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Analogy between thermal
and electrical resistance concepts.
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plane wall subjected to
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EXAMPLE 3-1 Heat Loss through a Wall

Consider a 17-m-high, 5-m-wide, and 0.17-m-thick wall whose thermal con-
ductivity is Kk = 0.9 W/m - °C (Fig. 17-11). On a certain day, the temperatures
of the inner and the outer surfaces of the wall are measured to be 16°C and
2°C, respectively. Determine the rate of heat loss through the wall on that day.

tures. The rate of heat loss through the wall is to be determined.

Assumptions 1 Heat transfer through the wall is steady since the surface
temperatures remain constant at the specified values. 2 Heat transfer is one-
dimensional since any significant temperature gradients will exist in the direc-
tion from the indoors to the outdoors. 3 Thermal conductivity is constant.

|
||
SOLUTION The two surfaces of a wall are maintained at specified tempera-
| Properties The thermal conductivity is given to be kK = 0.9 W/m - °C.

16°C 1\
29¢

L=03m
FIGURE 3-11
Schematic for Example 3—1.




Analysis Noting that the heat transfer through the wall is by conduction and
the area of the wall is A = 3 m X 5m = 15 m?, the steady rate of heat transfer
through the wall can be determined from Eq. 17-3 to be

T, —T (16 — 2)°C

0= kA z 2 — (0.9 W/m - °C)(15 m2) o = 630W

We could also determine the steady rate of heat transfer through the wall by

making use of the thermal resistance concept from

Q _ ARTwall
wall

where

L 0.3 m B .
kA~ (0.9 W/m - °C)(15 m?) HmEEERC

Rwall =

Substituting, we get

. @6-2°C
Q= g.0mmrcw - POW

Discussion This is the same result obtained earlier. Note that heat conduction
through a plane wall with specified surface temperatures can be determined
directly and easily without utilizing the thermal resistance concept. However,
the thermal resistance concept serves as a valuable tool in more complex heat
transfer problems, as you will see in the following examples.

A
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Q
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—
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FIGURE 3-11

Schematic for Example 3—1.



EXAMPLE 3-2  Heat Loss through a Single-Pane Window

Consider a 0.8-m-high and 1.5-m-wide glass window with a thickness of 8 mm
and a thermal conductivity of k = 0.78 W/m - °C. Determine the steady rate of
heat transfer through this glass window and the temperature of its inner surface
for a day during which the room is maintained at 20°C while the temperature of
the outdoors is —10°C. Take the heat transfer coefficients on the inner and
outer surfaces of the window to be h; = 10 W/m? - °C and h, = 40 W/m? - °C,
™ which includes the effects of radiation.

FENRERRENNDN

SOLUTION Heat loss through a window glass is considered. The rate of
heat transfer through the window and the inner surface temperature are to be
determined.

Assumptions 1 Heat transfer through the window is steady since the surface
temperatures remain constant at the specified values. 2 Heat transfer through
the wall is one-dimensional since any significant temperature gradients will ex-
ist in the direction from the indoors to the outdoors. 3 Thermal conductivity is
constant.

Properties The thermal conductivity is given to be k = 0.78 W/m - °C.

<« Glass

20°C

\T}
\ )
L -10°C

hl =10 W/m2-°C /12 =40 W/m2-°C
L =8 mm
Ri Rglass Ro
T, Q—W—W'W\MM—. T,
Tl TZ
FIGURE 3-12

Schematic for Example 3-2.



Analysis This problem involves conduction through the glass window and con-
vection at its surfaces, and can best be handled by making use of the thermal
resistance concept and drawing the thermal resistance network, as shown in
Fig. 17-12. Noting that the area of the window is A = 0.8 m X 1.5 m
= 1.2 m?3, the individual resistances are evaluated from their definitions to be

1 1

R. =R - - = 0.08333°C/ W
: ol " h A (10 W/m2 - °C)(1.2 m2)
L 0.008 m
R, . =-—= = 0.00855°C/ W
glass = kA T (0.78 W/m - °C)(1.2 m?)
R,=R . ! — 0.02083°C/ W

Noting that all three resistances are in series, the total resistance is

R = Reon 1 + Rygaes + Reony 2 = 0.08333 + 0.00855 + 0.02083
= 0.1127°C/W

Then the steady rate of heat transfer through the window becomes

_ T~ Ty _[20 = (~10)I°C

= = =2 N
= " Rem 012w 200w

Knowing the rate of heat transfer, the inner surface temperature of the window
glass can be determined from

. To —T, )
Q= Rt = T = Ta1 — ORcony, 1
' = 20°C — (266 W)(0.08333°C/W)
= =2.2°C

Discussion Note that the inner surface temperature of the window glass will be
—2.2°C even though the temperature of the air in the room is maintained at
20°C. Such low surface temperatures are highly undesirable since they cause
the formation of fog or even frost on the inner surfaces of the glass when the
humidity in the room is high.
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FIGURE 3-12
Schematic for Example 3-2.
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EXAMPLE 3-3 Heat Loss through Double-Pane Windows

Consider a 0.8-m-high and 1.5-m-wide double-pane window consisting of two
4-mm-thick layers of glass (k = 0.78 W/m - °C) separated by a 10-mm-wide
stagnant air space (k = 0.026 W/m - °C). Determine the steady rate of heat

transfer through this double-pane window and the temperature of its inner sur-

face for a day during which the room is maintained at 20°C while the tempera-

ture of the outdoors is —10°C. Take the convection heat transfer coefficients on
m the inner and outer surfaces of the window to be h; = 10 W/m? - °C and h, =
= 40 W/mZ2 - °C, which includes the effects of radiation.

