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9. Moments of Inertia of Areas

9.1. Definitions

In the torsion and bending problems, there are some integral quantities which are
relatd to cross-section of bars (Fig. 9.1).

A cross-section, A, is assumed to be in the xy plane. dA shows an infinitesimal
element of the cross-sectional area. Before investigating moments of areas, the
following expressions called static moments of cross-sectional areas are defined.

S, = [ yaa S, = [ xad (9.1)

Ya

O

Figure 9.1

If the x, y axes are to be at the center of gravity of cross-sectional area, these expressions (first moments of
areas) must be zero. The quantities defined as follows are called as moment of inertia or the second moment of

the cross-section of the beam.

I = ”ysz ]y = ”xsz ve
p A

I,=|[xyd4 (92

The first and second of these expressions are the second moments of areas with respect to x and y axes
respectively. The third of them is known as the product of inertia of the area A with respect to the x and y axes.

Their units are in cm?; |, and |, are always positive unlike |,, can be positive, negative, or zero. Thus,

[.>0, 1,>0 ve [ 20 veya [ <0 (9.3)

An integral of great importance in problems concerning the torsion of cylindrical shafts and in rpblems dealing with
the rotation of slabs is called as the polar moment of inertia of the area, A, w.r.t. the pole O.

Jy=[[R?da  (9.4) Indeed, x”+y* =R
A

The polar moment of inertia of a given area can be computed from the rectangular moments of inertia. J, =7+ I,

There are some quantities derived from the second moments of areas:

i:\/l—j i:/]_y veya I, =iiA ve I =i 4
X A y A

(9.6)

I, ve i, are known as radius of gyration of the areas w.r.t. the x and y axes and the dimesion is in cm.



9.2. Parallel-Axis Theorem Yi

Yi
Lets consider the system of axes x,y and the system of axes (x',y’) which are
parallel to each other. The origin of the second system of rectangular -~ d —=
coordinates x’ and y’ is taken at the center of gravity of the cross-sectional

area of the beam. The coordinate transformation equations are as follows: X @
x=a+x" and y=b+y' N

Using these transformations and the definition of the second moment of areas, G

1,=[[yda=[[(b+y) da= [ y*da+2b[[ yda+v*[[ dd
A A A A

A

I, = J“xsz = ”(a +x')2dA = ”x'sz + 2a”x’dA + azﬂdA
A A A A

I, = _.J'xy dA = ” x'y'dA + aJ.J.y'dA + b”x'dA +a b” dA
A A A A A
Because x’ and y’ are centroidal axes, the first moment of area about these

axes must be zero. Therefore, the transformation expressions can be written d; ¢ U
as follows: )

I =1.,+b*4 I =1,+a*4 I =1.,,+abA4 (9.7) '
X X y y Xy Xy .
Figure 9.3

This theorem is known as the parallel-axis theorem or Steiner theorem. If the two axes do not pass through

the center of area, then it is possible to find the transformation formula by using Eq. (9.7) as shown in Fig. 9.3.
By using Eq. (9.7),

I =1,+d*4 and I, =1,+d: 4 If [, iseliminated, then [, =1, +(d}—-d;)A4 (9.8)
Uy u Uy u u 1 2

u

This is the transformation formula between the two axes. The first and second expressions of Eq. (9.7) indicate
that the second moment of area is minimum according to the centroidal axes.



Determine the moment of inertia for the rectangular area shown in
Fig. 10-5 with respect to (a) the centroidal x axis, (b) the axis xb
passing

through the base of the rectangle, and (c) the pole or z axis
perpendicular to the xy plane and passing through the centroid C .

Part {a).
_ k2 hi2
L= [van= [ voar=b[ v
A kT #i2
- |
Iy = ]_'-:' |".!
Part (b) Part (c)
I, = Iy + Ad,
| Ry
= — b + bh| =) = bk
12 L2 ]
Jr

dy’
& L
" b
1 |
i
e | s ]
| | 2 |
Fig. 10-5
1, = ——hb’
¥
- - ] ] 7
= Iy + I = —bhlk™ + b°)



dy
a4
1

200 mm

Determine the moment of inertia for the shaded area shown
in Fig. 10—6 a about the x axis.

dA = (100 — x) dy.

