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For designing structural systems, i.e. is very important, even inevitable to know the distribution of internal

forces of bars which are under external forces.

6.1 Internal forces in bars-axial force, shear, bending moment diagrams

These distributed forces are reduced to the center of gravity of the cross-section of one part 

of the bar as a resultant force R

 and a resultant moment  M


, Fig. 6.1. 

If a bar under external loads are separated into two parts,

then for equilibrium of the parts, there must be some forces

on the cross-section of these parts. These forces are

distributed over the cross-section of the bar.

As it is known, external forces are gravity forces, wind forces, earthquake forces, connection forces etc.

However, internal forces are the actions and reactions between the particles which form the body.
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If it is desired to investigate the variation of internal loads with respect to the coordinate axis z and if this variation is

shown on a diagram, then the senses of the forces becomes different with respect to the which side of the section is

considered.

 The component perpendicular to the cross-section of 

the bar, N , is called as axial force. 

Components of R

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 The components which lie on the cross-section of the bar is called as 

shear forces, xQ  and yQ . 

 The component perpendicular to the cross-section of the bar, bM , is called as twisting 

moment. 

Components of M


: 

 The components which lie on the cross-section of the bar is called as bending 

moments, yx MveM . 

The components of R

 and M


 along the coordinate axes are called as follows: 



In this case, there is need to a sign convention to show the internal forces on diagrams which is independent of the

considered portion of the bar on one side of the section.

If we calculate the internal forces on the part AC and show them on a diagram, then it is necessary to state on 

which diagram the calculations are performed.

and then assuming the sign convention special to shear force,

axial force and bending moment, the related diagrams can be

drawn without mentioning the side of the part considered

during the calculations. The following convention will give

consistent results regardless of whether one proceeds from

left to right or from right to left along the beam. The sign

conventions for shear, axial force and bending moment are

given below.

Therefore, there is need to a new definition of sign for obtaining the same diagrams which are independent of the

chosen part and have the same sign for the two portions. Namely, when this sign convention is used, it is not

important which part on which side of the section is considered. You can either look at right or left side of the

cross-section. It is not important to deal with either side of the cross-section. This is accomplished by choosing

The beam shown in the figure is cut at C which is between A and B. Then the internal loads which are needed to 
satisfy the equilibrium conditions are desired to be determined. The internal loads on the beam portion AC at the 

section C is , ,V M N   while the internal loads on the beam portion BC are  , ,V M N   . From the action-reaction 

principle, the senses of these loads are opposite to each other but have same magnitudes. The resultant of the 
flexural stresses on any transverse section has been shown to be a couple (If only transverse loads are 

considered) and has been designated as M . 

Common magnitude of the vectors V  and V   as V  

Common magnitude of the vectors M  and M   as M  

Common magnitude of the vectors N  and N   as N  



When the shear forces tend to rotate the portion of the beam

clockwise, then these shear forces are positive. When they tend to

rotate the portion of the beam counterclockwise, they are negative.

Sign convention for resultants
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If axial forces elongates a portion of beam, then these axial forces

are positive, otherwise they shorten it, they are negative.

The bending moment in a horizontal beam is positive at sections for

which the top of the beam is in compression and the bottom is in

tension. In vertical bars, we mark the chosen tension side with a

dashed line to define the positive and negative bending moments in

advance.

When both the sense of outer normal and

the sense of the force is positive or when

both the sense of outer normal and the

sense of the force are negative, then the

resultants are positive. When the sense of

the outer normal is positive and the sense of

the force is negative or the sense of outer

normal is negative and the sense of force is

positive, then the resultants are negative.
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For a beam in plane, sign convention for resultants is as follows:



6.2 Relations between distributed load, shear force and bending moment

In this stage, the relations between distributed load in plane, shear force and bending moment will be obtained

for a beam in the same plane with the distributed load.

By integrating Equation (6.9) between the points C and D, we obtain
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If some concentrated forces or some concentrated moments affect on the some points of the beam, then the

axial force, the shear force and the bending moment variation just before and just after these points do not

remain very small, and there are discontinuities at related quantities at these points. In the figure given

below, a beam element of the length dz is considered. The equilibrium equations for this element are as

follows:
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By integrating Equation (6.11) between the points C and D, we obtain



a) Section method

In this method, after calculating the reaction forces, the beam is separated into two parts at a section where

the shear force and bending moment will be obtained. Using the free body diagram of one of the parts, we can

determine the shear force at the considered section by equating to zero the sum of the vertical components of

all the forces acting on this part. Similarly, the bending moment at this section can be found by equating to

zero the sum of the moments about the considered section.

6.3 Obtaining the axial force, shear force and bending moment diagrams

In this method the beam must be cut at just before and just after the points where there are supports,

concentrated forces, concentrated moments, beginning and end of the distributed loads.