SOLUTION A double-pane window is considered. The rate of heat transfer
through the window and the inner surface temperature are to be determined.

FIGURE 3-13
Schematic for Example 3-3.



Analysis This example problem is identical to the previous one except that
the single 8-mm-thick window glass is replaced by two 4-mm-thick glasses that
enclose a 10-mm-wide stagnant air space. Therefore, the thermal resistance
network of this problem will involve two additional conduction resistances cor-
responding to the two additional layers, as shown in Fig. 17-13. Noting that the
area of the window is again A = 0.8 m X 1.5 m = 1.2 m2, the individual re-
sistances are evaluated from their definitions to be

1 1

Ri=Reons1 = 32 = (oW - Oyl2mm) _ DO8BFCW

Ry = Ry = Ryy = k]:la = W?{f("‘f,g)'(l' 5 = 0:00427°C/W
Ro = R = kl:A ~ (0.026 W/on.lm’ ‘?(1:)(1.2 m2) - 03205°C/W

Ro = Reomy2 = hglA ~ (40 W/m? ~1°C)(l.2 T bR

Noting that all three resistances are in series, the total resistance is

Rtotal = Rcon\'.l + Rglass. 1 + Rair + Rglass.Z + Roonv.Z
= 0.08333 + 0.00427 + 0.3205 + 0.00427 + 0.02083
= 0.4332°C/W

Then the steady rate of heat transfer through the window becomes

. Tm] - Tmz [20 — (_ ]0)]°C ‘
- = = W
= Rioal 0a33°c/w -~ 092 W

which is about one-fourth of the result obtained in the previous example. This
explains the popularity of the double- and even triple-pane windows in cold
climates. The drastic reduction in the heat transfer rate in this case is due to
the large thermal resistance of the air layer between the glasses.

The inner surface temperature of the window in this case will be

Ty = Toy — OR oy 1 = 20°C — (69.2 W)(0.08333°C/W) = 14.2°C

which is considerably higher than the —2.2°C obtained in the previous example.
Therefore, a double-pane window will rarely get fogged. A double-pane window
will also reduce the heat gain in summer, and thus reduce the air-conditioning
costs.
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R, R, R, Ry R, T,

O

FIGURE 3-13
Schematic for Example 3-3.
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Effect of metallic coatings on
thermal contact conductance
(from Peterson).

TABLE 3-1

Thermal contact conductance

for aluminum plates with different
fluids at the interface for a surface
roughness of 10 um and interface
pressure of 1 atm (from Fried).

Contact

Fluid at the conductance, h,,
interface W/m?2 - K

Air 3640
Helium 9520
Hydrogen 13,900
Silicone oll 19,000
Glycerin 37,700




TABLE 3-2

Thermal contact conductance of some metal surfaces in air (from various sources)

Surface Pressure, he, ™
Material condition Roughness, pm Temperature, °C MPa W/m2 . °C
Identical Metal Pairs
416 Stainless steel Ground 2.54 90-200 0.17-2.5 3800
304 Stainless steel Ground 1.14 20 4-7 1900
Aluminum Ground 2.54 150 1.2-2.5 11,400
Copper Ground 1.27 20 1.2-20 143,000
Copper Milled 3.81 20 1-5 55,500
Copper (vacuum) Milled 0.25 30 0.17-7 11,400
Dissimilar Metal Pairs
Stainless steel- 10 2900
Aluminum 20-30 20 20 3600
Stainless steel— 10 16,400
Aluminum 1.0-2.0 20 20 20,800
Steel Ct-30- 10 50,000
Aluminum Ground 1.4-2.0 20 15-35 59,000
Steel Ct-30- 10 4800
Aluminum Milled 4.5-7.2 20 30 8300
5 42,000
Aluminum-Copper Ground 1.17-1.4 20 15 56,000
10 12,000
Aluminum-Copper Milled 4.4-4.5 20 20-35 22,000

*Divide the given values by 5.678 to convert to Btu/h - ft2 . °F.

g




E EXAMPLE 3-4 Equivalent Thickness for Contact Resistance
The thermal contact conductance at the interface of two 1-cm-thick aluminum Plate { Plate
@ Plates is measured to be 11,000 W/m2 - °C. Determine the thickness of the alu- 1 1: 2
minum plate whose thermal resistance is equal to the thermal resistance of the }i — Interface
interface between the plates (Fig. 17-17). <'f/
lem) 1em
SOLUTION The thickness of the aluminum plate whose thermal resistance }t
Is equal to the thermal contact resistance is to be determined. :
Properties The thermal conductivity of aluminum at room temperature is / \
k = 237 W/m - °C (Table A-25). , x ,
Analysis Noting that thermal contact resistance is the inverse of thermal con- Plate | Equivalent | Plate
tact conductance, the thermal contact resistance is = al"l‘;‘y‘;‘;‘m -2
| |
R . l =0.909 X 10~* m? - °C/W | |
© " h. 11,000 W/m?-°C S Zbom ) 1lcm
| |
| |
For a unit surface area, the thermal resistance of a flat plate is defined as FIGURE 3-17
L Schematic for Example 3—4.
R=7
k
where L is the thickness of the plate and k is the thermal conductivity. Setting
R = R., the equivalent thickness is determined from the relation above to be
L=kR.= (237 W/m - °C)(0.909 X 10~*m? - °C/W) = 0.0215 m = 2.15 ¢cm

