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A Complex World Needs Models
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Engineers and Scientists Try To Understand,
Develop, or Optimize ‘‘Systems’’.

‘‘System’’ refers to the object of interest, which
can be a part of nature (such as a plant cell, an
atom, a galaxy etc.) or an artificial technological
system.
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For example, consider the problem of a table
which is unstable due to an uneven floor.
This is a technical system and everybody knows
what must be done to solve the problem: we just
have to put suitable pieces of cardboard under
the table legs.
Each of us solves an abundant number of
problems relating to simple technological
systems of this kind during our lifetime.
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Beyond this, there is a great number of really
difficult technical problems that can only be
solved by engineers.
Characteristic of these more demanding
problems is a high complexity of the technical
system. We would simply need no engineers if
we did not have to deal with complex technical
systems such as computer processors, engines,
and so on.
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Similarly, we would not need scientists if
processes such as the photosynthesis of plants
could be understood as simply as an unstable
table.
The reason why we have scientists and
engineers, virtually their right to exist, is the
complexity of nature and the complexity of
technological systems.
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(The complexity challenge) It is the genuine task of scientists and engineers to deal with
complex systems, and to be effective in their work, they most notably need specific methods to
deal with complexity.



The general strategy used by engineers or
scientists to break up the complexity of their
systems is the same strategy that we all use in
our everyday life when we are dealing with
complex systems: simplification.

The idea is just this:

if something is complex, make it simpler.
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Consider an everyday life problem related to a
complex system: A car that refuses to start.

In this situation, everyone knows that a look at
the battery and fuel levels will solve the problem
in most cases.
Everyone will do this automatically, but to
understand the problem solving strategy behind
this, let us think of an alternative scenario.
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Assume someone is in this situation for the first
time. Assume that ‘‘someone’’ was told how to
drive a car, that he has used the car for some
time, and now he is for the first time in a
situation in which the car does not start.
Of course, we also assume that there is no help
for miles around!
Then, looking under the hood for the first time,
our ‘‘someone’’ will realize that the car, which
seems simple as long as it works well, is quite a
complex system.
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We know that this simplified picture is
appropriate in this given situation, and it guides
us to look at the battery and fuel levels and then
to solve the problem within a short time.

This is exactly the strategy used by engineers or
scientists when they deal with complex systems.
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Anyone who wants to understand complex
systems or solve problems related to complex
systems needs to apply appropriate simplified
descriptions of the system under consideration.
This means that anyone who is concerned with
complex systems needs models, since simplified
descriptions of a system are models of that
system by definition.
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(Role of models) To break up the complexity of a system under consideration, engineers and
scientists use simplified descriptions of that system (i.e. models).



Systems, Models, Simulations
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In 1965, Minsky gave the following general
definition of a model.

(Model) To an observer B, an object A∗ is a
model of an object A to the extent that B can use
A∗ to answer questions that interest him about A.
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Systems, Models, Simulations
Teleological Nature of Modeling and Simulation
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An important aspect of the above definition is the
fact that it includes the purpose of a model,
namely, that the model helps us to answer
questions and to solve problems.
This is important because particularly beginners
in the field of modeling tend to believe that a
good model is one that mimics the part of reality
that it pertains to as closely as possible.
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(The best model) The best model is the
simplest model that still serves its purpose, that
is, which is still complex enough to help us
understand a system and to solve problems.
Seen in terms of a simple model, the complexity
of a complex system will no longer obstruct our
view, and we will virtually be able to look through
the complexity of the system at the heart of
things.
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The entire procedure of modeling and simulation
is governed by its purpose of problem solving –
otherwise it would be a mere l’art pour l’art.
Modeling and simulation is always goal-driven,
that is, we should know the purpose of our
potential model before we sit down to create it.
It is hence natural to define fundamental
concepts such as the term model with a special
emphasis on the purpose-oriented or teleological
nature of modeling and simulation.
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Systems, Models, Simulations
Modeling and Simulation Scheme
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Conceptually, the investigation of complex
systems using models can be divided into the
following steps:
(Modeling and simulation scheme)
Definition

• Definition of a problem that is to be solved or of 
a question that is to be answered.
• Definition of a system, that is, a part of reality 
that pertains to this problem or question.
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Systems Analysis
• Identification of parts of the system that are
relevant for the problem or question.

Modeling
• Development of a model of the system based
on the results of the systems analysis step.
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Simulation
• Application of the model to the problem or
question.
• Derivation of a strategy to solve the problem or
answer the question.

