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Figure 9.1

Their units are in cm4;  Ix , and Iy are always positive unlike Ixy can be positive, negative, or zero. Thus,

9. Moments of Inertia of Areas

9.1. Definitions

Indeed, 
222 Ryx 

The polar moment of inertia of a given area can be computed from the rectangular moments of inertia.
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There are some quantities derived from the second moments of areas:

x
x

I
i

A
 y

y

I
i

A


2

x xI i A
2

y yI i Aveya ve (9.6)

ix ve iy are known as radius of gyration of the areas w.r.t. the x and y axes and the dimesion is in cm.

If the x, y axes are to be at the center of gravity of cross-sectional area, these expressions (first moments of

areas) must be zero. The quantities defined as follows are called as moment of inertia or the second moment of

the cross-section of the beam.

An integral of great importance in problems concerning the torsion of cylindrical shafts and in rpblems dealing with 

the rotation of slabs is called as the polar moment of inertia of the area, A, w.r.t. the pole O.

The first and second of these expressions are the second moments of areas with respect to x and y axes 

respectively. The third of them is known as the product of inertia of the area A with respect to the x and y axes. 

In the torsion and bending problems, there are some integral quantities which are 

relatd to cross-section of bars (Fig. 9.1). 

A cross-section, A, is assumed to be in the xy plane. dA shows an infinitesimal 

element of the cross-sectional area.  Before investigating moments of areas, the 

following expressions called static moments of cross-sectional areas are defined.
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Lets consider the system of axes x,y and the system of axes (x’,y’) which are

parallel to each other. The origin of the second system of rectangular

coordinates x’ and y’ is taken at the center of gravity of the cross-sectional

area of the beam. The coordinate transformation equations are as follows:

Figure 9.2

Using these transformations and the definition of the second moment of areas,

Because x’ and y’ are centroidal axes, the first moment of area about these 

axes must be zero. Therefore, the transformation expressions can be written 

as follows:

This theorem is known as the parallel-axıs theorem or Steiner theorem. If the two axes do not pass through

the center of area, then it is possible to find the transformation formula by using Eq. (9.7) as shown in Fig. 9.3. 

By using Eq. (9.7), 

Figure 9.3

This is the transformation formula between the two axes. The first and second expressions of Eq. (9.7) indicate 

that the second moment of area is minimum according to the centroidal axes.

İs eliminated, thenand (9.8)

(9.7)

and

9.2. Parallel-Axis Theorem
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Determine the moment of inertia for the rectangular area shown in

Fig. 10–5 with respect to (a) the centroidal x axis, (b) the axis xb 

passing

through the base of the rectangle, and (c) the pole or z axis

perpendicular to the xy plane and passing through the centroid C .



Determine the moment of inertia for the shaded area shown 

in Fig. 10–6 a about the x axis.
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Determine the moment of inertia of the circular section 

about x axis

R







Table 9.1 Moment of Inertia of some Cross-Sections



Moments of Inertia for Composite Areas

• A composite area consists of a series of connected “simpler” parts or shapes, such as rectangles, 

triangles, and circles.

• moment of inertia for the composite area about this axis equals the algebraic sum of the moments 

of inertia of all its parts.

Determine the moments of inertia for the cross-sectional area 

of the member shown in Fig. 10–9 a about the x and y 

centroidal axes.

The cross section can be subdivided into the three rectangular 

areas A, B , and D



Determine  moment of inertia of the beam’s cross 

section
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9.3. Principal Axes and Principal Moments of Inertia

and product of inertia

are known. We propose to determine the moments and product
of inertia , , and of A with respect to new axes u and v

which are obtained by rotating the original axes about the origin
through an angle θ.

This result could have been anticipated, since both members of (9.12) are equal to the polar moment of inertia,

I0. Therefore, the sum of the moments of inertia is independent of the coordinate rotation, namely it is invariant.

Consider the area A and the coordinate axes x and y, 

Fig.9.4. assuming   that the moments of inertia:

Fig. 9.4

cos sinv y x   (9.9b)

Similarly,
2 2cos - 2 sin cos sinu x xy yI I I I     (9.11a)

(9.11b)

(9.11c) Adding (9.11a) and (9.11b) we observe that 

(9.12)

We first note that the following relations between the coordinates

u, v and x, y of an element of area dA:

(9.9a)

Substituting for v in the expression for Iu, we write 

(9.10)
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This means that if we choose a set of rectangular axes and plot a point

M of abscissa and ordinate for any given value of the parameter

θ, all of the points thus obtained will lie on a circle.

(9.15)

(9.14)

Setting 

We write the identity (9.14) in the form (9.16)

Equations (9.13a) and (9.13c) are the parametric equations of a circle. 

(9.13a)

(9.13b)

(9.13c)
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Recalling the trigonometric relations

We can write (9.11a), (9.11b), and (9.11c) as follows:

To establish this property, we eliminate θ from Eqs. (9.13a) and (9.13c).