)l



t EXAMPLE 3-5 Contact Resistance of Transistors

: Four identical power transistors with aluminum casing are attached on one side
of a 1-cm-thick 20-cm X 20-cm square copper plate (k = 386 W/m - °C) by
screws that exert an average pressure of 6 MPa (Fig. 17-18). The base area of
each transistor is 8 cm?2, and each transistor is placed at the center of a 10-cm
X 10-cm quarter section of the plate. The interface roughness is estimated to be

™ about 1.5 um. All transistors are covered by a thick Plexiglas layer, which is a
poor conductor of heat, and thus all the heat generated at the junction of the
transistor must be dissipated to the ambient at 20°C through the back surface of
the copper plate. The combined convection/radiation heat transfer coefficient at
the back surface can be taken to be 25 W/m? - °C. If the case temperature of the

: transistor is not to exceed 70°C, determine the maximum power each transistor
m can dissipate safely, and the temperature jump at the case-plate interface.

opper
plate

FIGURE 3-18
Schematic for Example 3-5.

Plexiglas cover
70°C



— SOLUTION Four identical power transistors are attached on a copper plate. For
a maximum case temperature of 70°C, the maximum power dissipation and the
temperature jump at the interface are to be determined.

Assumptions 1 Steady operating conditions exist. 2 Heat transfer can be ap-
proximated as being one-dimensional, although it is recognized that heat con-
duction in some parts of the plate will be two-dimensional since the plate area
Is much larger than the base area of the transistor. But the large thermal con-
ductivity of copper will minimize this effect. 3 All the heat generated at the
junction is dissipated through the back surface of the plate since the transistors
are covered by a thick Plexiglas layer. 4 Thermal conductivities are constant.

Properties The thermal conductivity of copper is given to be kK = 386 W/m - °C.
The contact conductance is obtained from Table 17-2 to be h, = 42,000
W/m?2 - °C, which corresponds to copper-aluminum interface for the case of
1.17-1.4 um roughness and 5 MPa pressure, which is sufficiently close to
what we have.

Analysis The contact area between the case and the plate is given to be 8 cm?,
and the plate area for each transistor is 100 cm2. The thermal resistance net-
work of this problem consists of three resistances in series (interface, plate, and
convection), which are determined to be

1 1

R —_1 _ = 0.030°C/W
interface =y A " (42,000 W/m? - °C)(8 X 10—* m2)
L 0.01 m
= — = - ~ = - " W
Ryt = 74 (386 W/m -« °C)(0.01 m?) Done
Rconv ] 1 N 4O°C/W

~ h,A (25 W/m? - °C)(0.01 m?)




The total thermal resistance is then

Rtotal = Rinterface 7 Rplate 3= Rambiem = (0.030 + 0.0026 + 4.0 = 40326°C/W

Note that the thermal resistance of a copper plate is very small and can be
ignored altogether. Then the rate of heat transfer is determined to be

AT (70 -20)°C
Q= R.u 4.0326°C/W

= 124 W

Therefore, the power transistor should not be operated at power levels greater
than 12.4 W if the case temperature is not to exceed 70°C.
The temperature jump at the interface is determined from

AT, eriace = ORinince = (12.4 W)(0.030°C/ W) = (0.37°C
which is not very large. Therefore, even if we eliminate the thermal contact re-

sistance at the interface completely, we will lower the operating temperature of
the transistor in this case by less than 0.4°C.

) ol
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Heat is lost from a hot-water pipe to
. . . the air outside in the radial direction
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A long cylindrical pipe (or spherical
shell) with specified inner and outer
surface temperatures 7 and 7.
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The thermal resistance network
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The thermal resistance network for heat transfer through a three-layered composite cylinder
subjected to convection on both sides.
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We can also calculate 7, from FIGURE 3-27
T,—T., T, —T., The ratio AT/R across any layer is
Q=R TR TRu, Inrlry) In(ryiry) 1 equal to Q, which remains constant in

2Lk, M 2alky, | h(2wr,L) one-dimensional steady conduction.



m o EXAMPLE 3—-7  Heat Transfer to a Spherical Container

A 17-m internal diameter spherical tank made of 2-cm-thick stainless steel
(k = 15 W/m - °C) is used to store iced water at 7., = 0°C. The tank is located
m In a room whose temperature is 7., = 22°C. The walls of the room are also at
m 22°C. The outer surface of the tank is black and heat transfer between the outer
®m surface of the tank and the surroundings is by natural convection and radiation.
®™ The convection heat transfer coefficients at the inner and the outer surfaces of
the tank are h; = 80 W/m? - °C and h, = 10 W/m? - °C, respectively. Determine
(a) the rate of heat transfer to the iced water in the tank and (b) the amount of
m ice at 0°C that melts during a 24-h period.

