = My not m, —
1
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S = pV, dA, m= | om= | pV,dA. (kg/s)
YA YA,
. | L[
Average velocity Vivo = . ‘ V, dA,
Mass flow rate , ‘ i = ks —
m = ,r;‘t-":l.\.:_,,.ell. {|{11.fh'} i PV \V/
. B -
Volume flow rate Ve | Yl = Vil = VA, (m’/s)
.14'_
Vu\'g : : _______________ |i
;! A~ :i
: : Valvg :
1 ! >
i ] I:
] I
. i '''''' : V= Vaw A( :
T > i i
: |

Cross section
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[ Conservationof Massprncigle ]

The conservation of mass principle for a control volume: The net mass transfer to or
from a control volume during a time interval At is equal to the net change (increase or
decrease) in the total mass within the control volume during At.

(Toml mass entering) (Totul mass leuving) _ ( Net change in mass )
p

the CV during Ar the CV during Ar within the CV during A
\ / , My, — Moy = Ay (kg)
' My, — Moy = dmevy/dt (kg/s)
i, and 71, the total rates of mass flow into and
: out of the control volume

: d;ﬂcv/df the rate of change of mass V\.llthln
/ the control volume boundaries.

Mass balance is applicable to any control volume
undergoing any kind of process.
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dm = p dV Total mass within the CV: Mey = pdV
-.Cx_.'
X _ L. CI’”C'\" (1
Rate of change of mass within the CV: = — pdV
dt dar ) .
‘cv
Normal component of velocity: V. =Vcos8=V-n

Differential mass flow rate:  ém = pV, dA = p(V cos 0) dA = p(\7 - 1) dA

Net mass flow rate: Moy = f om = J pV, dA = J p(‘_}' n) dA
Cs cs cs

-

’ dl \a.. ——
‘,’ dv REN
I ' A
' \ 1

dm

l | H
| dA
' y S o
I' Control P V
\ volume (CV) »

~ A

Control surface (CS)
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The time rate of change of mass within the control volume
plus the net mass flow rate through the control surface is

Jfl 1;;' /'A‘.ﬁ:ﬂ}; H
4 7
\—."\\“. (/
— T‘-’
>/ /NG
— i

= Em — Em

-l [ -

{T ‘ ;Ha”n/—i- ‘ p(V-n)ydA =0

ar ., Jos equal to zero.
d [
— pdV + E pV, dA — E pV, dA =0
d? Yoy out vy in <y

[ | .

< ‘ P d\/ = E m — z m ffff}{_ v
(1 Jov in ot f"lr'r in

ot

The conservation of mass equation is obtained by replacing B in
the Reynolds transport theorem by mass m, and b by 1

dB

sYs

dt

d

—— | ppav+ | pb(V-n)daA
dt

Y

pd/ + | pV-m)dA

Cs

d
V. =Vcost
m = p(Vcos 0)(A/cos ) = pVA

(a) Control surface at an angle to flow

4 %4

—

N 7
_...] :—h—rV
> |

m = pVA

(h) Control surface normal to flow
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. Moving or Deforming Control Volumes _

The conservation of mass equation are also valid for moving or deforming control
volumes provided that;

d |

1V +
dr P

Ccv “CS

= d
p(V-n)dA =0 —J' pdV + EJ'pH,dA— EJ'pVHdAZO
di Jey A A

out in

The absolute velocity V is replaced by the relative velocity V, , which is the fluid
velocity relative to the control surface. In the case of a nondeforming control
volume, relative velocity is the fluid velocity observed by a person moving with the
control volume and is expressed as;

_:p

V.=V~ vﬁcv

Some practical problems (such as the injection of medication through the needle
of a syringe by the forced motion of the plunger) involve deforming control
volumes. The conservation of mass relations developed can still be used for such
deforming control volumes provided that the velocity of the fluid crossing a

deforming part of the control surface is expressed relative to the control surface
(that is, the fluid velocity should be expressed relative to a reference frame
attached to the deforming part of the control surface).
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. Mass Balance for Steady-Flow Processes _

During a steady-flow process, the total amount of mass contained within a control
volume does not change with time (m, = constant).

Then the conservation of mass principle requires that

For steady-flow processes, we are interested in the amount
of mass flowing per unit time, that is, the mass flow rate.

|

| |

| | , + e —
| R i 2 = (kg/s) Multiple inlets and exits

| in out

’ i

| |

_______T]; my=m, —  pViA = p,VhA, W

?5:13=.'3:11 +.';12=5ng'5

Many engineering devices such as nozzles, diffusers,
turbines, compressors, and pumps involve a single
stream (only one inlet and one outlet).

Conservation of mass principle for

a two-inlet—one-outlet steady-flow
system.
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. Special Case: Incompressible Flow _

The conservation of mass relations can be simplified even further when the fluid is
incompressible, which is usually the case for liquids.

my = 2 kels Sv=3SVv (m>/s) Steady, incompressible
\V,=0.8 m¥/s in out
\I [ : : Steady, incompressible flow
| e V=V, = VA = VA, (single stream)

Alr

There is no such thing as a “conservation of volume” principle.

However, for steady flow of liquids, the volume flow rates, as
well as the mass flow rates, remain constant since liquids are
essentially incompressible substances.

my =2 kgls
V, = 1.4 m3/s The conservation of mass principle is based on experimental

observations and requires every bit of mass to be accounted for
during a process. If you can balance your checkbook (by keeping

During a steady-flow
process, volume flow rates [ track of deposits and withdrawals, or by simply observing the
“conservation of money” principle), you should have no difficulty
applying the conservation of mass principle to engineering

systems.

are not necessarily
conserved although mass
flow rates are.
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EXAMPLE 5-1

A garden hose attached with a nozzle is used to fill a 10-gal bucket. The inner diameter
of the hose is 2 cm, and it reduces to 0.8 cm at the nozzle exit. If it takes 50 s to fill the
bucket with water, determine (a) the volume and mass flow rates of water through the
hose, and (b) the average velocity of water at the nozzle exit.

Solution A garden hose is used to fill a water bucket. The volume and
mass flow rates of water and the exit velocity are to be determined.

Assumptions 1 Water is an incompressible substance. 2 Flow through
the hose is steady. 3 There is no waste of water by splashing.

(a) the volume and mass flow rates
U vV 10 gal (3,?854 L

At 50 s
m = pV = (1 ke/L)(0.757 L/s) = 0.757 kg/s

= 0.757 L/s
I gal )

(b) The cross-sectional area of the nozzle exit is

A

= 7r2 = (0.4 cm)* = 0.5027 cm* = 0.5027 X 10~ m?

vV  0.757Liks ( | m*
A, 05027 X 10™*m* \1000 L

(=

V =

(4

) = 15.1 m/s

Discussion It can be shown that the average velocity in the hose is 2.4 m/s. Therefore, the

nozzle increases the water velocity by over six times.
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. 5-3 MECHANICAL ENERGY AND EFFICIENCY -

Mechanical energy: The form of energy that can be converted to mechanical work
completely and directly by an ideal mechanical device such as an ideal turbine.

