ENGINEERING SYSTEM
MODELLING AND
SIMULATION

Mustafa Kemal SEVINDIR, Ph.D
sevindir@yildiz.edu.tr




Classical Solutions of Ordinary
Linear Differential Equations

Integrating Factor Method




The integrating factor method provides a solution to
any first-order linear differential equation. Consider

()% 4 0, (x)y = r(x)

dx

IS equation can be put into the form

i
TPy =0r)  PO=a@/m QW =rw/mw

dx -

. . o —[Pwydx [ P@xydx
The solution is =1 fael ™ asec |
The integration constant C is obtained using the initial
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Example
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Then,

r=e| [berenat e foerrrainc]  ree o]

Ayplying the initial condition

C =T, (bla-p)

T=e™ {T,- +L(e{a_ﬁ”t —~ 1)}

a—p
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Classical Solutions of Ordinary
Linear Differential Equations

Characteristic Equation




The characteristic equation method is the technique for
solving homogeneous nth-order linear differential
equations with constant (time invariant) coefficients.
This method provides the solution for a constant-
coefficient linear homogeneous differential equation.
onsider

d"y 41 Y dy
a,—=+a, ——+...+a;,——+ayy =0
dt" ! At ! dt 0

a, a, 4, a,, and a, are constant coefficients.
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The fundamental step of this technique is to assume a
solution of the form y = e". Using this assumption,

d”b’ n o _rt dzb’ 2 rt d_y_ I’E’rt

J _ oot L =2
dt

dt” - dt?

bstituting into equation,

a e +a, et + ... +aret+aget =0
and dividing both sides by e gives
ar"+a, 7"+ .o +ar+a,=0
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This equation is called the characteristic equation; it
yields the following n roots: r,, r, 4, ...,r;. Because
there 1s more than one root, we rewrite the Initial
assumption as

n
y: § CI' er‘;f
=1

or,
y: C” e;‘”f +C”_1 8;»”_-11‘ +---+C1 e;-.lf
The constants C,, C,_,, ..., and C, are evaluated using

the initial conditions.
This method is fairly simple; the most difficult step is
obtaining the roots of the characteristic equation. ="




Qualitative Characteristic of System Response

The characteristic equation method is particularly
powerful because the roots of the equation completely
describe the qualitative response (behavior) of the
ystem. Most of the important information about the
system response can be obtained from these roots.




The relevant questions about the response are the
following:

* |s the response stable”? That is, will the response
remain bounded when forced by a bounded input?

*/|s the response monotonic or oscillatory?

* [f monotonic and stable, how long will it take for the
transients to die out?

* |If oscillatory, what is the period of oscillation and how
long will it take for the oscillations to die out?



A response is stable if it remains bounded when forced
by a bounded input. An unstable response is one that
when forced by a bounded response, it continues
moving up or down without stopping and reaching a
final value; a stable response reaches a final value.

e bounded input must be one that reaches a final

value.

Consider a second-order differential equation; all
findings apply to any nth-order differential equation,



2
iy Y 4y
2 dt dt

from which the following characteristic equation
develops:

+agy =0

and from the quadratic equation we obtain the roots

—a, t \/ ai —4a,a,
2a,

7’1, 7’2=




There are three possible cases depending on the value
of the term under the square root:

1. ai—4a,0>0  vyielding two real roots r, andr,
2. af—4a,a,=0 yielding a single repeated real root
. a? —4a,a, <0 yielding two complex roots at a+ if

For case 1 (two real roots), y=C,e" +C,e™

For case 2 (a single repeated root), both roots are at
r =—(a, /2a, ). The first term of the solutionisy, = C,
art



The second term of t
with coefficient) mu
variable, y, = C,t e,

ne solution is the same (except
tiplied by the Iindependent

then y=_C, e+ Cyt e

For case 3 (two complex roots) the roots are at r, = «

I and r, = a—if, where a=a,/2a, and

then

-

2
B \/ da,a,— aj
2a,

y — Ci e(a-l-iﬁ)t + Cé e(a—iﬁ)t

Y= e [C{ e +C} "’Bt]



It is rather difficult to obtain a good qualitative
iIndication of this response because of the complex
exponential powers. A Dbetter expression, avoiding
complex numbers, can be obtained using Euler’'s
id;ntity et = cos Bt + i sin Pt.

y = e*[C; cos pt + C, sin pt]

The first two cases, result in exponential responses,
and the third case, in an oscillatory response. The
roots can be either real or complex; consider Figure
“Roots of characteristic equation”.