Iced
water

Nl

FIGURE 3-28
Schematic for Example 3-7.



SOLUTION A spherical container filled with iced water is subjected to convec-
tion and radiation heat transfer at its outer surface. The rate of heat transfer
and the amount of ice that melts per day are to be determined.

Assumptions 1 Heat transfer is steady since the specified thermal conditions at
the boundaries do not change with time. 2 Heat transfer is one-dimensional
since there is thermal symmetry about the midpoint. 3 Thermal conductivity is
constant.

Properties The thermal conductivity of steel is given to be k= 15 W/m - °C.
The heat of fusion of water at atmospheric pressure is h;; = 333.7 kJ/kg. The
outer surface of the tank is black and thus its emissivity ise = 1.

Analysis (a) The thermal resistance network for this problem is given in
Fig. 17-28. Noting that the inner diameter of the tank is D, = 3 m and the outer
diameter is D, = 3.04 m, the inner and the outer surface areas of the tank are

Al = 77'021 = 77(3 In)2 = 28.3 In2
A, = 7D% = (3.04 m)? = 29.0 m?

Also, the radiation heat transfer coefficient is given by

heq = 8()‘(T22 Ir Tﬁz)(Tz + T.;)

But we do not know the outer surface temperature T, of the tank, and thus we
cannot calculate h,,4. Therefore, we need to assume a T, value now and check
the accuracy of this assumption later. We will repeat the calculations if neces-
sary using a revised value for T,.




We note that 7, must be between 0°C and 22°C, but it must be closer
to 0°C, since the heat transfer coefficient inside the tank is much larger. Taking
T, = 5°C = 278 K, the radiation heat transfer coefficient is determined to be

heg = (1)(5.67 X 1078 W/m?2 - K%)[(295 K)? + (278 K)?][(295 + 278) K]
= 5.34 W/m? - K = 5.34 W/m? - °C
Then the individual thermal resistances become

1 1

¢ el Tp AL (80 W/m? - °C)(28.3 m?)
o e (1.52 — 1.50) m
Lo Amkriry,  4ar (15 W/m - °C)(1.52 m)(1.50 m)
= (0.000047°C/W
1 1
S hh Ay (10 W/m? - °C)(29.0 m?)
R4 1 1 = 0.00646°C/W

" hegAy (534 W/m? - °C)(29.0 m?)

R)

FIGURE 3-28
Schematic for Example 3-7.




The two parallel resistances R, and R,.q can be replaced by an equivalent resis-
tance Requiy determined from

1

equiv

1 1 1

I
R, TR~ 000345 ' 0.00646

= 4447 W/°C

R

which gives

Requiy = 0.00225°C/ W

Now all the resistances are in series, and the total resistance is determined
to be R

R = R; + R; + Ry, = 0.000442 + 0.000047 + 0.00225 = 0.00274°C/W 1,

quiv

Then the steady rate of heat transfer to the iced water becomes

T.,— T, (22 — 0)°C ' R
= = ~ = 8029 W or Q = 8.027 kl/s FIGURE 3-28
¢ Rioa 0.00274°C/W (or @ ) Schematic for Example 3-7.

" P —

To check the validity of our original assumption, we now determine the outer
surface temperature from

. T T
Q= R

. > T2 = Too2 - QR equiv
equiv = 22°C — (8029 W)(0.00225°C/W) = 4°C

which is sufficiently close to the 5°C assumed in the determination of the radi-
ation heat transfer coefficient. Therefore, there is no need to repeat the calcu-
lations using 4°C for T,.




(b) The total amount of heat transfer during a 24-h period is

O = O At = (8.029 kJ/s)(24 X 3600 s) = 673,700 kJ

Noting that it takes 333.7 kJ of energy to melt 1 kg of ice at 0°C, the amount
of ice that will melt during a 24-h period is

0 673700k
" h, 333.7kl/kg

m = 2079 kg

Therefore, about 2 metric tons of ice will melt in the tank every day.

Discussion An easier way to deal with combined convection and radiation at a
surface when the surrounding medium and surfaces are at the same tempera-
ture is to add the radiation and convection heat transfer coefficients and to treat
the result as the convection heat transfer coefficient. That is, to take h = 10
+ 5.34 = 15.34 W/m? - °C in this case. This way, we can ignore radiation since
Its contribution is accounted for in the convection heat transfer coefficient. The
convection resistance of the outer surface in this case would be

1 1

ined = = _= 0. °C/W
Rcombmed hcombinedAQ (1534 W/In2 * OC)(290 m2) 0 Omzs C/

which is identical to the value obtained for the equivalent resistance for the par-
allel convection and the radiation resistances.
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An insulated cylindrical pipe
exposed to convection from the oute
surface and the thermal resistance
network associated with it.
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EEXAMPLE 3—-9 Heat Loss from an Insulated Electric Wire

: A 17-mm-diameter and 5-m-long electric wire is tightly wrapped with a 2-mm-
thick plastic cover whose thermal conductivity is k = 0.15 W/m - °C. Electrical
measurements indicate that a current of 10 A passes through the wire and there
IS a voltage drop of 8 V along the wire. If the insulated wire is exposed to a
medium at 7, = 30°C with a heat transfer coefficient of h = 12 W/m?2 - °C, de-

™ termine the temperature at the interface of the wire and the plastic cover in

E steady operation. Also determine whether doubling the thickness of the plastic

cover will increase or decrease this interface temperature.