Mechanical energy of a flowing fluid per unit mass:

Coroen = — + - + g7 Flow energy + kinetic energy + potential energy
p
Mechanical energy change: <
4 YA
= | Atmosphere
P, — P, V% B V% T
‘&Emech = P + 7 + g(Zz o Zl) h=10m 14
IO,
The mechanical energy of a fluid does not change Rk f
during flow if its pressure, density, velocity, and m =2 ks
elevation remain constant.
. : i . Pl_Patm . pgh .
In the absence of any irreversible losses, the Wingx = it ————— = —5— = mgh
mechanical energy change represents the ,
mechanical work supplied to the fluid (if Ae > = (2 kg/s)(9.81 m/s%)(10 m)
0) or extracted from the fluid (if Ae,__ < 0). =196 W
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W = mAe

= mg(zy — z4) = mgh

max mech
since P, =P, =P,  and V, =V, =0
(ct)
21 Prof. Dr. Ali PINARBASI

W

Turbine
\ \
@

N\
Q—
. X
Generator
. (Pj o P_x) AP
Woax = MA€ ooy = M——— = m——
' P P

and 7, = z,

S

since V: = V,

S

(b)
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id

1

W =rmgh W

max —
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Shaft work: The transfer of mechanical energy is usually accomplished by a rotating shaft,
and thus mechanical work is often referred to as shaft work.

A pump or a fan receives shaft work (usually from an electric motor) and transfers it to the
fluid as mechanical energy (less frictional losses).

A turbine converts the mechanical energy of a fluid to shaft work.

i F=Tal i 1 w " =i A TENE - o : . . .
. Mechanical energy output  E\yecn ou | Enech,loss VTN, efficiency of
nech j : L i
o Mechanical energy input E ech in E ech in a device or process

The effectiveness of the conversion process between the mechanical work supplied or
extracted and the mechanical energy of the fluid is expressed by the and

7

Mechanical energy increase of the fluid AFE ech fluid '*"‘f"f]mmp. u

n = = — = —
pump Tacrhanical anaroy it bV ) ¥4
Mechanical energy input W at in W s
AE mech, fluid — Emech, out Emech, in
Mechanical energy outpult W att. out W irbine
MNturbine — . - = : = —
" Mechanical energy decrease of the fluid AE i iwidl Wearbine o

‘ﬁEmech, ﬂuid‘ — Emech, in E
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Fan

50 }‘* — i = 0.50 kg/s
o | - “f—j
".q. ( I Itj

—_—

—_—

—_—

V=0, V,=12m/s

=4

. ¥
L e
N _ J‘Emech. fluid _ my EL

mech, fan — : = s

1"1’!:\'.tmﬁ~ in Wanatt, in

= - . rr

_ (050 kg/s)12 m/s)</2

SO0W

=0.72
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shaft, out

Motor: Nmotor — : - -
moto Electric power inpult W
Electric power output ]'""Z.Iclca‘[ out | NE liile]
Generator: N oenerator = ‘ . = enerator efficiency
Jgenerator =\ fachanical power input W

Mechanical power output W -
: Motor efficiency
"elect, in
Pump-Motor overall efficiency

shaft, in

Thurhine = 0.75 T]genemmr = 0.97
B B 4 pump, # 3"L:m:-un. fluid -
T?pump—nmmr - T?pump M motor — 1'_., o II‘_, fweleul.mtl
Vetect, in Vetect, in y
Turbine [
Turbine-Generator overall efficiency: N
: Generator
— o 11 elect, ont o Id elect, out U
T?ulrhjnc—gcn = Mturbine T?g{-ncrull.u' o 1'__, A ; l [
W turhine. ¢ |‘ﬁE]11{-u'11. fluid |
ﬂmrl:uina—gen = T?Turblneﬂgenemtnr
= 0.75 X 0.97
=0.73
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The efficiencies just defined range between 0 and 100%.

0% corresponds to the conversion of the entire mechanical or electric
energy input to thermal energy, and the device in this case functions like

a resistance heater.

100% corresponds to the case of perfect conversion with no friction or
other irreversibilities, and thus no conversion of mechanical or electric

energy to thermal energy (no losses).

For systems that involve only mechanical forms of energy
and its transfer as shaft work, the conservation of energy is

E

E

mech. in

mech, loss

ot

mech, out AEIHG\‘h.H}\'[Om

+ E

energy due to irreversibilities such as friction.
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pump

O

Steady flow
Vi=Wh=0

L= +h
P]:PJZPulm
Emcrh. in~ E:ncch. out + EnleclL loss
W 'pump + Mgy = ML + Emech, loss
W pump = mgh + Emech. loss
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EXAMPLE 5-3

The water in a large lake is to be used to generate electricity by the installation

of a hydraulic turbine—generator at a location where the depth of the water is 50 m.
Water is to be supplied at a rate of 5000 kg/s. If the electric power generated is
measured to be 1862 kW and the generator efficiency is 95 percent, determine

(a) The overall efficiency of the turbine—generator,

(b) The mechanical efficiency of the turbine, and

(c) The shaft power supplied by the turbine to the generator.

Solution A hydraulic turbine—generator is to generate electricity from the water of a lake. The
overall efficiency, the turbine efficiency, and the shaft power are to be determined.

Assumptions 1 The elevation of the lake remains constant. 2 The mechanical energy of
water at the turbine exit is negligible.

A
N Lake MNgenerator = 0.95
1862 kW

Generator

i = 5000 ke/s

5 Prof. Dr. Ali PINARBASI Chapter 5: MASS, BERNOULLT AND ENERGY EQUATIONS




(a) the overall efficiency of the turbine—generator

P -
€mech,in ~ €mech, out — E — 0= 5-‘:}"{:" = (9.81 m/s")(50 I]”(

I kl/kg

— _}) = 0.491 kl/kg
1000 m~/s* N

|‘ﬁ£+|mech.f]u'1cl| = 'ih{fmech. in {')mech.mu:} — (5000 kg’f“ }{04()] I\J"{kg} = 2455 I\“’

|‘3‘Emech~ f]uid| 2455 kW

M overall — ntl.u'bine—gen

(b) Knowing the overall and generator efficiencies, the mechanical efficiency of the turbine is
determined from

T;"tl.n'hine—gen 0.76
] generator 0.95

(c) The shaft power output is determined from the definition of mechanical efficiency

T;"tmhine—gen = Tturbine ngene['amr — MNturbine =

wrshaft. out ntmbine|$£mech. f]uj{l| - {08[}}{2455 I\“’} = l'_‘H}—I k“'-

Discussion Note that the lake supplies 2455 kW of mechanical energy to the turbine,
which converts 1964 kW of it to shaft work that drives the generator, which generates

1862 kW of electric power. There are irreversible losses through each component.
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EXAMPLE 5-4 f

The motion of a steel ball in a hemispherical bowl of radius | | - {!
h shown in Figure is to be analyzed. The ball is initially T ‘
held at the highest location at point A, and then it is ®\

released. Obtain relations for the conservation of energy of
the ball for the cases of frictionless and actual motions.