Validation
• Does the strategy derived in the simulation
step solve the problem or answer the question
for the real system?
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In the car example

Definition
The problem is that the car does not start and
the car itself is the system.

Systems Analysis
The battery and fuels levels as the relevant parts
of the system.
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Modeling
A model consisting of a battery and a tank such 
as in Figure 1.1 is developed.
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Simulation
The application of this model to the given
problem in the ‘‘simulation’’ step of the scheme
then leads to the strategy ‘‘check battery and
fuel level’’.
Validation
This strategy can then be applied to the real car
in the ‘‘validation’’ step.
If it works, that is, if the car really starts after
refilling its battery or tank, we say that the model
is valid or validated.

23.10.2017

25



In a real modeling and simulation project, the
systems analysis step of the above scheme can
be a very time-consuming step. It will usually
involve a thorough evaluation of the literature. In
many cases, the literature evaluation will show
that similar investigations have been performed
in the past, and one should of course try to profit
from the experiences made by others that are
described in the literature.
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Beyond this, the system analysis step usually
involves a lot of discussions and meetings that
bring together people from different disciplines
who can answer your questions regarding the
system. These discussion will usually show that
new data are needed for a better understanding
of the system and for the validation of the
models in the validation step of the above
scheme. Hence, the definition of an
experimental program is also another typical part
of the systems analysis step.
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The modeling step will also involve the
identification of appropriate software that can
solve the equations of the mathematical model.

In the validation step, the model results will be
compared with experimental data. These data
may come from the literature, or from
experiments that have been specifically
designed to validate the model.
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Usually, a model is required to fit the data not
only quantitatively, but also qualitatively in the
sense that it reproduces the general shape of
the data as closely as possible. But, of course,
even a model that perfectly fits the data
quantitatively and qualitatively may fail the
validation step of the above scheme if it cannot
be used to solve the problem that is to be
solved, which is the most important criterion for
a successful validation.
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(Start with simple models!)

To find the best model, start with the simplest
possible model and then generate a sequence of
increasingly complex model formulations until
the last model in the sequence passes the
validation step.
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Systems, Models, Simulations
Simulation
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(Simulation)

Simulation is the application of a model with the
objective to derive strategies that help solve a
problem or answer a question pertaining to a
system.
The term simulation originates from the Latin
word ‘‘simulare’’, which means ‘‘to pretend’’: in a
simulation, the model pretends to be the real
system.
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Systems, Models, Simulations
System
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(System)

A system is an object or a collection of objects
whose properties we want to study.
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Systems, Models, Simulations
Conceptual and Physical Models

23.10.2017

35



The model used in the car example is something
that exists in our minds only.
We can write it down on a paper in a few
sentences and/or sketches, but it does not have
any physical reality. Models of this kind are
called conceptual models.
Conceptual models are used by each of us to
solve everyday problems such as the car that
refuses to start.
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They are also applied by engineers or scientists
to simple problems or questions similar to the
car example.
If their problem or question is complex enough,
however, they rely on experiments, and this
leads us to other types of models.
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For example; an engineer wants to reduce the
fuel consumption of an engine:
In this case, the problem is the reduction of fuel
consumption and the system is the engine.
Assume that the systems analysis leads the
engineer to the conclusion that the fuel injection
pump needs to be optimized.
Typically, the engineer will then create some
experimental setting where he can study the
details of the fuel injection process.
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Such an experimental setting is then a model in
the sense that it will typically be a very simplified
version of that engine, that is, it will typically
involve only a few parts of the engine that are
closely connected with the fuel injection process.
In contrast to a conceptual model, however, it is
not only an idea in our mind but also a real part
of the physical world, and this is why models of
this kind are called physical models.
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The engineer will then use the physical model of
the fuel injection process to derive strategies –
for example, a new construction of the fuel
injection pump – to reduce the engine’s fuel
consumption, which is the simulation step of the
above modeling and simulation scheme.
Afterwards, in the validation step of the scheme,
the potential of these new constructions to
reduce fuel consumption will be tested in the
engine itself, that is, in the real system.
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Physical models are applied by scientists in a
similar way. For example, let us think of a
scientist who wants to understand the
photosynthesis process in plants.
Similar to an engineer, the scientist will set up a
simplified experimental setting – which might be
some container with a plant cell culture – in
which he can easily observe and measure the
important variables, such as CO2, water, light,
and so on.
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Mathematics as a Natural Modeling 
Language
Input–Output Systems
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Any system that is investigated in science or
engineering must be observable in the sense
that it produces some kind of output that can be
measured (a system that would not satisfy this
minimum requirement would have to be treated
by theologians rather than by scientists or
engineers).
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This observability condition can also be satisfied
by systems where nothing can be measured
directly, such as black holes, which produce
measurable gravitational effects in their
surroundings.
Most systems investigated in engineering or
science do also accept some kind of input data,
which can then be studied in relation to the
output of the system (Figure 1.2a).
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For example, a scientist who wants to
understand photosynthesis will probably
construct experiments where the carbohydrate
production of a plant is measured at various
levels of light, CO2, water supply, and so on.
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(Input–output systems)