200 mm
L= /fdA = y2(100 — x) dy
A 0

200 mm vg 204 mm v;L
s 100 — — | dv = 10 2 _ 2 av
/O ! ( 400) ! fﬂ ( . ma) !

— 100 mm —

x = 107(10% mm*



v

Determine the moment of inertia of the circular section
about x axis
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Table 9.1 Moment of Inertia of some Cross-Sections
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Moments of Inertia for Composite Areas

A composite area consists of a series of connected “simpler” parts or shapes, such as rectangles,

triangles, and circles.

moment of inertia for the composite area about this axis equals the algebraic sum of the moments

of inertia of all its parts.

100 mm_i |__

T
400 mm e
1F
a —r_-x
100 mm T
_.| -—100 mm
— 600 mm——-
(a)
i/
100 mm | ‘__
200 mm
Tla]
3 mm| » V-' 250 mm,
- B

250mm||_ e | 300 mm
200mm | P |
100 mm

Determine the moments of inertia for the cross-sectional area
of the member shown in Fig. 10-9 a about the x and y
centroidal axes.

The cross section can be subdivided into the three rectangular
areas A, B,and D

Rectangles A and D

-

- 1 .
I, =1, + Ad®> = —(100)(300) + (100)(300)(200)>
X x ¥ 12

1.425(10°) mm*

= > 1 . 5
IL=1,+ Ad; = l—,}(300){100)" + (100)(300)(250)"
= 1.90(10%) mm*
Rectangle B
1 . 3 9 4
I, = 1—7L600)(100)' = 0.05(10") mm
1
I, = ;(100)(600}3 = 1.80(10°) mm*

The moments of inertia for the entire cross section
are thus
I, = 2[1.425(10")] + 0.05(10%)
= 2.90(10%) mm*
1, = 2[1.90(10%)] + 1.80(10%)
= 5.60(10%) mm*



Determine moment of inertia of the beam’s cross
section

I, =1 +A(d,)?
=2 Las)3003) |+ A15)300)(0)2 L 1200153) |+ 2120)15)(50)2
= 12()( ) |+ A15)(300)(0)" |+ 12( N(157) |+ A120)(15X50)

= 67.510%)+ 9.067510°%) = 76.6(10° ) mm*

Iy = Iy +A(dy)?
=[ ll—z(mms"}} zmmsxsr.:n‘]{z[éusmm%} 3{!10)“5)(0}2]
= 41.17510%)+ 43210%) = 45.5(10% ) mm*

15mm




Determine the moment of inertia of the area shown in Fig. 10-8a about
the x axis.

100 mm — =— 100 mm —
1
\\\\——@ l . —
N
75 mm 75 mm
L -

= bt
Circle
Ix = ;rx' + Ad%
1
= Zw{zs)“ + 7(25)%(75)* = 11.4(10°) mm*
I, = 15bh°,
Rectangle . L .
Summation. The moment of inertia for the area is therefore
‘r.\’ = ?.\" + Ad%

I, = —11.4(10% + 112.5(10%
= %(100){150)3 + (100)(150)(75)* = 112.5(10°) mm* = 101(10°) mm*



9.3. Principal Axes and Principal Moments of Inertia YA

Consider the area A and the coordinate axes x and vy,
Fig.9.4. assuming that the moments of inertia:

I,=[yd4 I,={xd4

and product of inertia L, = J.xydA

are known. We propose to determine the moments and product
of inertia [u , ]V , and Iuv of A with respect to new axes u and v

which are obtained by rotating the original axes about the origin |. 4
through an angle 6.