Solution A steel ball is released in a bowl. Relations for the energy balance are to be obtained

Assumptions The motion is frictionless, and thus friction between the ball, the bowl, and the
air is negligible.

_ _ —Weiion = (ke, + pe,) — (ke, + pe
Ein Eout = ‘&Esystem friction ( 2 P 2) ( 1 P 1)
v v 2 2
Net energy transfer Change in internal, Kinetic, V 1 Vg
by heat, work, and mass potential, etc., energies ? + 841 = ? -+ 824 -+ Waesietion

There is no energy transfer by heat or mass and no change in the internal energy of the ball
(the heat generated by frictional heating is dissipated to the surrounding air). The frictional

work term wg,;., is Often expressed as e, to represent the loss (conversion) of mechanical
energy into thermal energy.

Vi Vi v:
? + g7, = 7 + 22, or — + gz = C = constant
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Bernoulli equation: An approximate relation between pressure, velocity, and elevation,
and is valid in regions of steady, incompressible flow where net frictional forces are
negligible.

Despite its simplicity, it has proven to be a very powerful tool in fluid mechanics.
The Bernoulli approximation is typically useful in flow regions outside of boundary layers

and wakes, where the fluid motion is governed by the combined effects of pressure and
gravity forces.

Bernoulli equation valid

__._—-’-_-____l-‘-—-‘-_‘-‘-.—-“l-w
_._--""'"_—_-—__-"""""---....""‘"'---..._\

/_\\

_.__.—l—l_‘-lq-_‘_-‘-hl-‘__

———_'_-_——l‘_‘__‘__.__‘_&‘_::'-‘-‘—-—_____‘_
N _——_%
—__._‘_l__‘__‘_‘_‘_‘—_‘___

Bernoulli equation not valid
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In 2-D flow, the acceleration can be decomposed into two components

streamwise acceleration a, along the streamline and

normal acceleration a, in the direction normal to the streamline, which is given as
a, = V2/R.

Streamwise acceleration is due to a change in speed along a streamline, and normal

acceleration is due to a change in direction.

For particles that move along a straight path, a, = 0 since the radius of curvature is
infinity and thus there is no change in direction. The Bernoulli equation results from a
force balance along a streamline.

oV oV dv oVds aV
dV =—ds + —dt and —=——+ —
as ot dt os dt ot
dV/dt = 0 and thus V = V(s) E/”
dv. oVds oV dVv f
g, =—=——=—V=V—
- dt 9sdt  0s ds

YA K07 /{Bll Acceleration in steady flow is due to
the change of velocity with position.
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I Derivation of the Bernoulli Equation _

_ . dV y
E FS‘ — ﬁ"?(.?s P (irdl —_ (P + dP} dA —_ W S1n 8 = ”TV d‘_ Steady flow along a streamline
S
m = pu — .lO dA dS W = mg = pg dA ds (P/-;\dp)dA
: dz dV
Sin @ = dz/ds| |—dPdA — pgdAds—=pdAdsV —
| ds ds ds/" |
—dP — pgdz = pVdVv VdV =3dV? &
dP 5 ™
— +5d(V° )+ gdz=0
P
(dP V? | ‘
— + 5 + gz = constant (along a streamline)
g F
PV
Steady, incompressible flow: — + — + gz = constant (along a streamline)
P |
] ] ] P 1";2 P-} ‘V‘E
The Bernoulli equation between any two points on o1 + 1y 07, = — 2+ o7
the same streamline: p 2 h 2 ol

streamline during steady flow when compressibility and frictional effects are negligible.
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(Steady flow along a streamline)

General: |

E%
Jp "2

+ 27 = constant

Incompressible flow (p = constant):

T2
JL_J'? + 1,7 + g7 = constant

o ——— ==
.
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The Bernoulli equation can be viewed as the “

." The work done by the pressure and
gravity forces on the fluid particle is equal to the increase in the
kinetic energy of the particle

This is equivalent to the general conservation of energy principle
for systems that do not involve any conversion of mechanical
energy and thermal energy to each other, and thus the
mechanical energy and thermal energy are conserved separately

The Bernoulli equation states that during steady, incompressible
flow with negligible friction, the various forms of mechanical
energy are converted to each other, but their sum remains
constant.

The Bernoulli equation is commonly used in practice since a
variety of practical fluid flow problems can be analyzed to
reasonable accuracy with it.
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Prof.

Dr. Ali PINARBASI

Chapter 5: MASS, BERNOULLT AND ENERGY EQUATIONS




Force balance in the direction n normal to the streamline yields the following relation

applicable across the streamlines for steady, incompressible flow:

P [V A ( (B/
— + J' ﬁa’n + gz = constant (across streamlines)
P P,>Py
N (a)
For flow along a straight line, R - c and this < <
equation reduces to P/p + gz = constant or P = A C
— pgz + constant, which is an expression for .
the variation of hydrostatic pressure with
vertical distance for a stationary fluid body. B D
Stationary fluid Flowing fluid

(b)

Pressure decreases towards the center of curvature when
streamlines are curved (a), but the variation of pressure

with elevation in steady, incompressible flow along a
straight line (b) is the same as that in stationary fluid.
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The Bernoulli equation for unsteady, compressible flow:

dP [ oV Vv
— + | —ds + — + gz = constant
p 2

{nsteady, compressible flow: |' »
C

'K Unsteady Flow

.
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The kinetic and potential energies of the fluid can be converted to flow energy (and vice
versa) during flow, causing the pressure to change.

V?
P+p B} + pgz = constant (along a streamline)

P is the static pressure: It does not incorporate any dynamic effects; it represents the
actual thermodynamic pressure of the fluid. This is the same as the pressure used in
thermodynamics and property tables.

pV2/2 is the dynamic pressure: It represents the pressure rise when the fluid in motion is
brought to a stop isentropically.

gz is the hydrostatic pressure: It is not pressure in a real sense since its value depends on
the reference level selected; it accounts for the elevation effects, i.e., fluid weight on
pressure. (Be careful of the sign—unlike hydrostatic pressure pgh which increases with
fluid depth h, the hydrostatic pressure term pgz decreases with fluid depth.)