Scientists or engineers investigate ‘‘input–output
systems’’, which transform given input
parameters into output parameters.
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Typically, however, such purely descriptive
studies raise questions about the way in which
the system works, and this is when input–output
relations come into play.

Engineers, on the other hand, are always
concerned with input–output relations since they
are concerned with technology.
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Technology

‘‘the application of scientific knowledge to the 
practical aims of human life’’.

These ‘‘practical aims’’ will usually be
expressible in terms of a system output, and the
tuning of system input toward optimized system
output is precisely what engineers typically do,
and what is in fact the genuine task of
engineering.
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Mathematics as a Natural Modeling 
Language
General Form of Experimental Data
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The experimental procedure is used very
generally in engineering and in the (empirical)
sciences to understand, develop, or optimize
systems. It is useful to think of it as a means to
explore black boxes.
At the beginning of an experimental study, the
system under investigation is similar to such a
‘‘black box’’ in the sense that there is some
uncertainty about the processes that happen
inside the system when the input is transformed
into the output. 23.10.2017
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Typically, however, the experimenter will have
some hypotheses about the internal processes,
which he wants to prove or disprove in the
course of his study. That is, experimenters
typically are concerned with systems as gray
boxes which are located somewhere between
black and white boxes.
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Depending on the hypothesis that the
experimenter wants to investigate, he confronts
the system with appropriate input quantities,
hoping that the outputs produced by the system
will help prove or disprove his hypothesis.
This is similar to a question-and-answer game:
the experimenter poses questions to the system,
which is the input, and the system answers to
these questions in terms of measurable output
quantities.
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Mathematics as a Natural Modeling 
Language
Distinguished Role of Numerical Data
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Now what is an appropriate method for the
analysis of experimental datasets?
In most cases experimental data are numbers
and can be quantified.
It is natural to think of a system in mathematical
terms.
A system can be naturally seen as a
mathematical function, which maps given input
quantities x into output quantities y = f (x).
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This means that if one wants to understand the
internal mechanics of a system ‘‘black box’’, that
is, if one wants to understand the processes
inside the real system that transform input into
output, a natural thing to do is to translate all
these processes into mathematical operations.

If this is done, one arrives at a simplified
representation of the real system in
mathematical terms.
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Now remember that a simplified description of a
real system (along with a problem we want to
solve) is a model by definition.
The representation of a real system in
mathematical terms is thus a mathematical
model of that system.
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(Naturalness of mathematical models) Input–
output systems usually generate numerical (or
quantifiable) data that can be described naturally
in mathematical terms.



Anyone concerned with systems and their input–
output relations is also concerned with
mathematical problems – regardless of whether
he likes it or not and regardless of whether he
treats the system appropriately using
mathematical models or not. The success of his
work, however, depends very much on the
appropriate use of mathematical models.

23.10.2017

58



Definition of Mathematical Models
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To understand mathematical models, let us start
with a general definition.
A mathematical model is a set of mathematical
statements M = {1, 2, . . . , n}.
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(Mathematical Model) A mathematical model is
a triplet (S, Q, M) where S is a system, Q is a
question relating to S, and M is a set of
mathematical statements M = {1, 2, . . . , n}
which can be used to answer Q.



Let us look at another famous example that shows the
importance of Q. Suppose we want to predict the
behavior of some mechanical system S. Then the
appropriate mathematical model depends on the
problem we want to solve, that is, on the question Q.
If Q is asking for the behavior of S at moderate
velocities, classical (Newtonian) mechanics can be
used, that is, M = {equations of Newtonian mechanics}.
If, on the other hand, Q is asking for the behavior of S
at velocities close to the speed of light, then we have
to set M = {equations of relativistic mechanics} instead.
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Examples and Some More Definitions
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Suppose we want to know the mean age of some
group of people.