FIGURE 3-32
Schematic for Example 3-9.



SOLUTION An electric wire is tightly wrapped with a plastic cover. The inter-
face temperature and the effect of doubling the thickness of the plastic cover
on the interface temperature are to be determined.

Assumptions 1 Heat transfer is steady since there is no indication of any
change with time. 2 Heat transfer is one-dimensional since there is thermal
symmetry about the centerline and no variation in the axial direction. 3 Thermal
conductivities are constant. 4 The thermal contact resistance at the interface is
negligible. 5 Heat transfer coefficient incorporates the radiation effects, if any.

Properties The thermal conductivity of plastic is given to be kK = 0.15
W/m - °C.

Analysis Heat is generated in the wire and its temperature rises as a result of
resistance heating. We assume heat is generated uniformly throughout the wire
and is transferred to the surrounding medium in the radial direction. In steady

operation, the rate of heat transfer becomes equal to the heat generated within
the wire, which is determined to be

O=W,=Vi=B8V)10A) =80 W

The thermal resistance network for this problem involves a conduction resis-
tance for the plastic cover and a convection resistance for the outer surface in
series, as shown in Fig. 17-32. The values of these two resistances are deter-
mined to be

A, = (27ry)L = 27(0.0035 m)(5 m) = 0.110 m?

_ 1 _ 1

~ hA, (12 W/m? - °C)(0.110 m?)

o In(ry/ry) In(3.5/1.5)
plastic = 2kl 27(0.15 W/m - °C)(5 m)

Rene = 0.76°C/W

= 0.18°C/W

L

: T T,
O mmp o—VWW—o—WWWW——o T,
Rplastic Rconv
FIGURE 3-32
Schematic for Example 3-9.



and therefore

Rtotal = Rplastic =F Rcom, = 076 ok O 18 = 094°C/W

Then the interface temperature can be determined from

Q° . Tl - 7‘c>°
Rtotal

N

T] = Toc- + QR total
= 30°C + (80 W)(0.94°C/W) = 105°C

Note that we did not involve the electrical wire directly in the thermal resistance
network, since the wire involves heat generation.

To answer the second part of the question, we need to know the critical radius
of insulation of the plastic cover. It is determined from Eq. 17-50 to be

o _k_015W/m-°C _ _
Fa = = 12 W/m? - °C 0.0125 m = 12.5 mm

which is larger than the radius of the plastic cover. Therefore, increasing the
thickness of the plastic cover will enhance heat transfer until the outer radius
of the cover reaches 12.5 mm. As a result, the rate of heat transfer Q will /in-
crease when the interface temperature T, is held constant, or T, will decrease
when Q is held constant, which is the case here.

Discussion It can be shown by repeating the calculations above for a 4-mm-
thick plastic cover that the interface temperature drops to 90.6°C when the
thickness of the plastic cover is doubled. It can also be shown in a similar man-
ner that the interface reaches a minimum temperature of 83°C when the outer
radius of the plastic cover equals the critical radius.
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dFIGURE 3-33

The thin plate fins of a car radiator
greatly increase the rate of heat transfer
to the air. (© Yunus Cengel, photo by
James Kleiser.)

FIGURE 3-34

Some innovative fin designs.




Rate of heat Rate of heat Rate of heat
conduction into | = | conduction from the | + | convection from
the element at x element at x + Ax the element

Qcond..l' = Qcond. X+ Ax + Qconv

Qcond, X+ Ax

Ocony = h(p Ax)(T — T..)

Q cond, x + Av Q cond, x
Ax

+hp(T—T..) =0 FIGURE 3-35

Volume element of a fin at location x
. having a length of Ax, cross-sectional
dQ .ond area of A,, and perimeter of p.

dx

+hp(T—T.)=0
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Qcond - I"AC dx

d(,, dl'y B _
Tx (AAC ( 1')() hp(T—T.)=0

; /4
L hp T *
(? . (4"” — () ('l: — -/%- \i L
dx~ A, +_.
| 0° X
0=T-1T. » \Spcciﬂcd
t, =T, — T.. temperature

(a) Specified temperature
(b) Negligible heat loss

(¢) Convection

(d) Convection and radiation

FIGURE 3-36

Boundary conditions at the
e ¢ and & are arbitrary consig fin base and the fin tip.

H(X) — Cl e + Cge—a.\'

Boundary condition at fin base: 00)=6,=T,— T,



Boundary condition at fin tip:  6(L)=T(L)—T,=0 as L —»

T A
Very long fi T~ 1o _ oo = pvVipiia
‘ery long fin: = @~ W = e~ YV ApIKA, T, [
' I,—T. T() = T, + (T, - T)e \/’;
. : . dT | . .
Very long fin: Qlone fin = — KA, T = VhpkA (T, — T..)
= v x=0
: y (| R A ., : s
. |
Qﬁn :
|
|
++4¢ m
. 5 L,
Qbase - : : X
AR : :
% z | |
Qbase = Qﬁn : :
| |
FIGURE 3-38 ™ |_ I !
Under steady conditions, heat transfer G\,‘ k D D
from the exposed surfaces of the i \ |
i A | |
fin is equal to heat conduction ! Ap=A4, |

to the fin at the base. (p=rD,A.= nD%/4 for a cylindrical fin)