Total pressure: The sum of the static, dynamic, and hydrostatic pressures. Therefore, the
Bernoulli equation states that the total pressure along a streamline is constant.
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Stagnation pressure: The sum of the static and dynamic pressures. It represents the
pressure at a point where the fluid is brought to a complete stop isentropically.

P Dynamic
- ressure
P.. =P+ p— (kPa) . . |
stag f 7 (kPa) Piezometer Stagnation
— pressure, Fyo
o V2
Y ..L; - ‘Lj. E}ltlllc Jr'} T
. [ < stag } pressure, P - | Pitot
V = \ fube

L

Stagnation pressure hole /

Stagnation
point

Ve \/ 2Py~ P)
e

Static pressure holes

The static, dynamic, and
stagnation
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—
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2. Frictionless flow Every flow involves some friction, no matter how small, and frictional
effects may or may not be negligible.

Steady flow The Bernoulli equation is applicable to steady flow.

3. No shaft work The Bernoulli equation is not applicable in a flow section that involves
a pump, turbine, fan, or any other machine or impeller since such devices destroy the
streamlines and carry out energy interactions with the fluid particles. When these
devices exist, the energy equation should be used instead.

4. Incompressible flow Density is taken constant in the derivation of the Bernoulli
equation. The flow is incompressible for liquids and also by gases at Mach numbers
less than about 0.3.

5. No heat transfer The density of a gas is inversely proportional to temperature, and
thus the Bernoulli equation should not be used for flow sections that involve
significant temperature change such as heating or cooling sections.

6. Flow along a streamline Strictly speaking, the Bernoulli equation is applicable along a
streamline. However, when a region of the flow is irrotational and there is negligibly
small vorticity in the flow field, the Bernoulli equation becomes applicable across
streamlines as well.

Plp + V2 + gz=C
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. Hydraulic Grade Line (HGL) and Energy Grade Line (EGL)

It is often convenient to represent the level of mechanical energy graphically using heights
to facilitate visualization of the various terms of the Bernoulli equation.

Dividing each term of the Bernoulli equation by g gives

P V2

— + — + z = H = constant (along a streamline)
P8 28

P/pg is the pressure head;

it represents the elevation needed for a fluid to reach the
velocity V during frictionless free fall.

it represents the potential energy of the fluid.

Pressure
head Elevation

/ head

An alternative form of the Bernoulli equation is
2 : :
p_I; + g_g B expressed in terms of heads as:

\ \ The sum of the pressure, velocity, and elevation heads

_ Total head is constant along a streamline.
Velocity

head

42
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Hydraulic grade line (HGL), P/ pg + z The line that represents the sum of the static
pressure and the elevation heads.

Energy grade line (EGL), P/pg + V?/2g + z The line that represents the total head of the
fluid.

Dynamic head, V?/2g The difference between the heights of EGL and HGL.

0 Tii\w\

AZ

<]

/|

el

- e Hfﬁ"’“"-h-ﬁ_
HEE L— ~ V272~
EGL |[1m=24 [
E,a - 5,1 —_— - — = ) -

|| [ L' Diffuser B 3
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Notes on HGL and EGL \

Fo_r station_ary bod;es such_as reservoirs or lakes, the EGL and HGI coincid_e with the
free surface of the liquid.

The EGL is always a distance V/?/2g above the HGL. These two curves approach each
other as the velocity decreases, and they diverge as the velocity increases.

In an idealized Bernoulli-type flow, EGL is horizontal and its height remains constant.

For open-channel flow, the HGL coincides with the free surface of the liquid, and the
EGL is a distance V?/2g above the free surface.

At a pipe exit, the pressure head is zero (atmospheric pressure) and thus the HGL
coincides with the pipe outlet.

The mechanical energy loss due to frictional effects (conversion to thermal energy)
causes the EGL and HGL to slope downward in the direction of flow. The slope is a
measure of the head loss in the pipe. A component, such as a valve, that generates
significant frictional effects causes a sudden drop in both EGL and HGL at that
location.

A steep jump/drop occurs in EGL and HGL whenever mechanical energy is added or
removed to or from the fluid (pump, turbine).

The (gage) pressure of a fluid is zero at locations where the HGL intersects the fluid.
The pressure in a flow section that lies above the HGL is negative, and the pressure in
a section that lies below the HGL is positive.
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EXAMPLE 5-5 2 e
Water is flowing from a hose attached to a water main at 400 kPa gage. A W
child places his thumb to cover most of the hose outlet, causing a thin jet 1
of high-speed water to emerge. If the hose is held upward, what is the @\ Mamitying

\ @® ‘:1

maximum height that the jet could achieve?
and irrotational (so that the Bernoulli equation is applicable). 2 The - |
water pressure in the hose near the outlet is equal to the water main VI<v?  Hose
pressure. 3 The surface tension effects are negligible. 4 The friction
between the water and air is negligible. 5 The irreversibilities that may
occur at the outlet of the hose due to abrupt expansion are negligible.

Solution Water from a hose attached to the water main is sprayed
into the air. The maximum height the water jet can rise is to be
determined.

Assumptions 1 The flow exiting into the air is steady incompressible,

P1+Vf 0+ /0 P2+V§/’O+ Pl Patm+
ng | 2o Z = T35 Z — — 7
22 | Pg 28 i pg pg 7
7, = Pr = Pamn _ P1. gage _ 400 kPa (1000 szz)(l kg - mfsz)
: P Pg (1000 kg/m?)(9.81 m/s?) 1 kPa I N
= 40.8 m
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EXAMPLE 5-6
A large tank open to the atmosphere is filled with water to a height of 5 m from the outlet

tap. A tap near the bottom of the tank is now opened, and water flows out from the
smooth and rounded outlet. Determine the water velocity at the outlet.

