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6.1 Internal forces in bars-axial force, shear, bending moment diagrams

For designing structural systems, i.e. is very important, even inevitable to know the distribution of internal

forces of bars which are under external forces.
As it is known, external forces are gravity forces, wind forces, earthquake forces, connection forces etc.

However, internal forces are the actions and reactions between the particles which form the body.

P

If a bar under external loads are separated into two parts,
then for equilibrium of the parts, there must be some forces
on the cross-section of these parts. These forces are

distributed over the cross-section of the bar.
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These distributed forces are reduced to the center of gravity of the cross-section of one part

of the bar as a resultant force R and a resultant moment a7, Fig. 6.1.



The components of R and » along the coordinate axes are called as follows:

Components of &:

e The component perpendicular to the cross-section of
the bar, N, is called as axial force.

e The components which lie on the cross-section of the bar is called as
shear forces, O, and 0, .

Components of 11 :

o The component perpendicular to the cross-section of the bar, M, , is called as twisting
moment.

e The components which lie on the cross-section of the bar is called as bending
moments, M, ve M

If it is desired to investigate the variation of internal loads with respect to the coordinate axis z and if this variation is

shown on a diagram, then the senses of the forces becomes different with respect to the which side of the section is

considered.



In this case, there is need to a sign convention to show the internal forces on diagrams which is independent of the
considered portion of the bar on one side of the section.

The beam shown in the figure is cut at C which is between A and B. Then the internal loads which are needed to
satisfy the equilibrium conditions are desired to be determined. The internal loads on the beam portion AC at the
section C is 1,.,.» While the internal loads on the beam portion BC are J ,..,., . From the action-reaction
principle, the senses of these loads are opposite to each other but have same magnitudes. The resultant of the
flexural stresses on any transverse section has been shown to be a couple (If only transverse loads are
considered) and has been designated as 1. .

If we calculate the internal forces on the part AC and show them on a diagram, then it is necessary to state on
which diagram the calculations are performed.

Therefore, there is need to a new definition of sign for obtaining the same diagrams which are independent of the
chosen part and have the same sign for the two portions. Namely, when this sign convention is used, it is not
important which part on which side of the section is considered. You can either look at right or left side of the
cross-section. It is not important to deal with either side of the cross-section. This is accomplished by choosing
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given below. - ' By



Sign convention for resultants

| dZ -

When both the sense of outer normal and | |

the sense of the force is positive or when \

both the sense of outer normal and the N \ N+dN
sense of the force are negative, then the Myp<e ) T >
resultants are positive. When the sense of / Q+dQ, Mg#+dM,,
the outer normal is positive and the sense of Qx Q+dQ

the force is negative or the sense of outer M “Q Ty Oy
normal is negative and the sense of force is X y Mz#+dM,

positive, then the resultants are negative. A X M ;FdMy

M, f

For a beam in plane, sign convention for resultants is as follows: .

If axial forces elongates a portion of beam, then these axial forces
are positive, otherwise they shorten it, they are negative.

When the shear forces tend to rotate the portion of the beam N
clockwise, then these shear forces are positive. When they tend to -

rotate the portion of the beam counterclockwise, they are negative. V[

The bending moment in a horizontal beam is positive at sections for lV
which the top of the beam is in compression and the bottom is in M M
tension. In vertical bars, we mark the chosen tension side with a (_ ‘‘‘‘‘‘‘ _‘>

dashed line to define the positive and negative bending moments in
advance.
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6.2 Relations between distributed load, shear force and bending moment

In this stage, the relations between distributed load in plane, shear force and bending moment will be obtained
for a beam in the same plane with the distributed load.
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By integrating Equation (6.9) between the points C and D, we obtain
V,—V.=- I * qgdx (6.10) V, -V, =—(theareaunder theload curvebetween C and D points)
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By integrating Equation (6.11) between the points C and D, we obtain

M,-M_.= Jj; Vdx (612) M,-M, = (the areaunder the shear force curvebetween C and D points)

If some concentrated forces or some concentrated moments affect on the some points of the beam, then the
axial force, the shear force and the bending moment variation just before and just after these points do not
remain very small, and there are discontinuities at related quantities at these points. In the figure given
below, a beam element of the length dz is considered. The equilibrium equations for this element are as

follows: F
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V,=V,~-F, | (6.14)
M,=M, |



6.3 Obtaining the axial force, shear force and bending moment diagrams

a) Section method

In this method, after calculating the reaction forces, the beam is separated into two parts at a section where
the shear force and bending moment will be obtained. Using the free body diagram of one of the parts, we can
determine the shear force at the considered section by equating to zero the sum of the vertical components of
all the forces acting on this part. Similarly, the bending moment at this section can be found by equating to

zero the sum of the moments about the considered section.

