The Laplace Transform

The <u>Laplace transform</u> technique is useful for solving both 0-D and 1-D transient conduction problems

The technique is broadly useful across all engineering disciplines

The Laplace transform maps a problem from the time domain to the s domain through a mathematical operation

Why do this? The Laplace transform removes time derivatives from the problem.

The problem in the *s* domain is much simpler than it was in the *t* domain:

0-D problem: ODE for T(t) becomes an algebraic expression for $\hat{T}(s)$

1-D problem: PDE for T(x,t) becomes an ODE for $\hat{T}(x,s)$

The Laplace Transform

$$\widehat{T}(s) = \langle T(t) \rangle = \int_{0}^{\infty} \exp(-st)T(t)dt$$
the Laplace transform operation

the Laplace transform of T

take the Laplace transform of

For example, we can determine the Laplace transform of a constant, C:

$$\widehat{T}(t) = C \qquad \widehat{T}(s) = \langle C \rangle = \int_{0}^{\infty} \exp(-st)C \, dt$$

$$\widehat{T}(s) = -\frac{C}{s} \Big[\exp(-st) \Big]_{0}^{\infty} = -\frac{C}{s} \Big[\exp(-s\infty) - \exp(-s0) \Big]$$

$$\widehat{T}(s) = \frac{C}{s}$$

The Laplace transform of many functions are tabulated for you.

Laplace Transforms with Table 3-3

Function in t	Function in s	Function in t	Function in s
C	ر ا ر _ا ه	$\operatorname{erfc}\left(\frac{C}{2\sqrt{t}}\right)$	$\frac{\exp\left(-C\sqrt{s}\right)}{s}$
Ct	$\frac{C}{s^2}$	$\frac{2\sqrt{t}}{\sqrt{\pi}} \exp\left(-\frac{C^2}{4t}\right) - C \operatorname{erfc}\left(\frac{C}{2\sqrt{t}}\right)$	$\frac{\exp\left(-C\sqrt{s}\right)}{s\sqrt{s}}$
$\exp(Ct)$	$\frac{1}{s-C}$	$\left(t + \frac{C^2}{2}\right) \operatorname{erfc}\left(\frac{C}{2\sqrt{t}}\right) -$	$\frac{\exp\left(-C\sqrt{s}\right)}{s^2}$
		$\frac{C\sqrt{t}}{\sqrt{\pi}}\exp\left(-\frac{C^2}{4t}\right)$	
$\sin(Ct)$	$\frac{C}{s^2 + C^2}$	$\frac{C_1}{2\sqrt{\pi t^3}} \exp\left(-\frac{C_1^2}{4t} - C_2 t\right)$	$\exp\left(-C_1\sqrt{s+C_2}\right)$
$\cos(Ct)$	$\frac{s}{s^2 + C^2}$	$\frac{\exp(-C_1 t) - \exp(-C_2 t)}{C_2 - C_1}$	$\frac{1}{(s+C_1)(s+C_2)}$
$\sinh(Ct)$	$\frac{C'}{s^2 - C^2}$	$t \exp(-C_1 t)$	$\frac{1}{\left(s+C_1\right)^2}$
$\cosh(Ct)$	$\frac{s}{s^2 - C^2}$	$\frac{\begin{bmatrix} (C_3 - C_2) \exp(-C_1 t) + \\ (C_1 - C_3) \exp(-C_2 t) + \\ (C_2 - C_1) \exp(-C_3 t) \end{bmatrix}}{(C_1 - C_2)(C_2 - C_3)(C_3 - C_1)}$	$\frac{1}{\left(s+C_{1}\right)\left(s+C_{2}\right)\left(s+C_{3}\right)}$
$\frac{C}{2\sqrt{\pi t^3}} \exp\left(-\frac{C^2}{4t}\right)$	$\exp\left(-C\sqrt{s}\right)$	$\frac{\exp(-C_1 t) - \exp(-C_1 t) \left[1 - \left(C_1 - C_1\right)t\right]}{\left(C_2 - C_1\right)^2}$	$\frac{1}{\left(s+C_1\right)^2\left(s+C_2\right)}$
$\frac{1}{\sqrt{\pi t^3}} \exp\left(-\frac{C^2}{4t}\right)$	$\frac{\exp\left(-C\sqrt{s}\right)}{\sqrt{s}}$	$\frac{t^2 \exp\left(-Ct\right)}{2}$	$\frac{1}{\left(s+C'\right)^3}$