Solution A tap near the bottom of a tank is opened. The exit
velocity of water from the tank is to be determined.
Assumptions 1 The flow is incompressible and irrotational

(except very close to the walls). 2 The water drains slowly enough
that the flow can be approximated as steady (actually quasi-steady
when the tank begins to drain).

dm Water N

V, = V2gz, = V2(9.81 m/s?)(5 m) = 9.9 m/s

Discussion If the orifice were sharp-edged instead of rounded, then the flow
would be disturbed, and the velocity would be less than 9.9 m/s, especially near
the edges. Care must be exercised when attempting to apply the Bernoulli
equation to situations where abrupt expansions or contractions occur since the
friction and flow disturbance in such cases may not be negligible.
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EXAMPLE 5-7

During a trip to the beach (P_,=1 atm=101.3 kPa), a car runs ©); .,
out of gasoline, and it becomes necessary to siphon gas out of ‘
the car of a Good Samaritan. The siphon is a small-diameter
hose, and to start the siphon it is necessary to insert one siphon
end in the full gas tank, fill the hose with gasoline via suction,
and then place the other end in a gas can below the level of the
gas tank. The difference in pressure between point 1 (at the free
surface of the gasoline in the tank) and point 2 (at the outlet of
the tube) causes the liquid to flow from the higher to the lower
elevation. Point 2 is located 0.75 m below point 1 in this case,
and point 3 is located 2 m above point 1. The siphon diameter is

Gasoline
siphoning
tube

l 2m

5 mm, and frictional losses in the siphon are to be disregarded. 0.75n
Determine (a) the minimum time to withdraw 4 L of gasoline J@@ ]
from the tank to the can and (b) the pressure at point 3. The 0 2
density of gasoline is 750 kg/m3. (Gas can

Solution Gasoline is to be siphoned from a tank. The minimum time it takes to withdraw 4 L of
gasoline and the pressure at the highest point in the system are to be determined.
Assumptions 1 The flow is steady and incompressible. 2 Even though the Bernoulli equation

is not valid through the pipe because of frictional losses, we employ the Bernoulli equation
anyway in order to obtain a best-case estimate. 3 The change in the gasoline surface level
inside the tank is negligible compared to elevations z, and z, during the siphoning period.
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V, = V2gz, = V2(9.81 m/s?)(0.75 m) = 3.84 m/s

A=mD% =75 X107°m)¥4 = 1.96 X 10> m?
V=V,A=(384m/s)1.96 X 105 m?) =7.53 X 105 m%s = 0.0753 L/s

. 5 0 5
= E = +L = 53.1s P, VE / Py V; P P,
vV 0.0753 L/s — t 7 1 ++=+z; o = — + 7,
rg 28 pg 28 pPg P8

P.‘s = Patm — P8is

= 101.3 kPa — (750 kg/m’)(9.81 m/s*)(2.75 m}( LN q)( | kPa .})
g - m/s°/\1000 N/m"

= 81.1 kPa
Discussion The siphoning time is determined by neglecting frictional effects, and thus this is the
minimum time required. In reality, the time will be longer than 53.1 s because of friction between the
gasoline and the tube surface. Also, the pressure at point 3 is below the atmospheric pressure. If the

elevation difference between points 1 and 3 is too high, the pressure at point 3 may drop below the
vapor pressure of gasoline at the gasoline temperature, and some gasoline may evaporate (cavitate).
The vapor then may form a pocket at the top and halt the flow of gasoline.
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EXAMPLE 5-8

A piezometer and a Pitot tube are tapped into a horizontal water pipe to measure static
and stagnation (static + dynamic) pressures. For the indicated water column heights,
determine the velocity at the center of the pipe.

Solution The static and stagnation pressures in a horizontal pipe

are measured. The velocity at the center of the pipe is to be hy =12 cm
determined. N
Assumptions 1 The flow is steady and incompressible. 2 Points 1 hy=7cm
and 2 are close enough together that the irreversible energy loss —
between these two points is negligible, and thus we can use the Waer o | e/ .y,
Bernoulli equation. © ®S\ _
tagnation
pui:l
P, = h, + h 2 2 40 2
et Rk Vi R Y, Vi Roh
P,=pghy +hy,+hy) pg 2¢ 7 pg 2 r2 28 pg

Vi Pz_Pl_Pg(h1+h2+h3)_P8(h1+hz)_h
22 p8 pg ’

Vi =V 2¢h, = \/2(981 m/s%)(0.12 m) = 1.53 m/s

Discussion Note that to determine the flow velocity, all we need is to measure the height of
the excess fluid column in the Pitot tube.
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Example: The Rise of the Ocean Due to a Hurricane

([ Eye 2

Hurricane
A B
@
Calm T @
o A
0 ev l,]
: Ocean
P Vi, , P V3D Py— Py V3
— = ,; — = + 7p =
P 28 pgs 28 |
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EXAMPLE 5-10
Derive the Bernoulli equation when the compressibility effects are not negligible for an
ideal gas undergoing (a) an isothermal process and (b) an isentropic process.

Solution The Bernoulli equation for compressible flow is to be obtained for an ideal gas for
isothermal and isentropic processes.

Assumptions 1 The flow is steady and frictional effects are negligible. 2 The fluid is an ideal
gas. 3 The specific heats are constant so that P/rk constant during an isentropic process.

a) Isothermal process 2

(a) P J % + % + gz = constant (along a streamline)
@ — dp — 72

J p J' P/RT = Isothermal process: RTInP + % + gz = constant

(b) Isentropic process Plpk = C = constant p = C-UkpYk Ma = Vic ¢ = \KRT

@_ Uk — 1k 1 P~ 1k+1 Plr’k P~ 1I/k+1 k B
J'p_J'CP aP=C “k+1 p —1k+1 \k—1)p

kK \P V- kK VP, Vi kP2, Vo
— + — + gz = constant ~
<k—1)ﬂ 2 78 (k—l>p1+2+gzl k—1)p, T2 T8

kik—1)
i _ {1 + (u) Maz} The flow of an ideal gas can be considered to be
P, 2 ’ incompressible when Ma 0.3.
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PE, = 10kJ
KE, =0
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J

Y KE, = 3kJ
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Qnet in + W netin

Qnetin = Qin B Qout

dE . ) + 2
— Qﬂet in + I'/‘i"jrn.e-.t in 7 pPe d\/
dt i I
v_’

(’:u+kc+pc:u+7—l—g:

=18kl
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Thermal energy: The sensible and

latent forms of internal energy. Poot air
Heat Transfer: The transfer of energy 25°C
from one system to another as a result No heat Heat Heat
of a temperature difference. transfer 8 Iis 16 J/s
The direction of heat transfer is e ¥ P t
) <> DY) =D
always from the higher-temperature (== a— e
body to the lower-temperature one Sod2 Soda
Adiabatic process: Aprocessduring | 7 @ ®
which there is no heat transfer. 1500 500
Heat transfer rate: The time rate of R

heat transfer.
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Work: The energy transfer associated with a force acting through a
distance.

A rising piston, a rotating shaft, and an electric wire crossing the system
boundaries are all associated with work interactions.

Power: The time rate of doing work.

Car engines and hydraulic, steam, and gas turbines produce work;
compressors, pumps, fans, and mixers consume work.