Locations 1 and 4 correspond to cases 1 and 2 when
the roots are real, and locations 2 and 3 correspond to
case 3 when the roots are complex (the asterisk
denotes the complex conjugate).

Roots Form of the solution

e y=Ce™

Iy, 1y y = e [C, cos pt + C, sin ft]
Iy, Ia y = e[ C, cos pt + C, sin pt]
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Imaginary

axis
r,=—a+ pi ) |
% r,=a+ fi
X
rl = —-d r4 =b
X 7 Real axis
X
X . .
. . r,=a - pBi
r,=—-a - pi

Roots of characteristic equation
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As the independent variable t increases, the solutions
for the roots in locations 1 and 2 indicate that the
response decays exponentially, owing to the negative
exponent, with oscillations superimposed in location 2.
However, the solutions for the roots in locations 3 and
iIndicate that the responses increase without bounds,
owing to the positive exponent. Thus, the roots In
locations 1 and 2 provide stable responses, and the
roots in locations 3 and 4 provide unstable responses.
The difference is in the location of the real part of the
root.




For roots with negative real parts the response is
stable; for roots with positive real parts the response is
unstable. Furthermore, for real roots the response is
monotonic, and for complex roots the response is
oscillatory . Not very often, although the roots are real

thus the response is given by exponentials, the
esponse is a bit oscillatory and not monotonic. This
rare instance may only happen when there are multiple
roots. Because for homogeneous differential equations
there is no forcing function, the qualitative behavior of
the system does not depend on the type of forcing
function, f(t), only on the characteristics of the system
itselr.




We can also express these last statements as

Root a + ifs
A T
Response is stable or unstable Response is monotonic or oscillatory
solely depending on the sign of a.  solely depending on the numerical value of .

If negative, the response is stable; If 5 = 0, the roots are real and the response
if positive, the response is unstable is monotonic;

if B = 0, the roots are complex, or imaginary,
and the response is oscillatory
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Classical Solutions of Ordinary
Linear Differential Equations

Undetermined Coefficients




The undetermined coefficient method is a technique for
solving nonhomogeneous nth-order linear differential
equations with constant coefficients.

The characteristic equation method only applies to
homogeneous differential equations.

e method for obtaining the general solution, y, of a
nonhomogeneous differential equation calls for dividing
the solution into two parts, the complementary solution
Yc and the particular solution y, or

Y=YctVyp



The form of the particular solution solely depends on
the form of the forcing function, and this is why
sometimes it is also called the forced response.

Because the particular solution only depends on the
rcing function, it does not have anything to do with
the system itself. The complementary solution is the
one related to the system, including the initial
conditions.




Consider

d’ d
azd—tg+a1d—z+a0y:f(t)

d*(y- + d(y +
a (y:;z yp)+a1 We yp)+a0(yc+yp):f(t)

t dt
yC dyc yp dyp

2732 Ta— - T T agYc T a, 112 Ta— - T +agyp = f(t)

Because y; is the solution that depends on the forcing

function

d? d
a, dtyzp + a4 c}i/tp +agyp = f(t)




Then

dyc+a1dy

At dt +agyc =0

So, the solution of the complementary part is just the
olution of the corresponding homogeneous equation,
which hereinafter we refer to as y, or

Y=Yut Yp

Thus, the general solution is the summation of a
“solution of the corresponding homogeneous equation”
plus a partlcular solution of the nonhomogeneous
equation.”




The form of the particular solution depends only on the
form of the forcing function.
The solution of homogeneous differential equations is
independent of the type of forcing function affecting the
system. Thus, it is only dependent on the system itself,
nd it iIs why sometimes it is called the natural
response.
)y GG depends only on the
Total solution Jorm of the forcing
J function (forced response)

depends only on the
system itself (natural response)



Using the characteristic equation method, we obtained

the homogeneous solution. For obtaining the particular

solution we wuse the method of undetermined

coefficients; this method consists of the following:

* On the basis of the forcing function select a particular
olution (also referred to as a “trial solution™).