Then, we apply a mathematical model (S, Q, M) where

S is that group of people,

Q asks for their mean age, and

M is the mean value formula �̅�𝑥 = ∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 /𝑛𝑛.
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Suppose we want to know the mass X of some
substance in the cylindrical tank given a constant
concentration c of the substance in that tank.
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x(m)

0

5
1m

Then, a multiplication of the tank
volume with c gives the mass X
of the substance, that is,

𝑋𝑋 = 5𝜋𝜋𝜋𝜋



We apply a mathematical model (S, Q, M) where

S is the tank,

Q asks for the mass of the substance, and

M is 𝑋𝑋 = 5𝜋𝜋𝜋𝜋.
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An example involving more than simple algebraic
operations is obtained if we assume that the
concentration c in the tank of figure depends on the
height coordinate, x.
In that case

𝑋𝑋 = 5𝜋𝜋𝜋𝜋 turns into

𝑋𝑋 = 𝜋𝜋 � ∫0
5 𝜋𝜋 𝑥𝑥 𝑑𝑑𝑥𝑥
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In many mathematical models (S, Q, M) involving
calculus, the question Q asks for the optimization of
some quantity.
Suppose for example we want to minimize the material
consumption of a cylindrical tin having a volume of 1 l.
In this case,

M = {πr2h = 1, A = 2πr2 + 2πrh → min}

can be used to solve the problem.
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The second statement requires the surface area of the
tin to be minimal, which is equivalent to a minimization
of the metal used to build the tin.
The mathematical problem can be solved if one inserts
the first equation of
M = {πr2h = 1, A = 2πr2 + 2πrh → min}
into the second equation of,
M = {πr2h = 1, A = 2πr2 + 2πrh → min}
which leads to

𝐴𝐴 𝑟𝑟 = 2𝜋𝜋𝑟𝑟2 + 2
𝑟𝑟
→min
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Examples and Some More Definitions
State Variables and System Parameters
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Of course, each of us knows that a cylindrical tin can
be described very easily based on its radius r and its
height h.
This means everyone of us automatically applies the
correct mathematical model, and hence, everybody
automatically believes that the system in the tin
problem is a simple thing.
But if we do not apply this model to the tin, it becomes
a complex system.
Imagine a Martian or some other extraterrestrial being
who never saw a cylinder before.
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Suppose we would say to this Martian: ‘‘Look, here you
have some sheets of metal and a sample tin filled with
water. Make a tin of the same shape which can hold
that amount of water, and use as little metal as
possible.’’

Then this Martian will – at least initially – see the
original complexity of the problem. If he is smart, which
we assume, he will note that infinitely many possible
tin geometries are involved here.
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From this original (‘‘Martian’’) point of view we thus see
that the system S of the tin example is quite complex,
in fact an infinite-dimensional system.

And we see the power of the mathematical modeling
procedure which reduces those infinite dimensions to
only two, since the mathematical solution of the above
problem involves only two parameters: r and h (or,
equivalently, r and A).
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Originally, the system ‘‘tin’’ in the above example is an
infinite-dimensional thing not only with respect to its
set of coordinates or the other aspects mentioned
above, but also with respect to many other aspects
which have been neglected in the mathematical model
since they are unimportant for the solution of the
problem, for example the thickness of the metal
sheets, or its material, color, hardness, roughness and
so on.
All the information which was contained in the original
system S=‘‘tin’’ is reduced to a description of the
system as a mere Sr = {r, h} in terms of the
mathematical model. 23.10.2017
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(A main benefit) The reduction of the information
content of complex systems in terms of reduced
systems is one of the main benefits of mathematical
models.

(State variables) Let (S, Q, M) be a mathematical
model. Mathematical quantities s1, s2, . . . , sn which
describe the state of the system S in terms of M and
which are required to answer Q are called the state
variables of (S, Q, M).
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(Reduced system and system parameters) Let s1,
s2, . . . ,sn be the state variables of a mathematical
model (S, Q, M). Let p1, p2, . . . ,pm be mathematical
quantities (numbers, variables, functions) which
describe properties of the system S in terms of M, and
which are needed to compute the state variables. Then
Sr = {p1, p2, . . . , pm} is the reduced system and p1, p2,
. . . , pm are the system parameters of (S, Q, M).