FIGURE 3-37

Ofin = h[T(x) — T.] dAg, = h6(x) dAg, A lqng circular fin _of_unifo‘rm Cross
_ section and the variation of

temperature along it.

v Ahn . Aﬁn



do

dxlo=r =0

Boundary condition at fin tip:

T(x)—T. cosha(L—x)

Adiabatic fin tip: T. — 7. ysh al
 — T cosh ¢
determined again from
Adl.(i/)(lfl.("ﬁi! Ti[).' Qin\'uluted tip - _'I\AL%
v x=10

= VhpkA (T, — T.,) tanh aL




Convection
o
[
i _‘ A, L i
) O ) ? y .' . — ~ .
Corrected fin length L.=L+ p (@ Kt AR |
convection at the tip I
LA
. | 2ic.
I p
Qﬁn II / i
‘ I
' | Insulated
N
|
L,

(b) Equivalent fin with insulated tip

FIGURE 3-39

Corrected fin length L. is defined such
that heat transfer from a fin of length
L. with insulated tip is equal to heat
transfer from the actual fin of length L
with convection at the fin tip.
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(a) Surface without fins

w ‘
. f
Ab - - _,gé T

A

- fin

h

Qt’in. max / IAI' ( T."» o T,:,_, )

in

(b) Surface with a fin

A, =2XwXL+wXt
=2XwXL
FIGURE 340

Fins enhance heat transfer from
a surface by enhancing surface area.



Cfin  Actual heat transfer rate from the fin
[deal heat transfer rate from the fin
if the entire fin were at base temperature

Tfin — 9]

< fin, max

80°C
80

80 ;
80
80

inn = Tfin inn. max  'Mfin hAfin ( Tf’ — 1) (a) Ideal i

B (;’)ﬁn VhpkA (T, —T.) |
Thong fin = Qﬁn.nm WA (T,—T. L \ hp

56°C

(b) Actual
. FIGURE 341
 Qqn VhpkA (T, — T.) tanhaL  tanh ¢L 'Ideal and actual
Minsulated tip — O o - hAg (T, — T..) ~ al  temperature distribution along a fin.
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TABLE 3-3

Efficiency and surface areas of common fin configurations

Straight rectangular fins

_ tanhmi,
m =/ 2hikt Tin ="l
L.=L+1t/2
A = 2wl
Straight triangular fins
/ 1 i(2mdL)
m =\ 2hikt T = oL 2L
Ain = 2wV L2 + (12)2
Straight parabolic fins
m =/ 2hikt e = 2
A = wL[Cy + (LIDIn(t/L + C))] o e VieEmlE+ 1
€= V1 + (t/L)?
Circular fins of rectangular profile Kyl (mrs) — 1mr)Ky(mra)
m =\ 2hkt Tin = ) K, (M) + Kolmr) Iy (mr.)
Foo = fa + 12 or
A = 27(rk — 1) ==
ri.—rf
Pin fins of rectangular profile
m =\ 4h/kD
Lo=L+ D4 o = c2nn mk
Ain = DL, mi
Pin fins of triangular profile
2 ll2mlL)
m = 4h/kD Miin = Hﬁ@mt_]
Agin = %\-"L? + (D2
Pin fins of parabolic profile
m =\ 4h/kD 2
L3 L Tin = —_———
Agin = ﬁ[ce_a, - EFH(QDCJL + Ca)] L+ VE2mii3@r+1

Ca =1+ 2(D1L)
Cs= V1 + (DL

Pin fins of parabolic profile
(blunt tip)

m = \VahikD
A = ﬁ{[lrs(umz + 12— 1}
fin 96L2

3 1,(4mL/3)
Tin = S mL Io(4mL/3)
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FIGURE 342

Efficiency of straight fins of rectangular, triangular, and parabolic profiles.
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FIGURE 343
Efficiency of annular fins of constant thickness .
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Fin lengths that cause the fin_g
percent usually cannot be |
avoided. The efficiency of rp




T,
. ) Heat transfer rate from
L Ofin  fin _ the fin of base area A,
o 0. - hA, (T, — T..)) Heat transfer rate from Ay
no fin ! ' . .
the surface of area A,
le
© y -
\
. l
Qno fin 2 \ \
Ay
Qﬁn

E s
fin
Qno fin

FIGURE 344
The effectiveness of a fin.
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Qtota]. fin — Qunfin + Qﬁn
= hAygin (Tp — T2) + ma hAgG, (T, — To.)
= h(Aunﬁn + 77finAfin)(Tb o Toc)

Ql@llll- fin h(Aunfin + Tfin Afin)(Tb —T..)
Qtul al. no fin hAﬂ'f' fin ( T'-’ o Tf )

A g —
“fin, overall

Ano £in + The area of the surface when
there are no fins

=wXH

Ano fin
A

unfin = W X H-3xX({tXw)
Aﬁn=2Xwa+txw
=2 X Lxw (one fin)

FIGURE 345

Various surface areas associated with a
rectangular surface with three fins.




