The Laplace Transform

The Laplace transform technique is useful for solving both 0-D and 1-D
transient conduction problems

The technique is broadly useful across all engineering disciplines

The Laplace transform maps a problem from the time domain to the s
domain through a mathematical operation

Why do this? The Laplace transform removes time derivatives from the
problem.

The problem in the s domain is much simpler than it was in the t domain:

0-D problem: ODE for T’ (t) becomes an algebraic expression for T (S)

1-D problem: PDE for 7'(x,¢) becomes an ODE for 7'(x,s)




The Laplace Transform

7 (s)=(7 (1) Iexp(—st)T(t)dt

/ the Laplace traI;gform operation
the Laplace transform of T

take the Laplace transform of

For example, we can determine the Laplace transform of a constant, C:

o0

T(t)=C f(s)=<C>=jexp(—st)Ca’t
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T(s)= —%[exp(—st)]: = ——{exp(—s o) —exp(—s 0)}
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The Laplace transform of many functions are tabulated for you.




Laplace Transforms with Table 3-3
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Properties of the Laplace Transform

These properties are proved in Section 3.4.4 and are summarized in
Table 3-4
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Inverse Laplace Transform

Once you solve the problem in the s domain you have to transform it back
to the t domain using the inverse Laplace transform

« this is typically the hardest part of the problem
« practically, this is done by recognizing the Laplace transform in the table

The typical form of the solution in the s domain is a polynomial fraction

s?—3s5s+4

(S+1)(S—1)(S+2)

The Laplace transform of this function cannot be found in the table
« we need to review the method of partial fractions in order to break this large
fraction into its components
« the simpler components can be found in the table

For example: T(s)=




Method of Partial Fractions

The method of partial fractions proceeds based on the form of the

denominator

Distinct factors in the denominator

2
f(s) s*—3s+4

(S +1)(S—1)(S+2)

distinct factors

« Express the function as the sum of individual, lower order fractions

corresponding to the distinct factors

s’ =3s+4 |G N C, N C,

(S+1)(S—1)(S+2) (S-I—l) (S—l) (S+2)

e Clear the denominator

lower order fractions
with undetermined constants

These can be found in Table 3-3

multiply both sides by: (s+1)(s—1)(s+2)




Distinct Factors (continued)

s’ —3s+4 QG N C, C,

(s+)(s—1D)(s+2) (s+1) (s—1) (s+2) (s+D{s=1)(s+2)

S2—3S-|-4=CI(S—I)(S+2)+C2(S+1)(S+2)+C3(S+1)(S—1)
S2—3S+4=C1(S2+S—2)+C2(S2+3S+2)+C3(S2—1)

In order for this to be true for all values of s, the coefficient for each power
of s must be satisfied:

™~

s*:1=C, +C, +C,

s i-3= C, +3C, > 3 equations in 3 unknowns
s’ 4=-2C,+2C,-C,

g




Distinct Factors (continued)

A shortcut that works for this situation (but not others):
s°=3s+4=C,(s-1)(s+2)+C,(s+1)(s+2)+C,(s+1)(s—1)

Set S(_=1521:_3(_1)+4 = C,(~1-1)(=142)+ G, (~1+1)(~1+2) + G, (-1 +1)(~1-1)

8:C1(—2) C,=-4 RN IR
Sete= (1)2—3(1)+4=Cl(1—1)(1+2)+C2(1+1)(1+2)+C3(1+1)(1—1)
2:C26=0 C,=1/3 :
Set s =-2:
(—2)2—3(—2)+4:Cl(—2—1)(—2+2)+C2(—2+1)(—2+2)+C3(—2+1)(—2—1)

: 4 14
1) =50 " 3621 3G +2)




Repeated Factors

Repeated factors in the denominator

5
repeated factors — | (S T 1) (S - 1)

* include each power of the repeated term
- both powers of the repeated factor
s’ —3s+4 C C,

= + + =
(s+1)(s=1) |(s+1) (s+1)*] (s—1)
+ Clear the denominator ~ multiply both sides by: (s + 1)2 (s—1)
$* =3s+4=C, (s +1)(s—1)+C, (s =1)+C, (s +1)
$*=35+4=C (7 —1)+C,(s—1)+C, (s> +25+1)

2
f(s) s-—3s+4

™~

s2:1=C +C,
s i-3= C, +2C, > 3 equations in 3 unknowns
$"14=-C —C,+C,

_/




Polynomial Factors

Polynomial factors in the denominator
~ s’ —3s+4

T(s)=
polynomial factor l(sz + 2)(S — 1)