Properties of the Laplace Transform

These properties are proved in Section 3.4.4 and are summarized in Table 3-4

The Laplace tranform is linear

The useful property of the Laplace transform

- makes ODE in t algebraic in s
- makes PDE in x & t an ODE in x and s

x-derivatives are unchanged

Inverse Laplace Transform

Once you solve the problem in the *s* domain you have to transform it back to the *t* domain using the *inverse Laplace transform*

- this is typically the hardest part of the problem
- practically, this is done by recognizing the Laplace transform in the table

The typical form of the solution in the s domain is a polynomial fraction

For example:
$$\widehat{T}(s) = \frac{s^2 - 3s + 4}{(s+1)(s-1)(s+2)}$$

The Laplace transform of this function cannot be found in the table

- we need to review the method of partial fractions in order to break this large fraction into its components
- the simpler components can be found in the table

Method of Partial Fractions

The method of partial fractions proceeds based on the form of the denominator

Distinct factors in the denominator

$$\widehat{T}(s) = \frac{s^2 - 3s + 4}{(s+1)(s-1)(s+2)}$$
 distinct factors

 Express the function as the sum of individual, lower order fractions corresponding to the distinct factors

$$\frac{s^2 - 3s + 4}{(s+1)(s-1)(s+2)} = \frac{C_1}{(s+1)} + \frac{C_2}{(s-1)} + \frac{C_3}{(s+2)}$$

lower order fractions with undetermined constants

These can be found in Table 3-3

Clear the denominator

multiply both sides by:
$$(s+1)(s-1)(s+2)$$

Distinct Factors (continued)

$$\left[\frac{s^2 - 3s + 4}{(s+1)(s-1)(s+2)} = \frac{C_1}{(s+1)} + \frac{C_2}{(s-1)} + \frac{C_3}{(s+2)}\right] (s+1)(s-1)(s+2)$$

$$s^2 - 3s + 4 = C_1(s-1)(s+2) + C_2(s+1)(s+2) + C_3(s+1)(s-1)$$

$$s^2 - 3s + 4 = C_1(s^2 + s - 2) + C_2(s^2 + 3s + 2) + C_3(s^2 - 1)$$

In order for this to be true for all values of s, the coefficient for each power of s must be satisfied:

$$s^{2}:1=C_{1}+C_{2}+C_{3}$$

$$s^{1}:-3=C_{1}+3C_{2}$$

$$s^{0}:4=-2C_{1}+2C_{2}-C_{3}$$
3 equations in 3 unknowns

Distinct Factors (continued)

A shortcut that works for this situation (but not others):

$$s^{2} - 3s + 4 = C_{1}(s-1)(s+2) + C_{2}(s+1)(s+2) + C_{3}(s+1)(s-1)$$

Set
$$s = -1$$
:

$$(-1)^{2} - 3(-1) + 4 = C_{1}(-1-1)(-1+2) + C_{2}(-1+1)(-1+2) + C_{3}(-1+1)(-1-1)$$

$$8 = C_{1}(-2) \quad \boxed{C_{1} = -4}$$

Set s = 1:

$$(1)^{2} - 3(1) + 4 = C_{1}(1-1)(1+2) + C_{2}(1+1)(1+2) + C_{3}(1+1)(1-1)$$

$$2 = C_{2}6$$

$$C_{2} = 1/3$$

Set s = -2:

$$(-2)^{2} - 3(-2) + 4 = C_{1}(-2-1)\underbrace{(-2+2)}_{=0} + C_{2}(-2+1)\underbrace{(-2+2)}_{=0} + C_{3}(-2+1)(-2-1)$$