We first note that the following relations between the coordinates / Fig. 9.4
u, v and x, y of an element of area dA: 'g. 9.
u=xcos@+ ysin 6 (9.9a) v=ycosf—xsinf (9.9b)

Substituting for v in the expression for /,, we write

- ) ~ ) ) B ) 2 . 2 2.2
I = IV dA _I(ycose-x31n0) dA —_[y cos 6’.dA-2Ixycos€smH.dA+J.x sin” 6.dA (9.10)

I, =1 _cos’0- 21 ,sinfcosO+1, sin@ (9.11a)  Similarly,

I, =1 sin"0+21 sinfcosf+1,cos’d (9.11b)

1, =1 sin@cos@+1, (cos’ @—sin’@)—1I sinfcosd (9.11c) Adding (9.11a) and (9.11b) we observe that
I, +1,=1,+1, (9.12)

This result could have been anticipated, since both members of (9.12) are equal to the polar moment of inertia,
l, Therefore, the sum of the moments of inertia is independent of the coordinate rotation, namely it is invariant.



Recalling the trigonometric relations

sin2@ =2sinfcosé cos26 = cos’0 - sin’ 6
We can write (9.11a), (9.11b), and (9.11c) as follows:
I +1 I -1 _
I = 5 Y+ 5 ~c0s260—1,sin20 (9.13a)
I.+1, I.-1, ,
]v = > - > COoS 29+1xy sin 26 (913b)

I =——2sin20+1 cos268
2 Xy

uv

(9.13c)

Equations (9.13a) and (9.13c) are the parametric equations of a circle.

This means that if we choose a set of rectangular axes and plot a point
M of abscissa Iu and ordinate [uv for any given value of the parameter
B, all of the points thus obtained will lie on a circle.

To establish this property, we eliminate 6 from Eqgs. (9.13a) and (9.13c).

We write
2 2
] _1x+ly +]2 — Ix_ly +]2 (914)
u 2 uv 2 Xy
I +1 I -1Y
Settin ] =2 yve R= SR R £ 9.15
g ort 2 \/( 2 j Xy ( )

We write the identity (9.14) in the form (£, -1,,)*+1.,=R*> (9.16)

Lort——




This is the equation of a circle of radius R centered at the point C whose x and y coordinates are |, and O,
respectively, Fig. 9.5. the two points A and B where the above circle intersects the horizontalaxis, Fig. 9.5,

are of special interest: Point A corresponds to the maximum value of the moment of inertia  “, while point B I,
corresponds to its minimum value. In addition, both points correspond to a zero value of the product of inertia

Thus, the values 0, of the parameter of which correspons to the points A and B can be obtained by setting ; —
In Eq. (9.13c). We obtain o1 uv

1920, = ———= 9.17
920, =-———  (@17)

X y

This equation defines two values 26,, which are 180° apart and thus two values Qm which are 90° apart.
One of these corresponds to point A in Fig. 9.5 and to an axis through 0 in Fig. 9.4.

With respect to which the moment of inertia of the given area is maximum; the other value corresponds to
point B and to an axis through 0 with respect to which the moment of inertia of the area is minimum. The two
axes thus defined, which are perpendicular to each other, are called the principal axes of the area about 0, and
the corresponding values | ., and |, of the moment of inertia are called the principal moments of inertia of the
area about 0.

Since the two values @, defined by Eq. (9.17) were obtained by setting I,,= 0 in Eq. (9.13c), it is clear that
the product of inertia of the given area with respect to its principal axes is zero. We observe from Fig. 9.5 that

Lo =1, +R ve [, =1,-R (9.18) Using the values for |, and R from formulas (9.15), we write

L+, [(1.-1,
Imax,min = 2 * : 2 +Ixy (919)

If an area possesses an axis of symmetry through a point O, this axis must be a principal axis of the area about O.
On the toher hand, a principal axis does not need to be an axis of symmetry whether or not an area possesses any
axes of symmetry, it will have two principal axes of inertia about any point O. The properties we have established
hold for any point O located inside or outside the given area. If the point O is chosen to coincide with the centroid
of the area, any axis through O is a centroidal axis; the two principla axis of the area about its centroid are referred
to as the principal axes of the area.




9.4. Mohr’s Circle for Moments and Products of Inertia

If the moments and product of inertia of an area A are known with respect to ton
rectangular x and y axes which pass through a point O,Mohr’s circle first introduced
by the German engineer Otto Mohr can be used to graphically determine (a) the
principal axes and principal moments of inertia of the area about O and, (b) the
moments and product of inertia of the area w.r.t. any other pair of rectangular axes u

and v through O.