Form of the Forcing Function, f(t) Form of the Particular Solution
at"+a, {1+ - + a4t + a Afr+ A, 1+ - + At + A

(a t" +a, "1+ - + a,t + ag)e A+ A, 71+ - + Ayt + Ap)e
(@,t" + a, "1 + -+ + ayt + ap)cos pt (A "+ A" + - + Ayt + Ap)cos pt
+ (b t" + b, 4t" + -« + byt + by)sin pt + (B,t" + B,yt"' + -+ + Byt + By)sin pt

aet cos pt + be sin pt Aeft cos pt + Bet sin pt




* If the forcing function involves a sine or cosine, the
particular solution should contain both a sine and a
cosine

* [f any part of the particular solution is a solution of the
homogeneous equation, multiply that particular
olution by the Iindependent variable. Repeat if
necessary, that is, if after multiplied by the independent
variable the result is still a solution of the
homogeneous equation, multiply again by the
independent variable




Example
Obtain the solution of

y" + vy =12y =12t — 72t* with y’'(0) = 0 y(0) = 3

Y=YutYp
yutyn—12yy =0
Assume Yy =€"
r*+r-12=0

r+4)(r-3)=0 = n=3,r=-4




One root, ry, is located in the positive real axis, and the
other root, r,, Is In the negative real axis, thus
indicating an unstable response. The fact that both
roots are real (no imaginary parts) indicates that the
re;ponse IS monotonic.

— 3 -
V=0 e+ (C, e ™

The forcing function 12t — 72t¢ is a polynomial in the
Independent variable t, so a particular solution can be

Vp = At? + At + A

Vp=2At+ A Vp = 2A,




2A2 + 2A2t + A-I — 12(A2t2 + A1t + Ao) — 12t— 72t2

A, + A, — 12A,) + 2A, — 12A)t — 12A,82 = 12t — 72¢2

This last equation shows two polynomials, one on each
side of the equal sign.
Equating the coefficients of equal terms in these
olynomials, we obtain A,, A, and A,.
12A,=72 = A, =6

2A, — 12A, = 12
26)-12A, =12 = A, =0

25.12.2017

26)+0—-12A,=0 = A, =1



Thus,
Vp=1+ 61

y = e+ Cett+ 62+ 1

And applying the initial conditions gives C, = 8/7 and
, = 6/7. Therefore

8 3t 6 -4t
y=s€+s€" + 615+ 1
[ 7 7 | |

/o

Due to the system itself ~ Due to the forcing function
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Example
Obtain the solution of

y" +y =12y = e’ with y'(0) = 0 y(0) = 3

The corresponding homogeneous equation is the
ame as in the previous example. This time the forcing
function Is an exponential, so the particular solution

can be
Vp = A’

Vp=2Ae"  yi=4Ae




4A, e+ 2A,e?t - 12A, e’ = et

4A +2A, —12A, =1 Ay =——

1
Yp =—592t

y =1.857e*+ 1.309e* - 0.167e*
[ | l J

S

Due to the system itself and Due to the forcing function
initial conditions




Example
Obtain the solution of

y" + vy =12y = e’ with y'(0) = 0 y(0) = 3

The corresponding homogeneous equation is the
ame as in the previous two examples. The particular

solution, yp = A,e3, does not work because it is part of

the homogeneous solution. So the suggestion is to

multiply yp by the independent variable {,

Vp = Aol €




vp=A e +3Ate"  yi=6A,e" +9A e

Substituting into the differential equation gives A, = 1/7;
thus,

Using the initial conditions gives
1 =1.694 and C, = 1.306.

Therefore,

y = 1.694 e + 1.306 e~ + 0.143¢ e




Example
The following differential equation describes an

undamped mass-spring system:

X" 4+ 16X = 4 sin wt

e start by finding the solution to the corresponding
omogeneous equation,

X;, +16x, =0
Assuming x,, = e, we get

1'2 + 16 — O = r] — 4/; I'2 — —4I 25.12.2017




And using the previous treatment,
Xy = C, cos 4t + C, sin 4t
The frequency of this homogeneous response or natural

response is 4 radians/time. We call this the natural
frequency and denote it by w,.

or the particular solution, let us assume first that w # 4.
In this case, the particular solution can be

Xp = A COS wt + B sin wt

X, =—Awsinot+ Bocosot  Xp=—Aw’cosot — Bo® sinot
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—Aw? cos wt — Bw? sin wt + 16A cos wt + 16B sin wt = 4 sin wt

(16A — Aw?)cos wt + (16B — Bw?)sin wt = 4 sin wt

Equating the coefficients of equal terms in this equation,
16A-Aw?=0 = A=0

4
16— w?