In this method the beam must be cut at just before and just after the points where there are supports,

concentrated forces, concentrated moments, beginning and end of the distributed loads.
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First the support reactions must be obtained by using the free body

diagram of the whole beam.

Now the axial force, shear force and bending moment diagrams of the beam
shown on the right side will be obtained by cutting the beam at any arbitrary
location x and drawing the free body diagram for the portion of the beam to the left

(or for the portion to the right) of the transverse cross section.

Then equilibrium equations are written free body diagrams and solved to get the

resultants at the location x.

The equations obtained will be valid for a range of x for which the nature of the

loading does not change.

The process must be repeated for each different segment of the beam.
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Axial force, shear force and bending moment diagrams
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Problem 3: . b .
_ By using equilibrium equations for the whole beam,
q=40 kN/m N o Y 9 €q 9

120 40 the reaction forces are obtained. By isolating the
A c |p B |E

Y VY VvV O Y VYV ¥ Y A A

T

A

beam part with z length, and considering the internal
—140N iVB=180kN and external forces which affect on this part, the free
44— a2 > 2 e body diagram, which is shown in figure at the left

Me hand side, is obtained. By using equilibrium

A l ‘>
F' e . equations for the considered beam part, the shear

and bending moment expressions are obtained as

follows:

D F, =0->140-40z-T=0—T =140-40z
2

> M, :O—>140z—40%—Mx =0—> M_=140z-20z>

These expressions are valid in the region 0<z<4m (AC region). By performing similar procedures for the

regions CD, DB, BE, the shear and bending moment diagrams can be found.



Shear force diagram

q=40 kN/m
a 120 40"
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Shear force at the end A is 140 kN which

is equal to the support reaction.

Q,=140kN

0. =140-40-4=-20kN
Opsas =—20-120=-140 kN
0,  =-140+180=40iN

0, =40 kN

The shear force is zero at z=3.5 m. At this point the bending moment is maximum.
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Bending moment diagram The shear force is zero at z=3.5 m. At this point

the bending moment is maximum.
q=40 kN/m
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The same results can also be found by using the right hand parts of the beam.



6.4 Axial force shear force and bending moment diagrams of statically determinate frames

For drawing axial force, shear force and bending moment diagrams of this type of systems, the above

mentioned rules are valid in just the same way.

In addition to these rules, it is useful to know the relations between the axial force, shear force and bending
moment just before and just after the corner points. By considering equilibrium of the corner point the

following expressions are obtained.

N,=N,cosa+Tsina—F.)
M, T,=T cosa—N,sina—F, ; ©10
N, .z
{I} N, M2 — Ml B /u J
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1 \\4 moments, then Eq. (6.16) becomes
p q Ay S T(@) as follows: (6.17)
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If the corner angle is a right angle, then Eq.

(6.16) becomes
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Problem 4:
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Problem 5:




b) Integration method

For a statically determinate bar in the yz plane, and under the distributed forces in the yz plane, the shear and
the bending moment expressions can be obtained from (6.9) and (6.11) by integration. Integration constants
which will be encountered while integrating these equations can be evaluated from the support and end

conditions of the statically determinate beam.

d*M
d_V = —q (6.9) dl —y (611 5
dz dz dz

M Fa
Hy A/ [z —_— 7 NA‘_? 1A—S—>Z



First step: Considering the entire beam as a free body, we

Example 1:
q determine the reactions: These reactions are evaluated and
ATTITHITITTITT)B shown on the beam in the figure shown at the left side.
vie 2L ~ oz~ vie 2L Second step: Integrating the differential equations given in
A2 B2

L — Eq. (9, 11):

d
JM:WAN:Q
dz
d°M . . dM. z’
= =—q, =—q =sabit - rn :Q=—q2+C2—>Mx:—q7+sz+C3

Third step: Evaluating C,, C,, C; constants by using end conditions:

z=0—> (N) 0= N,=0>C, =0 By substituting these values in the related equations above,

z=

the following expressions are found:

(Q)Z=O:QA:VA:ql/z_)czqu/z
>
ql 1 z
N:O = —— Mx_ —ZzZ—0—
(M,) =M, =0->C,=0 O="-¢z q952-97



q = -1 —
N=0 = qz Mx—qu—qg
AT ITTB . | o
+* Value of the slope of the bending moment curve at any point is
s
V= Q «z - Vi= g equal to the value of the shear force at that point. d_M -V
) / B2 dx
*+» Negative value of the slope of the shear force curve at any point
g is equal to the load per unit length at that point. According to this
Q) 2 mm relation, when the distributed load is uniform, then the shear

«— 7 ] q.l . . . . . . dV
— \‘\“\u\w R diagram is an oblique straight line with constant slope. E =—q

*» The shear and bending moment curves will always be one and two

M)
\I\H\H\H i UUUW/ degrees higher than the load curve. Thus, once a few values of the

q.12 shear and bending moment have been computed, we should be able to

8 sketch the shear and bending moment diagrams without actually

determining the shear and bending moment functions. The bending

moment curve is a parabola for this example.