$$14 = C_{3} 3 \quad \boxed{C_{3} = 14/3}$$

$$\hat{T}(s) = \frac{-4}{(s+1)} + \frac{1}{3(s-1)} + \frac{14}{3(s+2)}$$

Repeated Factors

Repeated factors in the denominator

repeated factors
$$\frac{\widehat{T}(s) = \frac{s^2 - 3s + 4}{(s+1)^2(s-1)}$$

include each power of the repeated term

both powers of the repeated factor $\frac{s^2 - 3s + 4}{(s+1)^2 (s-1)} = \frac{C_1}{(s+1)} + \frac{C_2}{(s+1)^2} + \frac{C_3}{(s-1)}$

multiply both sides by: $(s+1)^2(s-1)$ Clear the denominator

$$s^{2} - 3s + 4 = C_{1}(s+1)(s-1) + C_{2}(s-1) + C_{3}(s+1)^{2}$$

$$s^{2} - 3s + 4 = C_{1}(s^{2} - 1) + C_{2}(s-1) + C_{3}(s^{2} + 2s + 1)$$

$$s^{2}:1=C_{1}+C_{3}$$

$$s^{1}:-3=C_{2}+2C_{3}$$

$$s^{0}:4=-C_{1}-C_{2}+C_{3}$$
3 equations in 3 unknowns

Polynomial Factors

Polynomial factors in the denominator

polynomial factor
$$\widehat{T}(s) = \frac{s^2 - 3s + 4}{\left(s^2 + 2\right)\left(s - 1\right)}$$

include a lower order polynomial in the numerator

lower order polynomial

$$\frac{s^2 - 3s + 4}{\left(s^2 + 2\right)\left(s - 1\right)} = \frac{C_1 s + C_2}{\left(s^2 + 2\right)} + \frac{C_3}{\left(s - 1\right)}$$

multiply both sides by: $(s^2 + 2)(s - 1)$ Clear the denominator

$$s^{2} - 3s + 4 = (C_{1}s + C_{2})(s - 1) + C_{3}(s^{2} + 2)$$

$$s^{2} - 3s + 4 = C_{1}s^{2} - C_{1}s + C_{2}s - C_{2} + C_{3}s^{2} + 2C_{3}$$

$$1 = C_1 + C_3$$

$$-3 = -C_1 + C_2$$

$$4 = -C_2 + 2C_3$$
3 equations in 3 unknowns

0-D Transient Problem

A small particle is subjected to a volumetric generation that exponentially

decays with time:

$$\dot{g}''' = \dot{g}'''_{max} \exp\left(\frac{-t}{a}\right)$$
$$\dot{g}'''_{max} = 1 \times 10^9 \text{ W/m}^3$$
$$a = 2 \text{ s}$$

\$UnitSystem SI MASS RAD PA K J \$TABSTOPS 0.2 0.4 0.6 0.8 3.5 in

"Inputs"

R=1 [mm]*convert(mm,m)

rho=9000 [kg/m^3]

c=500 [J/kg-K]

k=25 [W/m-K]

T_infinity=converttemp(C,K,25[C])

h_bar=1000 [W/m^2-K]

gv_max=1e9 [W/m^3]

a=2 [s]

"radius of sphere"

"density"

"specific heat capacity"

"the arms of the oral continue of

"thermal conductivity"

"ambient temperature"

"heat transfer coefficient" "maximum volumetric generation"

"time constant of generation"

Biot Number

Is the lumped capacitance approximation appropriate for this problem:

$$R_{cond,r} = \frac{L_{cond}}{k A_s}$$
 where $L_{cond} = \frac{V}{A_s}$, $V = \frac{4}{3}\pi R^3$, and $A_s = 4\pi R^2$

$$R_{conv} = \frac{1}{\overline{h} A_{s}}$$

$$Bi = \frac{R_{cond,r}}{R_{conv}}$$

V=4*pi*R^3/3

A_s=4*pi*R^2

L_cond=V/A_s

R_cond_r=L_cond/(k*A_s)

 $R_{\text{conv}=1/(A_s*h_bar)}$

Bi=R_cond_r/R_conv

"volume"

"surface area"

"conduction length"

"resistance to radial conduction, approximate"

"resistance to convection"

"Biot number"

$$Bi = 0.013 << 1$$

Time Constant

What is the time constant associated with the particle?

$$\tau = C R_{conv}$$
 where $C = V \rho c$

Cap=V*rho*c "total heat capacity" tau=R_conv*Cap "time constant"

$$\tau = 1.5 \text{ s}$$

Based on the time constant, what is the anticipated form of the solution?