"Vt - Wshaﬂ + Wpressure + inscous + Wother

otal —

W, .« The work transmitted by a rotating shaft
W, essure The work done by the pressure forces on the control surface
w The work done by the normal and shear components of viscous forces on

viscous

the control surface

W.er The work done by other forces such as electric, magnetic, and surface

tension
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A force F acting through a moment arm

r generates a torque T T=Fr —> F=—

.
This force acts through a distance s ¢ = (27Tr)n
T
SUEURTY W, = Fs = ( )(277171) = 2mnT (kJ)

r

The power transmitted through the shaft is the shaft work done per unit time:

H/slmﬂ = (')Tsh:uft = 27T”Tsllzlt‘t W ) == 27TI'IT (I\W)

sl

Wsh = 2 RI:IT

Torque = Fr
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- 7 I —
oW boundary — PA ds LPNOH = dslat
STR7 _ eTir o, I o 3, o ) iy =
Ou’p]'essure o Ejlw’t'uarunldm'jr' = PA Vpistml Ou'fp]-em”-e = —PdA V” = —PdA(V - n)
[ — . ) P — .
7 — N e oy AJA — - L .
W pressure, netin P{ V n) dA = 1 ﬂ”’; n) dA
)y I f
7 W v 7 . 7L T
W netin W shaft, net in + W pressure, netin W shaft, net in P{ V n) dA
JA
P
-
- y
SR . ARRARANAKAL. ’
ds A [ A
T ------------- : dm
Vpiston II
System : System
(gas ir; cylinder) "\\
Svstem boundarv. A
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e=u+ke+pe=u+VI2+ gz

. . . U!EH% (?rE Sys {f _} ~
Qnet in + W shaft, net in + W pressure, net in = It dt o E ep dv + fp“ L JA
¢ oy ‘cs
® +J;r +J;r t‘;-{ —J:r =
Qnet in + W shaft, net in + W pressure, net in E €p dav + i'?to( } re n) dA
S CV “CS
dB. d 5
o= bp dV + bp(V, - n)dA
dt dt
oY 'CS

The net rate of energy The time rate of

The net flow rate of
transfer into a CV by | = | change of the energy | + | energy out of the control

heat and work transfer content of the CV surface by mass flow E h=e h=e

d

T _d | [ (P, Y= = dE... d -
(:.)ucl in " W shaft, netin — (// cp ‘/V + l ( ) T (’)1““ V-n)dA i = ep dVv + epl 1?;.‘ f?)dA
“C) /L dt dt Jey )
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\Qnetjn )
In ~~ - \—g”m
e [ el 1L ot »
o nl:jl u& T; cne I'E }:DUI
" Fixed A
/ control
0 volume |
/ 7
‘F”m "'*-
= e = u + V,Z/rz + }-{: LI]LIL "v][l l:::llll/ / \ I"ahlﬂ net in
m= | p(V-n)dA, Mo, {)u
A, h=u-+ Pv=u-+ P/’p eNergy yy, Moy
CNEIEY oyt
. . B d . P
Qnet in + M shaft, net in — ? (_?p du + 2”? —te E ”? + €
¢ f Yo out p in
. d Iﬂ F 1 - . ‘P \-':
{;_".JHL‘[ 1 —I_ 1'1:.*4'1“['[.”-:[ i1 = E ‘ (FH{V —I— EI”(J” —I— U —|_ Y —I— L’I ) o EI”(F —I— U —I_ N —|_ ”f
Jov nt = in =

1" {,Illr |'\- r 1 2 Y 1 1,\.'1 A"
':;jm[m T 11:%'1“[.[.”';'[ in — . | (f’f’lrl‘/—'_ E”‘I(‘F" T T {f*) o z”’l(h T T4 )

:‘H i 1 -
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. 5—-6 ENERGY ANALYSIS OF STEADY FLOWS _
)netin + W =S+ L er) = Sln+ L+ e
 etiin shaft, netin — E n\ n 5 8< E mi n 5 82

out = in
The net rate of energy transfer to a control volume 7
by heat transfer and work during steady flow is m(fn +82) ) -
equal to the difference between the rates of \"" ,
outgoing and incoming energy flows by mass flow. NS
0] Fixed S
- \
! control
+ : vg—-vﬁ : |
. \ volume
Qnetin + 1'f{{;rsllaft‘ netin W';(hz o J'e?l + ) Q(*ﬂ -.,1) //
"“* - 7
- \
Oul//é" -
Single-stream devices Q]lc"t111+ LVs]nft net in
. V3
Vi—-Vi i+

Gretin T Wenaft, netin = hy —hy + > + 2(Z, — 24)

h=u + Plp

P, Vi P, V3
Wehatt, net in + E + 7 + 834 E + 7 + 8<o + (”” — U]~ Ynetin)
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Ideal flow (no mechanical energy loss): Gretin = Uy — U 0.7 kg/s

r’/:]

Real flow (with mechanical energy loss): /
15.2°C
, ey — = . _ 1 Au=084 K/ke
€mech, loss — Uz — Uy et in U, iy C, Tg Tl ) AT =0.2°C
€mech, in — €mech, out + €mech, loss
2
Jh vy e S S S 2kwW
Wshaft, net — T T8 T T T 7T 84y T €pech, loss -
shaft, net in | 2 )h p) . mech, 10ss "‘I’pump:(}-?”
. — h — . '
Wehaft, netin — Wshaft,in — "Wshaft, out ~ ¥ pump Wiurbine 15.0°C
> Water
P, V3 P, V2
f’_ + _ + 8z, +w pump D + + 825 T Wirbine T €mech, 10ss
Emech. loss Emech loss, pump + Emech loss, turbine + Emech loss, piping

o b2

(P, Vi \ - (P> ) : .
m J’_ T T +gz,) + W pump — M )— T s T 822 + Wiubine + £ mech, loss
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Energy equation in terms of heads

P o] '1'; %

8 2 2
+ + ~1 + JIIr*rpl.lm]“r.:f T + + “2 + lIIr*’turlﬂum_‘. € + ""IL

P28 28

useful head delivered to the fluid by the pump

h pump, u

Woump, u H’}'pump, u 1) pump vaump

g mg mg

extracted head removed from the fluid by the turbine

‘l ! furbine,

Whurbine, e HJtl:u'l::tine, e 1’Vturbine

e N . .
(f, I’F’."g ﬂ rurbinemg

mech loss, piping E mech loss, piping

irreversible head loss e
hL —

g mg

63

Prof. Dr. Ali PINARBASI Chapter 5: MASS, BERNOULLT AND ENERGY EQUATIONS




4

H:" Control volume W turhine

pump /
| E |
j\ h pump, i

mech loss,
turbine

Emech loss, pump

L)1"1";311:711]}, u W

turbine, e

A
h‘tm'bine, £
Al :
E L i+ ﬁ +7 4 P, V% E rech fluid, out
mech flud, in g Eg <1 4y = vz, |
Pg 28 ;
Y:

Y hy ¥ ]
—l/ E mech loss, piping
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Special Case: Incompressible Flow with No Mechanical Work

Devices and Negligible Friction

When piping losses are negligible, there is negligible dissipation of mechanical energy into
thermal energy, and thus h; = € .. 10ss, piping /9 = 0. Also, hy 0, = Piypine, e = 0 When there

are no mechanical work devices such as fans, pumps, or turbines. Then energy egoation
reduces to

P, V3 P, P V?
_Q+')_+:":_g+7 Z5 or —2+T+;=C0nstzlllt
pc_ ‘-'.2 p -.2 pL _‘Q

This is the Bernoulli equation derived earlier using Newton’s second law of
motion.

