A rod of length 30.0 cm has linear density (mass-perlength) given by
— | < . | 2
A =50.0g/m + 20.0xg/m=,
where x is the distance from one end, measured in meters.

(a) What is the mass of the rod? (b) How far from the x = 0 end is its center of mass?

M = [‘:’Ooc.-\-lo_% :'15',33_.
) _'_j L (o (3dx)
™M w 07
i b @[ 5 d
= SOox + Lo P
0
03
o %2 =
%k—w(:,%_ t,"o_‘%. +2,o?“) =0,I53 mm .
13

(&)



A 6.0 kg block is released from A on the a4
frictionless track shown in Figure. Determine
the radial and tangential components of
acceleration for the block at P. h=5
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The four particles in Figure are connected by rigid rods of 3.00 ke 2.00 ke
neglibigle mass. The origin is at the center of the Q_:)i Q
rectangle. If the system rotates in the xy plane about the
. . 6.y
z axis with an angular speed of 6.00 rad/s, calculate "
a) The moment of inertia of the system about the z axis 7]
and = <4 00 -
b} The rotational energy of the system. . 1 o™
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= 43 kg The moment of inertia of the system about the z axis.
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Two blocks, as shown in Figure, are
connected by a string of negligible mass
passing over a pulley of radius 0.250 m and
moment of inertia . The block on the
frictionless incline is moving up with a
constant acceleration of 2.00 mfsz.

(a) Determine Ty and T, the tensions in the
two parts of the string.

(b} Find the moment of inertia of the
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5 Aparticle of mass m = 1 kg starts its motion from the origin at t = 0 s then it moves on X-y plane
with an instantaneous position vector given by ¥ = (¢2 + t)f + 3¢t/.

a) Calculate the linear momentum and angular h) Calculate the force and torque acting on the
momentum relative to the origiu alt =1s, particleat t = 1 5.
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¢) Caloulate the rate of change of angular momentum at  d) Verify the work and kinetic energy theorem for this
t=1s. particle between the time interval of t = 1 sand t = 2 s.
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