Anticipated Solution

If $\tau << a$ then what happens?

- particle quickly comes to a quasi-steady state condition where generation balances convection: $\dot{g}'''V \approx h A_s (T T_{\infty})$
- temperature ~ exponential decay following the generation

If *t* >> *a* then what happens?

- particle is slow to react to the generation
- temperature rises slightly and then cools off slowly

We are somewhere in the middle of these extremes since $\tau \sim a$

Derive Governing Differential Equation

Energy balance on entire particle:

$$\underline{\dot{g}'''V}_{\text{generation}} = \underbrace{\overline{h} A_s \left(T - T_{\infty} \right)}_{\text{convection}} + \underbrace{C \frac{dT}{dt}}_{\text{storage}}$$

$$\frac{dT}{dt} + \frac{\overline{h} A_s}{C} T = \frac{\overline{h} A_s}{C} T_{\infty} + \frac{\dot{g}_{max}''' V \exp\left(\frac{-t}{a}\right)}{C}$$

$$\frac{dT}{dt} + \frac{1}{\tau}T = \frac{1}{\tau}T_{\infty} + \frac{\dot{g}_{max}^{"''} \exp\left(\frac{-t}{a}\right)}{\rho c} \text{ with } T_{t=0} = T_{ini}$$

Laplace Transform Solution

Three step process for 0-D problem:

- 1. transform problem to s domain
- 2. solve algebraic equation in s domain
- 3. transform back to t domain

Transform problem to s domain

$$\left\langle \frac{dT}{dt} + \frac{1}{\tau}T = \frac{1}{\tau}T_{\infty} + \frac{\dot{g}_{max}'''}{\rho c} \exp\left(\frac{-t}{a}\right) \right\rangle$$

Table 3-4: Useful properties of the Laplace transforms

take Laplace transform of entire ODE

because the Laplace transform is linear, the transform can be accomplished one term at a time (see Table 3-3)

Transform to the s Domain

$$\left\langle \frac{dT}{dt} + \frac{1}{\tau}T = \frac{1}{\tau}T_{\infty} + \frac{\dot{g}'''_{max} \exp\left(\frac{-t}{a}\right)}{\rho c} \right\rangle$$

$$\left\langle \frac{dT}{dt} \right\rangle = s \,\hat{T}(s) - T_{t=0} = s \,\hat{T}(s) - T_{\infty}$$

Table 3-4: Useful properties of the Laplace transforms

Note that the initial condition is carried into the *s* domain with the derivative and does not have to be transformed separately

Transform to the s Domain

$$\left\langle \frac{dT}{dt} + \frac{1}{\tau}T = \frac{1}{\tau}T_{\infty} + \frac{\dot{g}'''_{max}}{\rho c} \exp\left(\frac{-t}{a}\right) \right\rangle$$

$$\left\langle \frac{1}{\tau} T \right\rangle = \frac{1}{\tau} \hat{T}(s)$$

$$\left\langle \frac{1}{\tau} T_{\infty} \right\rangle = \frac{1}{s} \frac{T_{\infty}}{\tau} \quad \blacksquare$$

Table 3-4: Useful properties of the Laplace transforms

Function in t	Function in s
C	<u>c</u>
	5

$$\left\langle \frac{\dot{g}_{max}''' \exp\left(\frac{-t}{a}\right)}{\rho c} \right\rangle = \frac{\dot{g}_{max}'''}{\rho c} \frac{1}{\left(s + \frac{1}{a}\right)}$$

$$\exp(Ct)$$
 $\frac{1}{s-C}$

Problem in the s Domain

The problem is an algebraic equation in the s domain

Solve in the s Domain

$$s\hat{T}(s) - T_{\infty} + \frac{1}{\tau}\hat{T}(s) = \frac{1}{s}\frac{T_{\infty}}{\tau} + \frac{\dot{g}'''_{max}}{\rho c}\frac{1}{\left(s + \frac{1}{a}\right)}$$