Thus, the Bernoulli equation can be thought of as a degenerate form of the
energy equation.
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Vir)
The kinetic energy of a fluid stream obtained from V?/2 is ' e
not the same as the actual kinetic energy of the fluid stream 3 .
since the square of a sum is not equal to the sum of the :””
squares of its components. = pVy,A.  p=constant

This error can be corrected by replacing the kinetic energy
terms V2/2 in the energy equation by eV, */2, where ais
the kinetic energy correction factor. -

KE,. = chéfi': = L l— V2 (r)|pV(r) dA]

p J L VA(r) dA

]
) . ) ) KE,.= L mv2 =L pav3
The correction factor is 2.0 for fully developed laminar pipe Mo AR ) e
flow, and it ranges between 1.04 and 1.11 for fully  KE,. J (V{_r})—"’ M
developed turbulent flow in a round pipe. T KE, ANV,

ra )

(F Vi (P V3 . .
!H(: + ~ + gz, | + H;J‘-‘L”'”J‘ — ;”( , + a, . + 97, + H__[“[_h“m L F R

‘|'{Ir'| N —|_.~| —|_.||II

IIH{: 20 [".U'll]‘.*. i
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EXAMPLE 5-11

Show that during steady and incompressible flow of a fluid in an adiabatic flow section
(a) the temperature remains constant and there is no head loss when friction is ignored
and (b) the temperature increases and some head loss occurs when frictional effects are
considered. Discuss if it is possible for the fluid temperature to decrease during such

flow.

Solution Steady and incompressible flow through an
adiabatic section is considered. The effects of friction on

the temperature and the heat loss are to be determined. ®_|F: - _____... _____ :I_@
Assumptions 1 The flow is steady and incompressible. r,___ _ p=comtant | T,
2 The flow section is adiabatic and thus there is no heat “ (adiabatic) =
transfer, Q¢ in =0.

I

As=c,In—=20 — T, =T,
I,
Mechanical energy loss:
€mech loss, piping — Y2 = U1 = Ypetin = (T = T1) = Gnetin = O

Head loss: h;
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(b) When irreversibilities such as friction are taken into account, the entropy
change is positive and thus we have:

T,
Temperature change: As = ¢, In ?“ >0 —>T1T,>T,
!

Mechanical energy loss:  €myech 10ss, piping = %2 — U1 — Getin = C(1 — 1) = 0

Head loss: R, = €mech ]L‘FSR.]J']]}'L]'lg'JII’g =0

Discussion It is impossible for the fluid temperature to decrease during steady,
incompressible, adiabatic flow since this would require the entropy of an

adiabatic system to decrease, which would be a violation of the second law of
thermodynamics.
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EXAMPLE 5-12

The pump of a water distribution system is powered by a 15-kW electric motor whose
efficiency is 90 percent. The water flow rate through the pump is 50 L/s. The diameters of
the inlet and outlet pipes are the same, and the elevation difference across the pump is
negligible. If the pressures at the inlet and outlet of the pump are measured to be 100
kPa and 300 kPa (absolute), respectively, determine (a) the mechanical efficiency of the
pump and (b) the temperature rise of water as it flows through the pump due to the
mechanical inefficiency.

Water
T 50 L/s

Solution The pressures across a pump are measured.
The mechanical efficiency of the pump and the
temperature rise of water are to be determined. 300 kPa

Assumptions 1 The flow is steady and incompressible. 2 ©
The pump is driven by an external motor so that the heat
generated by the motor is dissipated to the atmosphere. 3

\ M motor = 20%
The elevation difference between the inlet and outlet of () Motor D

the pump is negligible, z,= z,. 4 The inlet and outlet A ra

diameters are the same and thus the inlet and outlet 100 kPa
velocities and kinetic energy correction factors are equal, Ol
V,=V,and o4=a,.
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(a) The mass flow rate of water through the pump is

m = pV = (1 ke/L)(50 L/s) = 50 kg/s

The motor draws 15 kW of power and is 90 percent efficient. Thus the mechanical (shaft)

power it delivers to the pump is

Wpump, shaft — nnmtorwe]ectrir: = (090)(15 k-wr) = 13.5 kW

AEmech,ﬂuid - Emech,out - Emech,in = m ? + ﬂfl? + ir ) — M ? + X T + 81

: [P, — P, (300 — 100) kPa | kJ )
&Emech fluid — M = (50 kg'f‘") 3 3 = 10 kKW
’ P 1000 kg/m | kPa-m

W AE e, mia 10 kKW
pump, u _ mech, fluid _ _ ) . 4.1%
+ 135 KW 0.741 or 74.1¢

Npump =
Wpump, shaft Wpu mp, shaft
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(b) Of the 13.5-kW mechanical power supplied by the pump, only 10 kW is
imparted to the fluid as mechanical energy. The remaining 3.5 kW is converted
to thermal energy due to frictional effects, and this “lost” mechanical energy
manifests itself as a heating effect in the fluid,

- e - o B = s
Emec]n loss W pump, shaft AEmech. fluid 13.5 10 = 3.5 kW

E smech, los 3.5 kW
AT = mi h, loss = _ = 0.017°C
me (50 kg/s)(4.18 kJ/ kg - °C)

Discussion In an actual application, the temperature rise of water will probably
be less since part of the heat generated will be transferred to the casing of the
pump and from the casing to the surrounding air. If the entire pump motor were

submerged in water, then the 1.5 kW dissipated to the air due to motor
inefficiency would also be transferred to the surrounding water as heat. This
would cause the water temperature to rise more.
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EXAMPLE 5-13 R —

In a hydroelectric power plant, 100 m3/s of water flows from an

elevation of 120 m to a turbine, where electric power is generated. O a0
The total irreversible head loss in the piping system from point 1 to L_Turb::e o
point 2 (excluding the turbine unit) is determined to be 35 m. If the ——-
overall efficiency of the turbine-generator is 80% estimate the electric ¢

power output e 80%

Solution The available head, flow rate, head loss, and efficiency of a hydroelectric turbine
are given. The electric power output is to be determined.