This means that the state variables describe the
system properties we are really interested in, while the
system parameters describe system properties needed
to obtain the state variables mathematically.
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For example, in the tank problem above we were
interested in the mass of the substance; hence, in this
example we have one state variable, that is, n = 1 and
s1 = X.
To obtain s1, we used the concentration c; hence, we
have one system parameter in that example, that is, m
= 1 and p1 = c. The reduced system in this case is Sr =
{c}.
By definition, the reduced system contains all
information about the system which we need to get the
state variable, that is, to answer Q.
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In the tin example, we needed the surface area of the
tin to answer Q, that is, in that case we had again one
state variable s1 = A.
On the other hand, two system parameters p1 = r and
p2 = h were needed to obtain s1, that is, in this case
the reduced system is Sr = {r, h}.
(Importance of experiments) Typically, the properties
(parameters) of the reduced system are those which
need experimental characterization. In this way, the
modeling procedure guides the experiments, and
instead of making the experimenter superfluous (a
frequent misunderstanding), it helps to avoid
superfluous experiments.
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Examples and Some More Definitions
Using Computer Algebra Software
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Let us make a few more observations relating to the ‘‘1
l tin’’ example above. The mathematical problem
behind this example can be easily solved using
software. For example, using the computer algebra
software Maxima, the problem can be solved as
follows:
1: A(r):=2 *%pi *r ˆ 2 +2/r;
2: define(A1(r),diff(A(r),r));
3: define(A2(r),diff(A1(r),r));
4: solve(A1(r) =0);
5: r:rhs(solve(A1(r)=0)[3]);
6: r,numer;
7: A2(r)>0,pred;
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Examples and Some More Definitions
The Problem Solving Scheme
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One can clearly distinguish between the formulation of
a mathematical model on the one hand and the
solution of the resulting mathematical problem on the
other hand, which can be done with appropriate
software.
This means that it is not necessary to be a
professional mathematician if one wants to work with
mathematical models. Of course, it is useful to have
mathematical expertise. Mathematical expertise is
particularly important if one wants to solve more
advanced problems, or if one wants to make sure that
the results obtained with mathematical software are
really solutions of the original problem and no
numerical artifacts.
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The tin example shows another important advantage
of mathematical modeling.
After the tin problem was formulated mathematically,
the powerful and well-established mathematical
methods of calculus became applicable.
Using the appropriate software, the problem could then
be solved with little effort. Without the mathematical
model for this problem, on the other hand, an
experimental solution of this problem would have taken
much more time.
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Problem solving scheme



The starting point is a real-world system S together
with a question Q relating to S. A mathematical model
(S, Q,M) then opens up the way into the ‘‘mathematical
universe’’, where the problem can be solved using
powerful mathematical methods. This leads to a
problem solution in mathematical terms (A*), which is
then translated into an answer A to the original
question Q in the last step.
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The role of mathematics in problem solving scheme
figure can be described like a subway train: since it
would be a too long and hard way to go from the
system S and question Q to the desired answer A in
the real world, smart problem solvers go into the
‘‘mathematical underground’’, where powerful
mathematical methods provide fast trains toward the
problem solution.
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Examples and Some More Definitions
Strategies to Set up Simple Models
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In many cases, a simple three-step procedure can be
used to set up a mathematical model.

Problem 1:

Which volumes of fluids A and B should be mixed to
obtain 150 l of a fluid C that contains 70gl−1 of a
substance, if A and B contain 50 gl−1 and 80 gl−1,
respectively?

x + y = 150
50x + 80y = 70 · 150 23.10.2017
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(Three steps to setup a model)
• Step 1: Determine the number of unknowns, that is,
the number of quantities that must be determined in
the problem. In many problem formulations, you just
have to read the last sentence where the question is
asked.
• Step 2: Give precise definitions of the unknowns,
including units. It is a practical experience that this
should not be lumped with step 1.
• Step 3: Reading the problem formulation sentence by
sentence, translate this information into mathematical
statements which involve the unknowns defined in step
2. 23.10.2017
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Let us apply this to Problem 1 above.