16B—Bw’* =4 B=

Finally

4
X = C,cos4t+C,sindt + -Sinmt
16—w

25.12.2017




X becomes large as w — 4 or w — W,

Let us now assume that w = 4. In this case, the
suggestion for the particular solution is in itself a solution
of the homogeneous part and will not work. The
procedure then is to multiply the suggestion the
in/fependent variable. The particular solution is then

Xp = t(A cos 4t + B sin 4t)

Xp = ACOs4t+ Bsindt +t(—4 Asin4dt + 4B cos 4t)

Xp =—8Asindt+8Bcos4t+t(—16Acos4t+16Bsin4t)

25.12.2017




—8A sin 4t + 8B cos 4t + t(-=16A cos 4t + 168 sin 4¢t)
+16t(A cos 4t + B sin 4t) = 4 sin 4t

—8A sin 4t + 8B cos 4t = 4 sin 4t

Equating the coefficients of equal terms gives A = -1/2
nd B = 0. Therefore, the general solution is

X=(C,cosdt+C, sin4t—%tcos4t

Note that x becomes unbounded as t increases.
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Multiple Forcing Functions

Sometimes multiple forcing functions may affect the
system at the same time. For example, consider

y" +y' =12y = 12t — 72t* + e* with y'(0) = 0 y(0) = 3

e can write this differential equation explicitly showing
two forcing functions

y" +y =12y = f1(t) + f,(t)
) = 12t = 7282

folt) = e

where




Y=YutYptYp

yYp, Is the particular solution due the first forcing
function f,(t) and yp, is the particular solution due the
second forcing function f, (t).

Y= Clc’3t+C28—4t+1+6t2—%82t

Using the initial conditions, C, = 27/21 and C, = 37/42

TE ge?’t +£e‘4t +1+ 6t —leZt
47 6

7=




Classical Solutions of Ordinary
Linear Differential Equations

Response of First- and Second-Order Systems




Most of the models are composed of first- or second
order differential equations; this is often the case for
physical/industrial models.

First-Order Systems

or example;

mC % =q,,—hA(T-T,)




The response of these systems to two different types of
Input, a step function, and a sine wave.

Consider the linear first-order differential equation with
constant coefficients:

d{i(tt)mo/(t) bx(t) with y(0)=y,

The equation has three coefficients, a,, a,, and b, but,
without loss of generality, we can divide the equation by
one of the three so that we can characterize the
equation by just two parameters.




It is often customary to divide by the coefficient of the
dependent variable, a,, provided it is not zero. Such an
operation results in the following equation, which we
shall call the standard form of the linear first-order
differential equation with constant coefficients.

: di’i (tt ) 4 y(t) = Kx(t)

T = a,/a,, often called the time constant; with unit of time
K= b/a,, often called the system gain; with units of the
dependent variable over units of the forcing function.




Starting from a steady-state operation, meaning that

dy|
dt

t=0

with a forcing function of x(0) then, y(0) = K x(0).

ust have dimension of time, and K must have
imension of y over dimension of x.

Any linear first-order differential equation can be
transformed into the standard form, as long as the
dependent variable y(t) appears in the equation.



For example;

MC  (1.75kg)(450 ] /kg-°C)

T=——=- ; --=787.5s
hA  (20] /s-m~-°C)(0.05 m?)

Klziz 21 —=1.0 S
hA  (20]/s-m?*-°C)(0.05 m*®) J/s

K,= 1.0 dimensionless




. d .
Although equation . ?+yn=kx) can be solved by anti-

differentiation, separation of variables or integrating
factor, we choose to solve it here by the characteristic
equation and undetermined coefficient methods. Being a
nonhomogeneous equation, we first solve for the
C}n/responding homogeneous equation

dvy..(t r+1=0
T y;t( )+yH(t):O
t
and the root is r:_l yy(H)=Ce *
T

The particular solution depends on the forcing function.




Step Function Input

Suppose that the forcing function x(t) changes from its
initial value of x(0) to its final value of x = x(0) + D at
time = 0, that is, x(t) = x(0) + Du(t), a step change of D
up/rfs of magnitude. In this case,

— d.l/P(t)
| t)=A =0
Vp( ) 0 T

. . . ] dy(t) .
Substituting into equation © a4 Y=




Finally,

t

y(t)=yu(t)+yp(t)=Ce * +Kx;

Usyg the initial condition, we obtain C

Yo=C(1) + Kxp C=yo—Kx;

t t
y(t)=yge ;+Kx1_—(1—e :)

Because x =x (0) + D,




y(H)=Yo e'?+1<<x<0>+D>(1_e‘:)

t ¢ .
y(t)=yo e * +Kx(0)— Kx(0)e ?+1<D(1_e :)

nd finally, because y(0) = K x(0),

t
y(t)=y(0)+ KD(l— e_?)
where D = x — x(0). Instead of writing D for the step
change, many textbooks show the step response
equation as




y(t)=y(0)+ K(xp - x(O))(l— e_?)

