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CABLES



 Cables are used in many enginerring applications, such as suspension bridges, transmission

lines, aerial transways, guy wires for high towers, etc.

Cables:

Cables may be divided into two categories, according to their loading:

 Due to their flexibilities, the resistance to bending is small and can be neglected. Therefore;

cables are considered as a system having infinite numbers of pins joined together.

1) Cables supporting concentrated loads

 According to this assumption, the internal force at any point in the cable reduce to a force

of tension directed along the cable.

2) Cables supporting distributed loads
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1. Cables Supporting Concentrated Loads :

The weight of the cable is negligible under the concentrated loads and the loads are applied

to the cable in a given vertical line.
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Fig. 8.1 A cable under concentrated loads



Support reactions at A and B must be represented by two components each from the free-

body diagram of the entire cable.
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Fig. 8.2 Free-body diagram of a cable under concentrated loads

The three equations of equilibrium are not sufficient to determine the reactions at A and B,

thus an additional equation will be required.

If the coordinates of x and y of a point D of the cable is known, the additional equilibrium

equation can be written.

The free-body diagram of the AD portion is drawn and the moment equilibirum equation of the left

of the right portion of the cable should be equal to zero.
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The equilibirum equations for the

entire cable:
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After determining HA and VA, the vertical distance from A to a point 

on the cable can easily be calculated.

The condition that moment about the considered point must be 

zero is used for this calcualtion.



The portion of

A-C1 of cable

From Eqs. (8.3) and (8.4), it is concluded that the cable force at any point of the cable is

written as:
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 Loads are dependent only on the x variable.

 The slope of the cable at the lowest point of it is zero, and the origin of the coordinate axes is

chosen at this point.

From the equilibirum of the

CD portion of the cable:

2. Cables Supporting Distributed Loads :
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Fig. 8.3 A cable under distributed loads
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By writing the horizontal equilibrium

equations for this portion of the cable:
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From the end conditions:

The cable AB carries a load q uniformly distributed along the horizontal line and the weight of the

cable is neglected compared with the weight of the roadway. Summing moments about D,
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The minimum cable force:

For this type of loading:

The maximum cable force is occurred at the point

that the slope of the cable is the maximum. The

maximum slope is where the x coordinate of

support is the maximum.
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The horizontal component of cable force at any

point on the cable is equal to T0.
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support reactions are equal to T0.
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The length of the cable from its lowest point C to its support A can be obtained from the folllowing

formula:

Finding the Length of a Parabolic Cable:

using
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In most cases, only the first two terms of the series need to be computed for the total cable

length.

For calculating the total cable length, sB must be calculated. This length can be found by

following the same procedure used for finding sA. The total cable length is found as
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The load of a cable hanging under its own weight is a uniformly distributed load (q) along the

cable itself.

Catenary:
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The equation of the cable:
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a) The support elevations are the same:
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The cable length between the lowest point and any point on the
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b) The support elevations are different:

q=q(s)
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The equation of the cable:
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(8.30) BA xxL  (8.31)

(8.32) e is found by trial-

error method.

When the elevations of the supports A and B are different, xA and xB are not definite.

In this situation, by substituting the coordinates of A and B into Eq. (8.29), the

following expressions can be found:
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