We write 
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Thus, the values m of the parameter of which correspons to the points A and B can be obtained by setting

İn Eq. (9.13c). We obtain

This equation defines two values which are 180° apart and thus two values which are 90° apart.

One of these corresponds to point A in Fig. 9.5 and to an axis through 0 in Fig. 9.4.

With respect to which the moment of inertia of the given area is maximum; the other value corresponds to

point B and to an axis through 0 with respect to which the moment of inertia of the area is minimum. The two

axes thus defined, which are perpendicular to each other, are called the principal axes of the area about 0, and

the corresponding values Imax and Imin of the moment of inertia are called the principal moments of inertia of the

area about 0.

(9.18)

(9.19)

This is the equation of a circle of radius R centered at the point C whose x and y coordinates are Iave and 0, 

respectively, Fig. 9.5. the two points A and B where the above circle intersects the horizontal axis, Fig. 9.5,

are of special interest: Point A corresponds to the maximum value of the moment of inertia      , while point B 

corresponds to its minimum value. In addition, both points correspond to a zero value of the product of inertia      .

mSince the two values       defined by Eq. (9.17) were obtained by setting Iuv= 0 in Eq. (9.13c), it is clear that 

the product of inertia of the given area with respect to its principal axes is zero. We observe from Fig. 9.5 that 

Using the values for Iave and R from formulas (9.15), we write

If an area possesses an axis of symmetry through a point O, this axis must be a principal axis of the area about O.

On the toher hand, a principal axis does not need to be an axis of symmetry whether or not an area possesses any

axes of symmetry, it will have two principal axes of inertia about any point O. The properties we have established 

hold for any point O located inside or outside the given area. If the point O is chosen to coincide with the centroid 

of the area, any axis through O is a centroidal axis; the two principla axis of the area about its centroid are referred 

to as the principal axes of the area.   

(9.17)



,x yI I
xyI

cos(2 2 ) u ort mI I R     sin(2 2 )uv mI R   

9.4. Mohr’s Circle for Moments and Products of Inertia

If the moments and product of inertia of an area A are known with respect to two

rectangular x and y axes which pass through a point O,Mohr’s circle first introduced

by the German engineer Otto Mohr can be used to graphically determine (a) the

principal axes and principal moments of inertia of the area about O and, (b) the

moments and product of inertia of the area w.r.t. any other pair of rectangular axes u

and v through O.

Figure 9.6b

The rotation which brings the diameter XY into diameter UV in Fig. 9.6b has the same sense as the rotation

which brings the x and y axes into the u and v axes in Fig. 9.6a. If it is counter clock-wise, it is positive. If not, it is

negative.

Assuming that the moments of inertia          and the product of inertia      are known, 

we will represent them on a diagram by plotting a point X of coordinates Ix and Iy and

a point Y of coordinates :Iy and –Ixy, Fig. 9.6b. 

Consider a given area A and two rectangular coordinate axes x and y, Fig. 9.6a. 

Joining X and Y with a straight line, we denote by C the point

of intersection of line XY with the horizontal axis and draw the 

circle  of center C and diameter XY.  Noting that the abscissa of  C

and the radius of the circle are respectively equal to the quantities

Iave and R defined by the formula (9.15). The angle θm, which 

defines in Fig. 9.6a the principal axis Oa corresponding to point A

in Fig. 9.6b, is equal to half of the angle XCA of Mohr’s circle. 

Similarly, the point U of coordinates Iu and Iuv and the point V of 

coordinates Iv and –Iuv are thus located on Mohr’s circle, and the 

angle UCA in Fig. 9.6b must be equal to twice the angle uOa in 

Fig. 9.6a. The following can be written from Figs. 9.6a and 9.6b. 
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Figure 9.6a















MOMENTS OF INERTIA OF MASSES

9.5. Moment of Inertia of a Mass

mConsider a small mass         mounted on a rod of negligible mass which can rotate freely about an axis AA’, 

Fig. 9.7a. If a couple is applied to the system, the rod and mass, assumed to be initially at rest, will start rotating

about AA’.  The details of this motion will be studied later in dyanmics. At present, we wish only to inidicate that 

the time required for the system to reach a given speed of rotation is proportional to the mass          and to the

square of the distance r.  
m

mr 2The product               provides, therefore, a measure of the resistance the system offers when we try to set it in 

motion. For this reason, the product               is called the moment of inertia of the mass          with respect to 

the axis AA’.
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Consider now a body of mass m which is to be rotated about an axis AA’, Fig. 9.7b. Dividing the body into 

elements of mass                                , we find that the body’s 

resistance to being rotated is measured by the sum

.     
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This sum defines, therefore, the moment of inertia of the body

w.r.t. the axis AA’. Increasing the number of elements, we

find that the moment of inertia is equal, in the limit, to the

integral
 dm r I 2

 (9.21)

The radius of gyration k of the body w.r.t. the axis AA’ is

defined by the relation:

 mkI 2 or m/Ik  (9.22) 

The radius of gyration k represents, therefore, the distance at which the entire mass of the body should be

concentrated if its moment of inertia w.r.t. AA’ is to remain unchanged, Fig. 9.7c. Whether it is kept in its original

shape, Fig. 9.7b, or whether it is concentrated as shown in Fig. 9.7c, the mass m will react in the same way to a

rotation, or gyration, about AA’. The radius of gyration is expressed in centimeters and the mass is in kilograms,

and the moment of inertia of a mass is kgcm2.