“* The second derivative of the bending moment is negative. Therefore the moment diagram is concave upward.

Otherwise it would be concave downward.

% Since shear force and thus the slope of the bending moment is zero in the midpoint of the beam, the bending moment

is extremum, in this case maximum, at that point.

[ z? ql*
M =\M =lg—z—qg— =2
X max ( x)zzl/z qzz q 2 8

z=l/2



Example 2:

P Q There are only concentrated forces on the beam. This type of forces
A 1 1 B cause discontinuities at shear diagram as it was explained earlier.
’Zﬁ r%_' For this reason, shear and bending moment diagrams will be
Va Vs
« g we b we c » calculated in three different region on the beam.
-1
First region:
) d°M dM
O<z<a bolgesii: —L=0>—"2=0 =C,>M_,=C,z+C
d 22 dz 1 1 x1 1 2

End conditions at the point A:
Shear force and bending moment

z=0->M_ ,=0->C,=0 0=V,
z=0->0 =V,>C =V, M =V,z
Second region:
) d*M d M
a<z<a+b bolgesi: —2"2:O—> 2 =0,=Cy,>M_,=Cyz+C,
dz dz
Discontinuity conditions at z=a by using Eq. (6.10) Shear force and bending moment
z=a—>0,=0,-P—>C,=V,-P O, =V,-P

z=a—>M,=M,—(V,-P)a+C,=V,-a—>C,=P-a M,=(V,~-P)z+P-a



Third section:

d*M dM
—2353:0_> x3

dz dz

a+b<z<l bolgesi:

End conditions at the point B:

v In  this region, integration
B

z=1 Q,=-V, C,=-

_ _ _ _ constants can also be calculated
by using the discontinuity

Shear force and bending moment conditions at z=a+b



P Q First region:
% o=V,
Vi Mxl — VAZ

Second region:

Va
@ i TP

Qz :VA —-P
M, =(VA —P)Z+P-a

N g
><// Third region:

+
\,, L —
R Me=Vs.c O, =-V,
Me=Via M, =V, z+V,l

As it is seen from example problem 6.2, if the load discontinuities increases on the beam, then integration
regions increases and as a result of this situation, the number of integration constants which must be calculated

increases. Hence, the integration method loses its efficiency for drawing shear and bending moment diagrams.



6.2 Relations between distributed load, shear force and bending moment in the

three dimensional loading conditions
Distributed forces and moments

[ dZ |

—— = = — — — — mb

d

2F,=0—>-0, +q,dz+ 0, +d0, =0— sz_qx (6.1)
Z
do,

SF,=0>-0,+q,dz+Q,+dQ, =0— =g, (6.2)
Z

dN 6.3

YF=0>-N+q. dz+ N+dN=0—> —=—¢q, (6.3)

dz
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N \i [\ N+-dN z
Mb« < ) " " = ., > >p—> EEE ‘
5 / Qi+dQ, M+dM, ————e e e . g,
Y 1QdQ,
i Q Mz-dM,
X
M, fM;_dMy
y
dM _
ZMX:O—)—Mx+mde—dez+Mx+de:0_) Zx:Qy_mx (6.4)
M =0 M d dz+M +dM =0 M, — (6.5)
XM, =0—>-M, +m,dz+Q, dz+ M, +dM, = _)dz =—0,-m,
dM , (6.6)
ZMZ:O_)_Mb+mbdZ+Mb+de:0—) :_mb .

dz

As it is noticed from Egs. (6.1-6.6), among O., O, , N and M, M ,M,, only N and M, are independent of the
others.



dz -

AR
. > pp—>

Q / Qx—i_ de Mb+de
4 " v dQ,
| Ma+dM,
X
M fM}'J‘dMy
y
y
do. do, dN M M M
G — _— = x _ — N _ b _ _
dz I dz T dz * dz 9y~ m, dzy =0 dz "

Let’s consider a beam in the yz plane and under the forces in the yz plane again. In this situation, if there are no
distributed external moments, namely = =0, the relations between the external distributed loads, bending
moment and shear force are as follows:



Example Problem: Torsional moments are applied to the axle shown below. Draw the torsional moment
diagram for the axle.

M,/2
e
a Mb/2 2Mb
11—
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