Obviously, the negative real root indicates that the
system Is stable and monotonic in its response. The
above equation describes the unit step response of any

first-order system. These equations are used in many
ngineering courses.




- 0.632KD = 0[632(2)(3) =|3.798
/.-—-- A
6
/
5 - -
= = -
/ | KD = 2(3)
|
3 |
Ste¢epest / |
9 slope '
\l I
o : Y
1
|
|
0—4 -2 0 2 4 6 8 10 12 14 16
l<—>| Time
T
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Response of a first-order system to a step change in input.




A graph of the response is very instructive; the above
figure shows the response of the system when K = 2,
D=3, t=2,and y(0) = 1.

* The steepest slope in the response curve occurs at the
beginning of the response; this is the typical response of
first-order systems to a step change in forcing function
I input variable.

« The total change In dependent variable, output
variable, is given by KD, the system gain times the
change in input; thus, we say that the gain K gives the
change Iin output per unit change in input (or how
sensitive the output is to a change in input); obviously,
the units of K also show this meaning.




* 63.2% of the total change occurs in one time constant.
Obviously, the response equation provides this number.
Whent = T,

T

y(t=1)=y,+ KD(l— e_;) =1+ KD(1- e

y(t = 17) = yo + KD(1 - 0.368) = 1, + 0.632KD




Actually, this helps us in obtaining the significance of the
time constant z. The smaller the time constant, the less
time it takes the system to reach 63.2% of its total
change; thus, the faster responding the system is.
Therefore, the time constant is related to the speed of
the system once it starts changing. The table below
abulates the change in output versus t/z. Note that the
response starts at maximum rate of change right after
the step is applied, and then the rate of change
decreases so that the final change of KD is approached
asymptotically.




First-Order Step Response

tlt Fraction Change in Output
0 0

1.0 0.632

2.0 0.865

3.0 0.950

4.0 0.982

5.0 0.993

00 1.000
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After one time constant the response reaches 63.2% of
its final change, and in five time constants it reaches
over 99% of the change. In other words, the response is
essentially complete after five time constants; it is
commonly accepted in most areas of engineering to use
S7'as the time it takes to reach the new steady state.

The qualitative response of all first-order differential
equations to a step change in input is the same. The
quantitative portion is the one that differs.



Sinusoidal Function Input

Suppose x(t) = B sinwt, in this case
yp(t) = A cos ot + Ay sin wt

dyp(t) _

o — A0 sin ot + Ay cos wt

Substituting, yp(t) and dyp(t)/dt into equation %y =)

(Ao sin wt + Ayw cos wt) + A, cos ot + Ay sin wt = KB sin wt

(—7A @ + Ay)sin wt + (tAyw + A;)cos ot = KB sin wt




Equating equal terms,
—tAw + A, = KB

TAoa) + Al — O
From these last two equations,

KB ~ —KBrw

A, = A, =
’ Y1+ (o)

1+ (1)

—KBtw KB

t)= cos wt + sin wf
Ve )= o O 1 ()




L KBrw KB

y(t)=yy(t)+yp(t)=Ce ™ — 1+ (r0) cos ot + 1+ (w0 sin wt
Using the initial condition, we obtain C

C= 1y, + KBtw :

1+ (tw)
Therefore,
KBtw | - KBrw KB .
y(t)=| y,+ ~le " - - coswit + --sin t
1+ (tw) 1+ (tw) 1+ (tw)




In many engineering fields the study of system
dynamics is of prime importance, and the above
equation is often used. Commonly, this equation is also
expressed as

KBt | -- KB
1 (t):( + ]e * + sin (wt + 6)
’ /e 1+ (tw)* \/1+(w))2
where 8 = — tan™! (tw). The above equation develops

using the following trigonometric identity,

E cos wt + F sin wt = D sin (wt + 6)

where D=+E2+F? and 6 = tan"(E/F)



Second-Order Systems

Models composed of second-order differential equations
are also quite common. For example,

d*x dx
mﬁ+ PE-}-kx:fA(t)
Here we present the response of second-order systems
to the same two inputs, a step function, and a sine
wave. Our objective is to learn how the parameters of
second-order systems affect their response.