Fig. 9.7



The first integral in this expression represents the moment of inertia w.r.t. B’ axis, the second integral represents

the first moment of the body w.r.t. the y’z’plane, and, since G is in the plane, the integral is zero, the last integral is

equal to the total mass m of the body. Therefore,
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9.6. Parallel-axis theorem

Consider a body of mass, m. The moment of inertia of the body is                  

about AA’ axis. r dm is the distance of the mass to the axis AA’ in Fig. 9.8.

Similarly, the moment of inertia of the body is                       w.r.t the axis

BB’ whose axes are parallel to AA’ axis and whose origin is at the center

of gravity of the body. r‘ is the distance of the mass to the axis BB’.  
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Lets choose the two systems of axes as shown in Fig. 9.8.

The followings can be written:
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Expressing the moments of inertia in terms of the corresponding radii of gyration, we can also write 

222 d'kk 

k 'k

can be written. Then, 

can be found. Setting        in                 , the moment of inertia w.r.t AA’ can be obtained as follows:               

(9.24)

where     and      represent the radii of gyration of he body about AA’ and BB’, respectively.



Consider a thin plate of uniform thickness t,

which is made of a homogeneous material of

density (density=mass per unit volume).

9.7 Moments of Inertia of Thin Plates
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The mass moment of inertia of the plate w.r.t.

an axis AA’düzleminde bulunan AA’ contained 

in the plate of the plate, Fig. 9.9a, is

Figure 9.9

since we write

But r represent the distance of the element of area dA to the axis AA’; the integral is therefore equal to the 

moment of inertia of the area of the plate w.r.t. AA’. We have 

(9.25)

Similarly, for an axis BB’ which is contained in the plane of the plate and is perpendicular to AA’, Fig. 9.9b, we 

have
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:

(9.26)

Considering now the axis CC’ which is perpendicular to the plate and passes through the point of intersection C of 

AA’ and BB’, Fig. 9.9c, we write

(9.27)

Recalling the relation                              which exists between polar and rectangular moments of inertia of an 

area, we write the following relation between the mass moments of inertia of a thin plate:

where             is the polar moment of inertia of the area of the plate w.r.t. point C.

(9.28)
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Rectangular Plate: in the case of a rectangular plate of sides a and b, Fig. 9.13, we obtain in the following mass 

moments of inertia w.r.t. axes through the center of gravity of the plate:

Figure 9.10

Observing that the product                is equal to the mass m of the plate, 

we write the mass moments of inertia of a thin rectangular plate as follows:

(9.29)

Circular Plate: In the case of a circular plate, or disk, of radius r, Fig. 9.10, we write

Observing that the product               is equal to the mass m of the plate and that 

(9.30)

(9.31)

(9.32)

we write the mass moments of inertia of a circular plate as follows: 

Figure 9.11
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dm
However, if the body possesses two planes of symmetry it is usually possible to

determine the body’s moment of inertia with a single integration by choosing as the element of mass a thin

slab which is perpendicular to the planes of symmetry.

Figure 9.12

In the case of bodies of revolution, for example, the element of mass would be a thin disk, Fig. 9.15. Using

formula (9.32), the moment of inertia of the disk with respect to the axis of revolution can be expressed as

indicated in Fig. 9.12. Its moment of inertia w.r.t. each of the other two coordiante axes is obtained by using

formula (9.31) and the parallel-axis theorem. Integration of the expression obtained yields the desired moment

of inertia of the body.

9.9. Moments of Inertia of Composite Bodies

The moments of inertia of a few common shapes are shown in Fig. 9,12. For a body consisting of several of these

simple shapes,the moment of inertia of the body w.r.t. a given axis can be obtained by first computing the moments

of inertia of its component parts about the desired axis and then adding them together. As was the case for areas, 

the radius of gyration of a composite body cannot be obtained by adding the radii of gyration of its component 

parts. 

The moment of inertia of a three-dimensional body is obtained 

by evaluating the integral . dmrI 2

If the body is made of a homogenous material of density        , 

the element of mass, dm, is equal to                         and we can 

write                      .

dVdm 

 dVrI 2

This integral depends only upon the shape of the body. Thus, in order

to compute the moment of inertia of a three-dimensional body, it will

generally be necessary to perform a triple, or at least a double

integration.

9.8. Determination of the Moment of Inertia of a Three-Dimensional Body by Integration