Heat transfer

ratio:

Qﬁn

Q fin

- NV hpkA,. (T, — T..) tanh aL

(J long fin

N hpkA, (T, — T.,)

T, — T.
- 5 = hAfin Tfin (T.".’ o Tf'

= tanh alL

AT =0

e~

High Low No v
heat heat heat
transfer transfer | transfer

s i s ) e W s e
'

!

FIGURE 346

Because of the gradual temperature
drop along the fin, the region

near the fin tip makes little or

no contribution to heat transfer.
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EXAMPLE 3—-11 Selecting a Heat Sink for a Transistor

A 60-W power transistor is to be cooled by attaching it to one of the commer-
cially available heat sinks shown in Table 17-4. Select a heat sink that will al-
low the case temperature of the transistor not to exceed 90°C in the ambient air
at 30°C.

SOLUTION A commercially available heat sink from Table 17-4 is to be se-
lected to keep the case temperature of a transistor below 90°C.

Assumptions 1 Steady operating conditions exist. 2 The transistor case is iso-
thermal at 90°C. 3 The contact resistance between the transistor and the heat
sink is negligible.

Analysis The rate of heat transfer from a 60-W ftransistor at full power is
Q = 60 W. The thermal resistance between the transistor attached to the heat
sink and the ambient air for the specified temperature difference is determined
to be

AT (90— 30)°C
"0 60w

Q=A7T — S R = 1.0°C/W

Therefore, the thermal resistance of the heat sink should be below 1.0°C/W.
An examination of Table 17-4 reveals that the HS 5030, whose thermal resis-
tance is 0.9°C/W in the vertical position, is the only heat sink that will meet this
requirement.




TABLE 3-6

Combined natural convection and radiation thermal resistance of various

heat sinks used in the cooling of electronic devices between the heat sink and
the surroundings. All fins are made of aluminum 6063T-5, are black anodized,
and are 76 mm (3 in) long.

HS 5030

R = 0.9°C/W (vertical)
R = 1.2°C/W (horizontal)

Dimensions: 76 mm x 105 mm X 44 mm
Surface area: 677 cm?

R = 5°C/W

Dimensions: 76 mm X 38 mm X 24 mm
Surface area: 387 cm?

R
R

4°C/ W (vertical)
8°C/ W (horizontal)

HS 6071 1.
1.

Dimensions: 76 mm X 92 mm X 26 mm
Surface area: 968 cm?

R = 1.8°C/W (vertical)
R = 2.1°C/W (horizontal)

HS 6105

Dimensions: 76 mm x 127 mm x 91 mm
Surface area: 677 cm?

R
R

1°C/ W (vertical)

1.
1.3°C/W (horizontal)

Dimensions: 76 mm x 102 mm X 25 mm
Surface area: 929 cm?

R = 2.9°C/W (vertical)
R = 3.1°C/W (horizontal)

Dimensions: 76 mm > 97 mm > 19 mm
Surface area: 290 cm?




: EXAMPLE 3-12 Effect of Fins on Heat Transfer from Steam Pipes

:Steam in a heating system flows through tubes whose outer diameter is
= D1 = 3 cm and whose walls are maintained at a temperature of 120°C. Circular
m aluminum fins (k = 180 W/m - °C) of outer diameter D, = 6 cm and constant
m thickness t = 2 mm are attached to the tube, as shown in Fig. 17-48. The
®m space between the fins is 3 mm, and thus there are 200 fins per meter length
® of the tube. Heat is transferred to the surrounding air at 7. = 25°C, with a com-
: bined heat transfer coefficient of h = 60 W/m? - °C. Determine the increase in
o heat transfer from the tube per meter of its length as a result of adding fins.

||
SOLUTION Circular aluminum fins are to be attached to the tubes of a heating
system. The increase in heat transfer from the tubes per unit length as a result
of adding fins is to be determined.
Assumptions 1 Steady operating conditions exist. 2 The heat transfer coeffi-
cient is uniform over the entire fin surfaces. 3 Thermal conductivity is constant.
4 Heat transfer by radiation is negligible.
Properties The thermal conductivity of the fins is given to be
k= 180 W/m - °C.

t=2mm

S=3mm

M
el

FIGURE 3-48
Schematic for Example 3—12.



Analysis In the case of no fins, heat transfer from the tube per meter of its
length is determined from Newton's law of cooling to be
Ao fn = mD\L = 7(0.03 m)(1 m) = 0.0942 m?
Qno fin — hAno fin(Tb — Toc)
= (60 W/m? - °C)(0.0942 m?)(120 — 25)°C
=537TW

The efficiency of the circular fins attached to a circular tube is plotted in Fig.
17-43. Noting that L = {;(D2 — D) = %(0.06 — 0.03) = 0.015 m in this case,

we have
rp+3t  (003+3X0002)m 507
. 0.015m - ——]
-' 60 W/m? - °C
+ 5 + X X = (.
& ’)\k (0015 +3 X 0.002) m X \ | 7ensm ~ocy0.002m) ~ 207

Afin — 2’:7(]’22 - er) = 271'"’)1‘

= 277[(0.03 m)?> — (0.015 m)*] + 27(0.03 m)(0.002 m)
= 0.00462 m?
Ofin = M509fin, max = MinAsin (Tp — 1) )C t-— 2 mm
= (0.95(60 W/m? - °C)(0.00462 m?)(120 — 25)°C 5 3 mm
—250W (

FIGURE 3-48
Schematic for Example 3—12.