Assumptions 1 The flow is steady and incompressible. 2 Water levels at the reservoir and
the discharge site remain constant.

i = pV = (1000 ke/m®)(100 m?/s) = 10° ke/s

Py 2 o
}é + gg + 27, t hpump i + ﬂ’z + ZZ/ + hturhme p h hturbine,g =7 hL

rurhme o= AT L = 120 — = 85 m
* + | kl/ke
Wturbine e — mghturhine e (105 kg:"%)(QSl 1’1’1!'[52)(85 1’1’1) e — 83400 kW
| ’ 1000 m*/s

W tectric = Murbine_gen Weabine.e = (0-80)(83.4 MW) = 66.7 MW
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EXAMPLE 5-14

A fan is to be selected to cool a computer case whose dimensions are 12 cmx 40 cm x 40 cm. Half
of the volume in the case is expected to be filled with components and the other half to be air space.
A 5-cm diameter hole is available at the back of the case for the installation of the fan that is to
replace the air in the void spaces of the case once every second. Small low-power fan—motor
combined units are available in the market and their efficiency is estimated to be 30%. Determine

(a) the wattage of the fan—motor unit to be purchased and (b) the pressure difference across the
fan. Take the air density to be 1.20 kg/m3

\tr Streamline
Solution Afan is to cool a computer case by :“j g 3 @ W et
completely replacing the air inside once every second. N -~

The power of the fan and the pressure difference — ] jl |

across it are to be determined. — 0 I ®| v
Assumptions 1 The flow is steady and — | | 2
incompressible. 2 Losses other than those due to the |[md | "
inefficiency of the fan—motor unit are negligible (h,=0). e U | B S

3 The flow at the outlet is fairly uniform except near *"’:| o7 Fan

the center (due to the wake of the fan motor), and the ”/J d

kinetic energy correction factor at the outlet is 1.10.
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(a) Noting that half of the volume of the case is occupied by the components, the
air volume in the computer case is

V = (Void fraction)(Total case volume) U= i ~ 9600 cm’
= (0.5(12 cm X 40 cm X 40 cm) = 9600 cm? At l's
m = pV = (1.20 ke/m*)(9.6 X 10 ~* m?s) = 0.0115 kg/s

D? B 77(0.05 m)*

= 9600 cm’/s = 9.6 X 103 m’/s

A= . =1.96 X 107* m?
V9.6 X 1073 m¥s
V=—= —— = 4.90 m/s

A 1.96 X 107" m*
. Pl V?/O P . . PE V% P 3 fﬂ_}_.ao .
m ;_ T a 17 +.3‘Z] + Wiy = 100 ;_ + (1’2? + 822 e loss, fan
Solving for Wfan — Emeeh loss, fan = Wfan, , and substituting,

V3 (4.90 m/s)? | N _
Wi o = Ma, — = (0.0115 kg/s)(1.10) ] =0.152 W
‘ ' 2 | kg - m/s”

Then the required electric power input to the fan is determined to be

I"’I:]f:m. u 0.152 W

Wele ot 0 ;
1] fan—motor v

= 0.506 W
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(b) To determine the pressure difference across the fan unit, we take points 3 and
4 to be on the two sides of the fan on a horizontal line. This time again z;=z, and
V3=V, since the fan is a narrow cross section, and the energy equation reduces to

L3 - Iy : 7 _ PPy
m—+ W fan — M — T Emech loss, fan — W fan,u — M
p p P
. pPWen o (1.2 kg/m3)(0.152 W) (1 Pa - m—‘) ssp
. — _; — X — _ - — h‘q H
A 1 0.0115 kg/s | Ws

Discussion The efficiency of the fan—motor unit is given to be 30%, which
means 30% of the electric power Wi cOnsumed by the unit is converted to
useful mechanical energy while the rest (70%) is “lost” and converted to thermal
energy. Also, a more powerful fan is required in an actual system to overcome

frictional losses inside the computer case. Note that if we had ignored the
kinetic energy correction factor at the outlet, the required electrical power and
pressure rise would have been 10% lower in this case (0.460 W and 14.4 Pa,
respectively).
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EXAMPLE 5-15

Water is pumped from a lower reservoir to a higher reservoir by a pump
that provides 20 kW of useful mechanical power to the water. The free
surface of the upper reservoir is 45 m higher than the surface of the lower
reservoir. If the flow rate of water is measured to be 0.03 m3/s, deter-mine
the irreversible head loss of the system and the lost mechanical power

during this process.

Solution Water is pumped from a lower reservoir to a higher one. The head and power loss
associated with this process are to be determined.

Assumptions 1 The flow is steady and incompressible. 2 The elevation difference between
the reservoirs is constant.

i = pV = (1000 kg/m*)(0.03 m3/s) = 30 ke/s

(P vi20 o (P V3" Y
m + 'y ? + 34{ + Wpump: m + %) ? + 8<2 + Wturbine + Emech, loss

Wpump = ngE + Emech, loss — Emech, loss — Wpump - ngE
* _ - 1 2 | N I KW ,
E ech 10ss = 20 KW — (30 kg/s)(9.81 m/s7)(43 mjl(l ke - 1’11;’52)(1 000N - m !5) = 6.76 kKW
Emech loss, piping 6.76 KW | kg - m/s? 1000 N - m/s _
h; = : - 5 = 23.0m
mg (30 kg/s)(9.81 m/s”) I N 1 kW
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 |ntroduction

— Conservation of Mass
— The Linear Momentum Equation
— Conservation of Energy
e Conservation of Mass
— Mass and Volume Flow Rates
— Conservation of Mass Principle
— Moving or Deforming Control Volumes
— Mass Balance for Steady-Flow Processes
— Special Case: Incompressible Flow
 Mechanical Energy and Efficiency
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 The Bernoulli Equation
— Acceleration of a Fluid Particle
— Derivation of the Bernoulli Equation
— Force Balance across Streamlines
— Unsteady, compressible flow
— Static, Dynamic, and Stagnation Pressures
— Limitations on the Use of the Bernoulli Equation
— Hydraulic Grade Line (HGL) and Energy Grade Line (EGL)
— Applications of the Bernoulli Equation
* General Energy Equation
— Energy Transfer by Heat, Q
— Energy Transfer by Work, W
— Shaft Work
— Work Done by Pressure Forces
* Energy Analysis of Steady Flows

— Special Case: Incompressible Flow with No Mechanical Work Devices and
Negligible Friction

— Kinetic Energy Correction Factor,
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