From equilibrium of portion A-C 

Now the axial force, shear force and bending moment diagrams of the beam

shown on the right side will be obtained by cutting the beam at any arbitrary

location x and drawing the free body diagram for the portion of the beam to the left

(or for the portion to the right) of the transverse cross section.

Then equilibrium equations are written free body diagrams and solved to get the

resultants at the location x.

The equations obtained will be valid for a range of x for which the nature of the

loading does not change.

The process must be repeated for each different segment of the beam.

First the support reactions must be obtained by using the free body

diagram of the whole beam.
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Axial force, shear force and bending moment diagrams
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By using equilibrium equations for the whole beam,

the reaction forces are obtained. By isolating the

beam part with z length, and considering the internal

and external forces which affect on this part, the free

body diagram, which is shown in figure at the left

hand side, is obtained. By using equilibrium

equations for the considered beam part, the shear

and bending moment expressions are obtained as

follows:
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These expressions are valid in the region 0<z<4m (AC region). By performing similar procedures for the

regions CD, DB, BE, the shear and bending moment diagrams can be found.

Problem 3:



Shear force at the end A is 140 kN  which 

is equal to the support reaction.

140 40 4 20cQ kN    

20 120 140DsağQ kN    

140 180 40B EQ kN    

40EQ kN

140AQ kN

Shear force diagram

140

(Q)

kN

-20
kN

-140
kN

40
kN

q=40 kN/m

kN

m
V =140A

4

A

V =180

2
m

2
m

kN

2
m

B

BDC

kN
120

kN
40

E

3,5
m

The shear force is zero at z=3.5 m. At this point the bending moment is maximum.
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Bending moment diagram

The same results can also be found by using the right hand parts of the beam.
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For drawing axial force, shear force and bending moment diagrams of this type of systems, the above

mentioned rules are valid in just the same way.

6.4 Axial force shear force and bending moment diagrams of statically determinate frames

In addition to these rules, it is useful to know the relations between the axial force, shear force and bending

moment just before and just after the corner points. By considering equilibrium of the corner point the

following expressions are obtained.
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If there are no external concentrated

forces and external concentrated

moments, then Eq. (6.16) becomes

as follows:
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If the corner angle is a right angle, then Eq.

(6.16) becomes

(6.18)
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Problem 5:



For a statically determinate bar in the yz plane, and under the distributed forces in the yz plane, the shear and

the bending moment expressions can be obtained from (6.9) and (6.11) by integration. Integration constants

which will be encountered while integrating these equations can be evaluated from the support and end

conditions of the statically determinate beam.

b) Integration method

Some end conditions
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Example 1: First step: Considering the entire beam as a free body, we

determine the reactions: These reactions are evaluated and

shown on the beam in the figure shown at the left side.

Third step: Evaluating C1, C2, C3 constants by using end conditions:
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Second step: Integrating the differential equations given in

Eq. (9, 11):
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By substituting these values in the related equations above,

the following expressions are found:
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 Negative value of the slope of the shear force curve at any point

is equal to the load per unit length at that point. According to this

relation, when the distributed load is uniform, then the shear

diagram is an oblique straight line with constant slope.

 Value of the slope of the bending moment curve at any point is

equal to the value of the shear force at that point.
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 The second derivative of the bending moment is negative. Therefore the moment diagram is concave upward.

Otherwise it would be concave downward.
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 Since shear force and thus the slope of the bending moment is zero in the midpoint of the beam, the bending moment

is extremum, in this case maximum, at that point.
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 The shear and bending moment curves will always be one and two

degrees higher than the load curve. Thus, once a few values of the

shear and bending moment have been computed, we should be able to

sketch the shear and bending moment diagrams without actually

determining the shear and bending moment functions. The bending

moment curve is a parabola for this example.



Example 2:
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There are only concentrated forces on the beam. This type of forces

cause discontinuities at shear diagram as it was explained earlier.

For this reason, shear and bending moment diagrams will be

calculated in three different region on the beam.
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Discontinuity conditions at z=a by using Eq. (6.10)
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Third section:
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In this region, integration

constants can also be calculated

by using the discontinuity

conditions at z=a+bShear force and bending moment
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As it is seen from example problem 6.2, if the load discontinuities increases on the beam, then integration

regions increases and as a result of this situation, the number of integration constants which must be calculated

increases. Hence, the integration method loses its efficiency for drawing shear and bending moment diagrams.
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6.2 Relations between distributed load, shear force and bending moment in the 

three dimensional loading conditions
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As it is noticed from Eqs. (6.1-6.6), among , , , ,x y x y bQ Q N and M M M , only bN and M  are independent of the 

others. 
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Let’s consider a beam in the yz  plane and under the forces in the yz  plane again. In this situation, if there are no 

distributed external moments, namely 0xm  , the relations between the external distributed loads, bending 

moment and shear force are as follows: 



Example Problem: Torsional moments are applied to the axle shown below. Draw the torsional moment

diagram for the axle.
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