PR

Consider a given area A and two rectangular coordinate axes x and y, Fig. 9.6a. Mﬁ:x

Assuming that the moments of inertia £, /, and the product of inertia I, are known,

we will represent them on a diagram by plotting a point X of coordinatesL!;( and ly and a

a point Y of coordinates :l, and —,,, Fig. 9.6b.

Xy’
Joining X and Y with a straight line, we denote by C the point

of intersection of line XY with the horizontal axis and draw the
circle of center C and diameter XY. Noting that the abscissa of C
and the radius of the circle are respectively equal to the quantities
l..e @nd R defined by the formula (9.15). The angle 6m, which
defines in Fig. 9.6a the principal axis Oa corresponding to point A
in Fig. 9.6b, is equal to half of the angle XCA of Mohr’s circle.

Similarly, the point U of coordinates |, and |, and the point V of
coordinates |, and I, are thus located on Mohr’s circle, and the
angle UCA in Fig. 9.6b must be equal to twice the angle uOa in
Fig. 9.6a. The following can be written from Figs. 9.6a and 9.6b.

1,=1,, +Rcos(26,+20) [ =Rsin(260, +26)

O

A

Figure 9.6b

The rotation which brings the diameter XY into diameter UV in Fig. 9.6b has the same sense as the rotation
which brings the x and y axes into the u and v axes in Fig. 9.6a. If it is counter clock-wise, it is positive. If not, it is

negative.



asteasy

B URIw? Sekil (10-P22) deki diizlemsel alanin agirlik merkezi M iizerine 17

yerlestirilmis (x,y) ve (£,7) gibi iki tane dik eksen takimi tanimlanmustir. Bu dik

M ]
eksen takimlanmin x ve ¢ dogrultulan arasindaki agt 6=30" olup, boyutlar b
a=30mm, b=80mm, ¢=40mm ve f=20mm dir. Buna gore, n l
a). I..T yvel w €ylemsizlik momentlerini bulunuz, 1{
b). 1,1, ve I, eylemsizlik momentlerini hesaplaymiz. Sekil (10-P22)

COZUM: Eylemsizlik momenti hesab: i¢in énce agirhik merkezi M nin konumu belirlenmelidir. Sekil (P22.a)
daki alan, y eksenine gére simetrik oldugundan sadece y,, koordinat degerini bulmak yeterlidir. Bunun 1¢imn

alanin simetri eksenini ve tabanini kapsayacak bigimde yerlestirilecek bir (X,y) eksen takimim kullanalim.
Simdi alam {i¢ tane dikdortgenin birlesimi olarak diisiiniirsek, bunlarin Sekil (P22.a) daki (%,y) takimina gore
agirlik merkezleri M, (0,110), M, (0,60), M,(0,10) dir. Su halde,

A =20x80=1600mm?, A, =20x80=1600mm?, A, =20x40=_800mm’

3 — s
DAY 1600x110+1600x60+800x10 y
Ym = 3 = = 70mm A
S 4 1600 + 1600 + 800
elde edilir. Buna gore (x,y) eksen takiminda, x Tyl s )
¥, =¥y — ¥ =70—110=—40mm Loy 80 My(nw)
" _ Yu >{r1e 20 l_
J’ZZYM_J’ZZTO_GOZIOM l ’(
" 3o
yssz-?3=70—10:60H1m ) %fo
. : . ke 40
bulunur. Alan y eksenine gore simetrik oldugundan: ¥ M, (x,,5)

Sekil (P22.2) Y

x=x=x=0

a). (x,y) eksen takiminda alanlarin agirhk merkezleri M, (0, —40), M, (0,10) ve M,(0,60) dir (Bakiniz Sekil
P22b). Alanlann eylemsizlik momentlerini kendi agirlik merkezlerinde hesapladiktan sonra bunlan tiim alanin
agirhk merkezi M ye tasiyalim ve daha sonra toplam yaparak sonuca ulagalim. $oyle ki:

L=S0 (56K +A4Y])
= [15(80x 203)+1600(—40)2] +[i5(20%80°) +1600 10*] + [ (40x20°) +800x 60° | = 653 x10* mm*
12

1,=%" '—Mf=L(20x303)+A(80x20’)+ﬁ(20x403);101x10“mm4

y j=1 12 171 12 12



I, =0

xy

Alan y cksenine gore simetrik oldugundan, son esitlik dogrudan
yazilmstir.

b). &ekseni ile x ekseni arasindaki ag1 30 dir. Buna gore /. eylemsizlik momenti, déniisiim bagintisindap

I, =I,cos’ 30° + 1, 5in30° — 21, sin 30" cos 30" = (653 x10*)0.75+(101x10*}0.25— 0 = 515 x10* sy
bulunur. Ama istersek ayn1 sonug, ¢ift agilar cinsinden yazilmig doniisiim bagintis1 kullanilarak,

I, =3(L+1,)+3(1, I, )cos(26) I sin(26) = 515 x10* mm"*
bi¢iminde de elde edilir. Burada 26 = 60" dir. 7 ekseni ile x ekseni arasindaki ag1 ise 120° dir. Buna gore,

p =1,c0s"120° +1 sin*120° —21_ sin120° cos120°
=(653%10)(~0.5)* +(101x10*)0.866% + 0 239 x10* mm*

T M, (x,.y,)
olur. Carpim eylemsizlik momenti ise 30° igin, déniisiim bagintisindan, 5-3\9 3 ,H:B,\Of' _/ :i)
I,=(1,~1,)sin30° cos30° + I, (cos?30° —sin’30°) X ) i
= (653x10* —101x10*)(0.5%0.866) + 0 = 239 x10* mm* ; M09 w0
elde edilir. Ama istersek ayni sonuca, doniigiim bagintisinin ¢ift J‘ \\Sﬁﬂ }0
acilar cinsinden yazilmusg, R >X ¥

ke~ 40 M (x y)

I, = 12(1x —Iy)sin(ZB) +1,, cos(26) = 239 x10* mm”* v WD

y

denklemiyle de varmak miimkiindiir. Burada 26 = 60° dir. Sekil (P22.b)



gt ] Sekil (10-P23) de verilmis olan diizlemsel alanin boyutlan a = 50mm,
b=80mm ve r=20mm olup (x,y) eksen takimu afirlik merkezi M dir. Buna gore,
a). I, I, ve I, eylemsizlik momentlerini bulunuz,

b). Asal eylemsizlik momentleri ile asal eksen dogrultusunu hesaplayiniz.

COzUM: Eylemsizlik momenti hesabina gegebilmek icin Sncelikle alanin agirhk
merkezi M nin konumu belirlenmelidir. Alanda herhangi bir simetri ekseni bulunmadig
i¢in $ekil (P23.a) da ¢izilmiy olan (X,7)

eksen takimi kullanilarak agirhk merkezi
M(Xy,¥y) nin konumu bu koordinat takiminda elde edilir.

| i, Jean Ayrica bu alan Sekil
(P23.2) daki iki dikdértgen alanin farks diye de diigiiniilebilir. O zaman by alanlar,
4 =70x100 = 7000 mm?

4, = 50x80 = 4000 mm? » A=A4 - 4, =3000mm?

le—a—illey

t

x f
MEE g

}t l

Sekil (10-P23)

olur. (¥,¥) takimunda alanlanin agilik merkezleri M, (35,50), =
M, (25,40) dir. Tim alamin agirlik merkezi ise, X

2 150 20,
_ _ L A% 700035 4 (~4000)25 2pmm
M=————=——"_ " ~48mm T
A 3000 M T
3 _ Xy V.
. 2o AY: 700050+ (~4000)40 c3mm S?mm
e A 3000 = L —>x

a). Kesitin eylemsizlik momentlerini bulmak igin alanin kolla- I

nm diisiinerek hesap yapalim. O zaman Sekil (P23.b) deki @ ve
@ kollannin alanlan ile agithk merkezleri:

4 =70x20=1400mm?, M,(35,90)
A, =80%20=1600mm’, M,(60,40)
(x,y) takiminda alanlarin agirlik merkezlerinin koordinatlar,
X =X —x =48-35=13mm
X, =Xy — X, =48 —60 =—12mm
Y =Yu —?] =63—-90=—-27mm
V2=V — 2 =63—40=23mm

Sekil (P23.a)

Alanlann eylemsizlik momentlerini kendi agirlik merkezlerinde hesapladiktan sonra hepsini once tim alamn
agirhk merkezi M ye tastyalim ve daha sonra bunlari toplayalim. $imdi $ekil (P23.c) den yararlamirsak,

L=y (Lb}f+A.y?)=[$(70x203)+1400{727)21+[ﬁ(20x8{]])+1600><231]:276.7x10‘mm"
x j=1\12 1 i

1L=S"7 (Lhb +4x)
=[%(20% 703)+1400><132]+{¢(80x 20°) +1600(~12)?]

L
12

y
~109.2x10* mm* ] o
N izli i — T0mm— M, (¥, 7,)
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MOMENTS OF INERTIA OF MASSES
9.5. Moment of Inertia of a Mass

Consider a small mass A mounted on a rod of negligible mass which can rotate freely about an axis AA,

Fig. 9.7a. If a couple is applied to the system, the rod and mass, assumed to be initially at rest, will start rotating
about AA’. The details of this motion will be studied later in dyanmics. At present, we wish only to inidicate that
the time required for the system to reach a given speed of rotation is proportional to the mass Am and to the
square of the distancer.

The product ,.2 4, provides, therefore, a measure of the resistance the system offers when we try to set it in
motion. For this reason, the product 2 Am is called the moment of inertia of the mass A4, with respect to
the axis AA.

Consider now a body of mass m which is to be rotated about an axis AA, Fig. 9.7b. Dividing the body into
elements of mass Am,,Am,.,.....,Am,» W& find that the body’s |, A’ A A’
resistance to being rotated is measured by the sum

FAm A1 Amy +r Am, -
This sum defines, therefore, the moment of inertia of the body

w.r.t. the axis AA'. Increasing the number of elements, we
find that the moment of inertia is equal, in the limit, to the

integral
I=[rdm (921)

The radius of gyration k of the body w.r.t. the axis AA' is
defined by the relation:

I=k’m or k=+I/m (9.22) A Fig. 9.7

The radius of gyration k represents, therefore, the distance at which the entire mass of the body should be
concentrated if its moment of inertia w.r.t. AA’ is to remain unchanged, Fig. 9.7c. Whether it is kept in its original
shape, Fig. 9.7b, or whether it is concentrated as shown in Fig. 9.7c, the mass m will react in the same way to a
rotation, or gyration, about AA'. The radius of gyration is expressed in centimeters and the mass is in kilograms,
and the moment of inertia of a mass is kgcm?.




9.6. Parallel-axis theorem

Consider a body of mass, m. The moment of inertia of the body is / =£r2 dm
about AA axis. r dm is the distance of the mass to the axis AA’ in Fig.

Similarly, the moment of inertia of the body is [ = | »'? dm w.r.t the axis

BB’ whose axes are parallel to AA’ axis and whose“origin is at the center S

of gravity of the body. r is the distance of the mass to the axis BB'.

Lets choose the two systems of axes as shown in Fig. 9.8.

The followings can be written: z

2 12

rr=xt+z? P =x"t 4z
Considering the distance between AA’ and BB’ is equal to d,
x=x"+d

and z=12z

8.

A

B

can be written. Then, »° =(x'+d)* +z” =r"+2x'd +d’

can be found. Setting 2 inJ :J}Z dm, the moment of inertia w.r.t AA’ can be obtained as follows:

I:J‘rza’m:J-r’2 dm+2djx’dm+dzjdm

The first integral in this expression represents the moment of inertia w.r.t. B’ axis, the sedond integral represents
the first moment of the body w.r.t. the y’Z'plane, and, since G is in the plane, the integral is zero, the last integral is

equal to the total mass m of the body. Therefore,

I=1+md’ (9.23)

Expressing the moments of inertia in terms of the corresponding radii of gyration, we can also write

kK =k"”+d*  (9.24)

where k and k'’ represent the radii of gyration of he body about AA’ and BB’, respectively.