* include a lower order polynomial in the numerator
s’ —3s+4 C s+C, C,

lower order polynomial

+
(52 +2)(S—1) (52 +2) (S—l)
« Clear the denominator multiply both sides by: (s2 + 2)(s ~1)
s —3S+4=(C1S+C2)(S—1)+C3(S2 +2)
s?=35+4=Cs°-C,s+C,s—C,+C, s> +2C,

~~

1=C, +C,
-3=-C,+C, > 3equations in 3 unknowns
4=-C,+2C,

_/




0-D Transient Problem

s

A small particle is subjected to a volumetric generation that exponentially

decays with time:

]-;ni = Too
“m “m —
a
g’ =1x10" W/m’
a=2s

R

T. =25°C
i =1000 W/m”-K

=1 mm

0=9600 kg/m>
c =500 J/kg-K

$UnitSystem S| MASS RAD PA K J
$TABSTOPS 0.20.4060835in

“Inputs”

R=1 [mm]*convert(mm,m)
rho=9000 [kg/m~3]

¢=500 [Jikg-K]

k=25 [Wim-K]
T_infinity=converttemp(C,K,25[C])
h_bar=1000 [W/m~2K]
gv_max=1e9 [W/im"~3]

a=2[s]

“radius of sphere”

"density”

"specific heat capacity”

“thermal conductivity”

"ambient temperature”

"heat transfer coefficient”
“maximum volumetric generation”
"time constant of generation”

k=25 W/m-K




Biot Number

Is the lumped capacitance approximation appropriate for this problem:

L

cond

V 4

cond

R ., =— wherelL ,=—, V==—rR,andd =47R’
v kA A 3

N

N

R_cond_r=L_cond{(k*A_s)
R_conv=1}(A_s*h_bar)
Bi=R_cond_r/R_conv

1
Rconv — ]; AS
Bl . Rcond NG
RCOI’ZV
V=4*pi*R"3/{3 "volume”
A_s=4*pi*R"2 "surface area”
L_cond=V/A_s “conduction length”

“resistance to radial conduction, approximate”
“resistance to convection”
“Biot number”

Bi=0.013<<1




Time Constant

What is the time constant associated with the particle?
t=CR__ where C=V pc

cony

Cap=V*rho*c “total heat capacity”
tau=R_conv*Cap “time constant”
7=135s
. e

Based on the time constant, e ' ]

what is the anticipated form = __ ./

of the solution? s '
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Anticipated Solution

If << athen what happens?

 particle quickly comes to a quasi-steady state condition where generation
balances convection: ¢"V ~h A (T -T,)
« temperature ~ exponential decay following the generation

If t >> a then what happens?
 particle is slow to react to the generation
« temperature rises slightly and then cools off slowly

We are somewhere in the middle of these extremes since r~ a
T

T<<a




Derive Governing Differential Equation

Energy balance on entire particle:

< m 1 _ ﬂ
éz —LhAS(\Y: T°"2+Cdt
generation convection —

storage

7 1 exp|
AT A hA Sl P

dt C c - C
g-m exp(__tj
d_T+lT:lToo+ =2 with T, =T,
dt 7 T pPC




Laplace Transform Solution

Three step process for 0-D problem:

1. transform problem to s domain
2. solve algebraic equation in s domain
3. transform back to t domain

Transform problem to s domain

i —
S €XP (—

dT a
+

o0

1
—T=-T1_+
T T pc

dt

-

take Laplace
transform of
entire ODE

because the Laplace transform is linear, the transform can be accomplished

one term at a time (see Table 3-3)

Tabhle 3-4: Useful properties of the Laplace transforms
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Transform to the s Domain
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Table 3-4: Useful properties of the Laplace transforms
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Note that the initial condition is carried into the s domain with the derivative and

does not have to be transformed separately




Transform to the s Domain
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Problem in the s Domain
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The problem is an algebraic equation in the s domain




Solve in the s Domain

A | 1T > " 1
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Solution in the s domain is easy to get

Transformation back to the t domain is harder - we need to transform the
two, complex polynomials to their simpler components using the method
of partial fractions




Apply Method of Partial Fractions

clear the denominator

T C C
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Apply Method of Partial Fractions

g’_ 4 1 B C3 C4

max

e T B0

. . V
2 distinct factors

clear the denominator
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Inverse Transform
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Solution

time=0 [s]
gv=gv_max*exp(-time/a) “volumetric generation”
T=T_infinity+C_3*exp(-timefa)+C_4*exp(-timeftau)’solution for temperature”
600 — . . . . . . —10°
550 ~ o
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. 500 =
= . §
1) I = 1 5s 6X1 O )
S 450] L 5
® : 0
Q400 4410° oy
= i kS
() -
= 350 )
volumetric generation 2x10° E
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Note that the solution behaves as we initially anticipated