Heat transfer from the unfinned portion of the tube is

Ayin = ™D,S = 7(0.03 m)(0.003 m) = 0.000283 m>

Qunfin =/ lAunfin(Tb —T.)
= (60 W/m? - °C)(0.000283 m?)(120 — 25)°C

= 1.60 W

Noting that there are 200 fins and thus 200 interfin spacings per meter length
of the tube, the total heat transfer from the finned tube becomes

Ot in = M(Ops + Ouusin) = 200(25.0 + 1.6) W = 5320 W

Therefore, the increase in heat transfer from the tube per meter of its length as
a result of the addition of fins is

Qimm = Q.total. fin — Qno fin = 9320 — 537 = 4783 W (per m tube length)

Discussion The overall effectiveness of the finned tube is

Qtota]. fin 5320 W _

Efin.overall — = _ _
Qtotal. no fin S3TW

9.9

That is, the rate of heat transfer from the steam tube increases by a factor of
almost 10 as a result of adding fins. This explains the widespread use of finned
surfaces.
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TABLE 3-7

Conduction shape factors S for several configurations for use in Q = kS(T, — T.) to determine the steady rate of heat
transfer through a medium of thermal conductivity k between the surfaces at temperatures T, and T;

(1) Isothermal cylinder of length L
buried in a semi-infinite medinm
(L>>D and 7 >1.5D)

go 27l
In (4z/D)

(2) Vertical isothermal cylinder of length L
buried in a semi-infinite medium
(L>>D)

go 2mL
In(4LiD)

{3) Two parallel isothermal cylinders
placed in an infinite medium
(L>>Dy, D,, 7)

(4) A row of equally spaced parallel isothermal
cylinders buried in a semi-infinite medium
(L>>D, z, and w >1.5D)

2nL

ln(ﬂ sinh &)
T W

(per cylinder)

§=

(5) Circular isothermal cylinder of length L
in the midplane of an infinite wall
(z>0.5D)

_ omL
“In(8z/mD)

(6) Circular isothermal cylinder of length L
at the center of a square solid bar of the
same length

§o__ 2mL
In (1.08w/D)

(7) Eccentric circular isothermal cylinder
of length L in a cylinder of the same
length (L > D)

S= 2L
. (DI+D}- 4%

cosh~
20D, |

(8) Large plane wall

(continued)




TABLE 3-7 (Continued)

(9 A long cylindrical layer

_ 2l
In (D,/D)

(10} A square flow passage
(a)Fora/b= 1.4,

5= 2rL _
0.93 In (0.948a/b)

(b)Fora/b< 1.41,

2rL

0785 In (afb)

(11} A spherical layer

S eD\D,

DD,

(12) Disk buried parallel to
the surface in a semi-infinite
medium (z == D)

S=4D

(S=20 when z=0)

(13) The edge of two adjoining
walls of equal thickness

S=054w

(14) Comer of three walls
of equal thickness

de) |

/

{outsi

{15) Isothermal sphere buried in a
semi-infinite medium

—_ 2nD
1 — 02500z

(16) Isothermal sphere buried
in a semi-infinite medium at T,
whose surface is insulated

Insulated

__ 2nD
1 +0.2500z

Tz. r\n'x-e.dj;.uﬁ}-

: .._‘]"'




:EXAMFLE 3-13 Heat Loss from Buried Steam Pipes

= A 30-m-long, 10-cm-diameter hot-water pipe of a district heating system is
m buried in the soil 50 cm below the ground surface, as shown in Fig. 17-49. The
m outer surface temperature of the pipe is 80°C. Taking the surface temperature
m of the earth to be 10°C and the thermal conductivity of the soil at that location

®m to be 0.9 W/m - °C, determine the rate of heat loss from the pipe.
(|

SOLUTION The hot-water pipe of a district heating system is buried in the soil.

The rate of heat loss from the pipe is to be determined.

Assumptions 1 Steady operating conditions exist. 2 Heat transfer is two-

dimensional (no change in the axial direction). 3 Thermal conductivity of the

soil is constant.

Properties The thermal conductivity of the soil is given to be k = 0.9 W/m - °C.
;=10°C

- o 5 m :;.. L :_.-.:..”_ : ::
2 .‘.(Tl 80c
D =10cm )

: I-————L 30m___.[

FIGURE 3-49

Schematic for Example 3—13.




Analysis The shape factor for this configuration is given in Table 17-5 to be

2wL

5= In(4z/D)

since Z > 1.5D, where z is the distance of the pipe from the ground surface,
and D is the diameter of the pipe. Substituting,

_ 27 X (30 m)
~ In(4 X 0.5/0.1)

=629 m

Then the steady rate of heat transfer from the pipe becomes
Q = SK(T, — T,) = (62.9 m)(0.9 W/m - °C)(80 — 10)°C = 3963 W
Discussion Note that this heat is conducted from the pipe surface to the sur-

face of the earth through the soil and then transferred to the atmosphere by
convection and radiation.

1, = 10°C

; T-8()C
(

.‘ le 10cm )

L= 30 m ———{

FIGURE 3-49

Schematic for Example 3-13.
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