Consider the linear second-order differential equation:

d*y(t dy(t L dy(t

a, dyt§)+al §§)+a0y(t):bx(t) with —Z(t) =0 y(0)=1y,

The equation has four coefficients, a,, a,, a,;, and b, but,

without loss of generality, we can divide the equation by
ne of the three (commonly by a,) to characterize the

equation by just three parameters as given in

t=0

2 d;‘;(t) + 2t d/(t) +y(f) = Kx(t)




(assuming a, and a, have the same sign) is
often called a characteristic time; time units.
Is often called the damping ratio;
dimensionless

b :is often called the system gain; with units of
K= ., the dependent variable over units of the
’ forcing function.
: d*x dx
We now write  m— 5+ P k= falh)

using this form,




adx
dt*

with ¢ =m/k s §=(P/2M) and K=% m/N.

—+ 2§z'—+ x = Kf,(t)

The complete solution is  Y(f) = yu + Yp

he corresponding homogeneous equation is

dyu(t) , . dyu(t)
7’ Z; + 2t y;t +yy(t)=0

?r2+20tr+1=0




the roots are

—2§ri\/4§212 — 477 _ —Ci\/éjz -1

2
27T T

7’1, 1’2 —

The equation shows the roots of the equation so the
esponse of the system depends on the numerical value
of (.

We can now see that the term “damping ratio” refers to
the damping of oscillations; the behavior of the response
IS summarized as follows:



The roots are negative real, thus a monotonic
and stable response

The roots are complex with negative real part,
thus an oscillatory and stable response

The roots are complex with zero real part,
thus a sustained oscillations response

The roots are real and repeated, thus a
monotonic and stable response

The roots are complex with positive real part,
thus a growing oscillations response

The roots are positive real, thus a monotonic
unstable response



Step Function Input

Suppose that the forcing function x(t) changes from its
initial value of x(0) to its final value of x = x(0) + D at
time = 0, that is, x(t) = x(0) + Du(t), a step change of D
units of magnitude. In this case,

dyp(t) _ oy dyalt) _

| tzA/ - Y7 -
yp(t) =20, = it

So 72(0) +202(0) + Ay=Kx, or Yp(t) =Ag=Kx;




Finally y(t) = yu+ yp=yu + Kx;

To show the step responses graphically consider the
following second order system:

2d2

d
T3 +2§t y-l—y f(t)

and assume t = 1. The initial conditions are y(0) = 0
and y'(0) = 0. The figure below, shows the system'’s
response when f(t) changes from O to 1.




1.4

1.2 |
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0.6
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0.2
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Response of second-order system to a change in forcing function 25.12.2017




Systems that oscillate before reaching their final values
are called underdamped systems; systems that do not
oscillate before reaching their final values are called
overdamped systems. There is another type of system
called critically damped, which is the one with the fastest
roach to its final value without oscillations.

We can summarize this as

Underdamped Systems: (<1.0o0r by —4ayay <0
Overdamped Systems: {>1.00r bf—4a,a,>0
Critically Damped Systems: {=1.00r p?—44,a,=0



Sinusoidal Function Input

Suppose x(t) = B sinwt , in this case,

yp(t) = Ay cos wt + Ay sin wt

dyp(t) _
dt

—A,w sin ot + Ayw cos wt

dzyp(t)
dt?

2 2 .
=—A,0" coswt — Ayw” sin wt




Substituting yp(t), [dye(t)/dt], and [d?yp(t)/dt?] into

d’y(t) , ., dy(t)
2 —
T P + 20t g7 +y(t) = Kx(t)
we get

%(-A,w? cos wt — Ayw? sin wt) + 2{7(-A,w sin ot + Ay cos wt) + A, cos wt
+ Ay sin ot = Kx(f)

(<A 7?w? + 2{tA @ + A )cos ot + (A, — Agt’w? — 2{tA w)sin wt = KB sin wt
from matching terms
A, - Agr20? - 2tA 0 = KB

—Al‘[za)z + Zé’TAOw + Al — 0




KB(1-7%w?)

—2KBt{w
= A=
(t*0* —1)* + 41°C*0” :

A —
’ (r*w* —1)* + 47°C *0*

KB

(T*0* —1)* + 47% % 0?

(—21{(0 cos ot +(1—7°w*)sin a)t)

y(t)=yg+yp=yy+

/ KB

y(t)zyH+yp:yH+\/ sin (wt +6)

(t*0”* —1)* + 41°C 0’

1| 2t¢w

6=tan™
( 1-w’t? J