9.7 Moments of Inertia of Thin Plates A' A

Consider a thin plate of uniform thickness t,
which is made of a homogeneous material of
density P (density=mass per unit volume).

The mass moment of inertia of the plate w.r.t.
an axis AA'duzleminde bulunan AA’ contained
in the plate of the plate, Fig. 9.9a, is

I yuiae = [rdm since dm = ptdd  we write

2 A Figure 9.9 A
! ke = P Ir dA4

But r represent the distance of the element of area dA to the axis AA’; the integral is therefore equal to the
moment of inertia of the area of the plate w.r.t. AA'. We have

Ly vivie = P 4 g0aian (9.25)

Similarly, for an axis BB’ which is contained in the plane of the plate and is perpendicular to AA, Fig. 9.9b, we

have
L g rine = P ggraian (9.26)

Considering now the axis CC’ which is perpendicular to the plate and passes through the point of intersection C of
AA and BB’, Fig. 9.9c, we write

Lecine = P e gran (9.27)
where {cuwm isthe polar moment of inertia of the area of the plate w.r.t. point C.

Recalling the relation ]c = IAA' + ]BB, which exists between polar and rectangular moments of inertia of an
area, we write the following relation between the mass moments of inertia of a thin plate:

ICC’ =10+ 1 (9.28)



Rectangular Plate: in the case of a rectangular plate of sides a and b, Fig. 9.13, we obtain in the following mass
moments of inertia w.r.t. axes through the center of gravity of the plate:

]AA' Kiitle — ptIAA'alan - pt(a3b/12)

]BB' kiitle — lOt]BB’alan - pt(ab3 /12)

Observing that the product pabt s equal to the mass m of the plate, (»

we write the mass moments of inertia of a thin rectangular plate as follows: b
B

I,,=ma’/l2 I, =mb’/12 (9.29)

R

m
Iee =1yt 1oy =@ +b7) (9.30) A
Figure 9.10
Circular Plate: In the case of a circular plate, or disk, of radius r, Fig. 9.10, we write
4
[AA’ kiitle = pt[AA'alan = pt(ﬂ'l" /4)
Al

Observing that the product p;rrzt is equal to the mass m of the plate and that
I,,, =1z  we write the mass moments of inertia of a circular plate as follows:

I, =1, =mr’/4 (9.31)

Lo =1y + 1y =mr’/2 (9.32)

A
Figure 9.11



9.8. Determination of the Moment of Inertia of a Three-Dimensional Body by Integration

The moment of inertia of a three-dimensional body is obtained y
by evaluating the integral = J'Fde.

If the body is made of a homogenous material of density P

the element of mass, dm, is equalto dm = pdV and we can

A

This integral depends only upon the shape of the body. Thus, in order “
to compute the moment of inertia of a three-dimensional body, it will
generally be necessary to perform a triple, or at least a double ~
integration. Figure 9.12

However, if the body possesses two planes of symmetry it is usually possible to

determine the body’s moment of inertia with a single integration by choosing as the element of mass dm a thin
slab which is perpendicular to the planes of symmetry.

In the case of bodies of revolution, for example, the element of mass would be a thin disk, Fig. 9.15. Using
formula (9.32), the moment of inertia of the disk with respect to the axis of revolution can be expressed as
indicated in Fig. 9.12. Its moment of inertia w.r.t. each of the other two coordiante axes is obtained by using

formula (9.31) and the parallel-axis theorem. Integration of the expression obtained yields the desired moment
of inertia of the body.

9.9. Moments of Inertia of Composite Bodies

The moments of inertia of a few common shapes are shown in Fig. 9,12. For a body consisting of several of these
simple shapes,the moment of inertia of the body w.r.t. a given axis can be obtained by first computing the moments
of inertia of its component parts about the desired axis and then adding them together. As was the case for areas,

the radius of gyration of a composite body cannot be obtained by adding the radii of gyration of its component
parts.