These two do not appear in the table
$$\hat{T}\left(s+\frac{1}{\tau}\right) = \frac{1}{s}\frac{T_{\infty}}{\tau} + \frac{g_{max}^{"''}}{\rho c}\frac{1}{\left(s+\frac{1}{a}\right)} + T_{\infty}$$
 this one does - it is easy to transform back to t domain
$$\hat{T} = \frac{T_{\infty}}{\tau s\left(s+\frac{1}{\tau}\right)} + \frac{\dot{g}_{max}^{"''}}{\rho c}\frac{1}{\left(s+\frac{1}{\tau}\right)} + \frac{T_{\infty}}{\left(s+\frac{1}{\tau}\right)}$$

Solution in the s domain is easy to get

Transformation back to the *t* domain is harder - we need to transform the two, complex polynomials to their simpler components using the method of partial fractions

Apply Method of Partial Fractions

clear the denominator

$$\frac{T_{\infty}}{\tau \ s\left(s + \frac{1}{\tau}\right)} = \frac{C_1}{s} + \frac{C_2}{\left(s + \frac{1}{\tau}\right)}$$
2 distinct factors

$$\frac{T_{\infty}}{\tau \, s \left(s + \frac{1}{\tau}\right)} = \frac{C_1}{s} + \frac{C_2}{\left(s + \frac{1}{\tau}\right)} \qquad \longrightarrow \qquad \boxed{\frac{T_{\infty}}{\tau \, s \left(s + \frac{1}{\tau}\right)} = \frac{C_1}{s} + \frac{C_2}{\left(s + \frac{1}{\tau}\right)}} \quad \tau \, s \left(s + \frac{1}{\tau}\right)$$

$$T_{\infty} = C_1 \tau \left(s + \frac{1}{\tau} \right) + C_2 \tau s$$
 $s^1 : 0 = C_1 \tau + C_2 \tau$ $s^0 : T_{\infty} = C_1$

$$s^{1}: 0 = C_{1} \tau + C_{2} \tau$$

 $s^{0}: T_{\infty} = C_{1}$

$$\frac{T_{\infty}}{\tau \, s \left(s + \frac{1}{\tau}\right)} = \frac{T_{\infty}}{s} - \frac{T_{\infty}}{\left(s + \frac{1}{\tau}\right)}$$

these transforms can be found in the table

Apply Method of Partial Fractions

$$\frac{\dot{g}_{max}^{"'}}{\rho c} \frac{1}{\left(s + \frac{1}{a}\right)\left(s + \frac{1}{\tau}\right)} = \frac{C_3}{\left(s + \frac{1}{a}\right)} + \frac{C_4}{\left(s + \frac{1}{\tau}\right)}$$
2 distinct factors

clear the denominator

$$\frac{\dot{g}_{max}'''}{\rho c} \frac{1}{\left(s + \frac{1}{a}\right)\left(s + \frac{1}{\tau}\right)} = \frac{C_3}{\left(s + \frac{1}{a}\right)} + \frac{C_4}{\left(s + \frac{1}{\tau}\right)} \left[\rho c\left(s + \frac{1}{a}\right)\left(s + \frac{1}{\tau}\right)\right]$$

$$\dot{g}_{max}^{""} = C_3 \rho c \left(s + \frac{1}{\tau} \right) + C_4 \rho c \left(s + \frac{1}{a} \right)$$

$$s^{1}: 0 = C_{3} \rho c + C_{4} \rho c$$

$$s^{0}: \dot{g}_{max}^{"'} = \frac{C_{3} \rho c}{\tau} + \frac{C_{4} \rho c}{a}$$

2 equations in 2 unknowns - let EES solve them

"partial fraction expansion of volumetric generation term" gv_max=C_3*rho*c/tau+C_4*rho*c/a 0=C_3+C_4

Inverse Transform

Function in t	Function in s
C	<u>C</u> s
C t	$\frac{C}{s^2}$
$\exp(Ct)$	$\frac{1}{s-C}$
$\sin(Ct)$	$\frac{C}{s^2 + C^2}$
$\cos(Ct)$	$\frac{s}{s^2 + C^2}$
$\sinh(Ct)$	$\frac{C'}{s^2 - C^2}$
$\cosh(Ct)$	$\frac{s}{s^2-C^2}$

Solution

Note that the solution behaves as we initially anticipated