In step 1 and step 2, we would ascertain that Problem
1 asks for two unknowns which can be defined as
• x: volume of fluid A in the mixture [ l ]
• y: volume of fluid B in the mixture [ l ]

These steps are important because they tell us about
the unknowns that can be used in the equations. As
long as the unknowns are unknown to us, it will be
hard to write down meaningful equations in step 3.
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Indeed, it is a frequent beginner’s mistake in
mathematical modeling to write down equations which
involve unknowns that are not sufficiently well defined.
People often just pick up symbols that appear in the
problem formulation – such as A, B, C in problem 1
above – and then write down equations like

50A + 80B = 70

This equation is indeed almost correct, but it is hard to
check its correctness as long as we lack any precise
definitions of the unknowns. 23.10.2017
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The intrinsic problem with equations such as 50A +
80B = 70 lies in the fact that A, B, C are already
defined in the problem formulation.
There, they refer to the names of the fluids, although
they are (implicitly) used to express the volumes of the
fluids in 50A + 80B = 70.
Thus, let us now write down the same equation using
the unknowns x and y defined above:

50x + 80y = 70
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Now the definitions of x and y can be used to check
this equation.
What we see here is that on the left-hand side of 50x +
80y = 70, the unit is (grams), which results from the
multiplication of 50 gl−1 with x [l]. On the right-hand
side, however, the unit is grams per liter.
So we have different units on the different sides of the
equation, which proves that this is a wrong equation.
At the same time, a comparison of the units may help
us to get an idea of what must be done to obtain a
correct equation.
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In this case, it is obvious that a multiplication of the
right-hand side with some quantity expressed in liter
would solve the unit problem.
The only quantity of this kind in the problem
formulation is the 150 l volume which is required as the
volume of the mixture, and multiplying the 70 with 150
indeed solves the problem in this case.
A major problem in step 3 is to identify those
statements in the problem formulation which
correspond to mathematical statements, such as
equations, inequalities, and so on. The following note
can be taken as a general guideline for this: 23.10.2017
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(Where are the equations?)

The statements of the problem formulation that can be
translated into mathematical statements, such as
equations, inequalities, and so on, are characterized
by the fact that they impose restrictions on the values
of the unknowns.
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Let us analyze some of the statements in Problem 1
above in the light of this strategy:

• Statement 1: 150 l of fluid C are required.
• Statement 2: Fluid A contains 50 gl−1 of the
substance.
• Statement 3: Fluid B contains 80 gl−1 of the
substance.
• Statement 4: Fluid C contains 70 gl−1 of the
substance.
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Obviously, statement 1 is a restriction on the values of
x and y, which translates immediately into the
equation:

x + y = 150

Statement 2 and statement 3, on the other hand,
impose no restriction on the unknowns. Arbitrary
values of x and y are compatible with the fact that
fluids A and B contain 50 gl−1 and 80 gl−1 of the
substance, respectively.
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Statement 4, however, does impose a restriction on x
and y.
For example, given a value of x, a concentration of 70
gl−1 in fluid C can be realized only for one particular
value of y.
Mathematically, statement 4 can be expressed
50x + 80y = 70 · 150
You may be able to write down this equation
immediately. If you have problems to do this, you may
follow a heuristic (i.e. not 100% mathematical)
procedure, where you try to start as close to the
statement in the problem formulation as possible. 23.10.2017
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In this case, we could begin with expressing statement
4 as

{Concentration of substance in fluid C} = 70

Then, you would use the definition of a concentration
as follows:

Mass of substance in fluid C
Volume of the mixture = 70
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The next step would be to ascertain two things:

• The mass of the substance in fluid C comes from
fluids A and B.
• The volume of the mixture is 150 l.

Mass of substance in fluid 𝐴𝐴 + Mass of substance in fluid 𝐵𝐵
Volume of the mixture = 70
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The masses of the substance in A and B can be easily
derived using the concentrations given in Problem 1
above:

50𝑥𝑥 + 80𝑦𝑦
150

= 70

(Heuristic procedure to set up mathematical
statements) If you want to translate a statement in a
problem formulation into a mathematical statement,
such as an equation or inequality, begin by mimicking
the statement in the problem formulation as closely as
possible. Your initial formulation may involve
nonmathematical statements. Try then to replace all
nonmathematical statements by expressions involving
the unknowns.
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Examples and Some More Definitions
Strategies to Set up Simple Models - Mixture Problem
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Problem 2:
Suppose the fluids A, B, C, D contain the substances
S1, S2, S3 according to the following table
(concentrations in grams per liter):

What is the concentration of S3 in a mixture of these
fluids that contains 75% (percent by volume) of fluids A
and B and which contains 4 gl−1 and 5 gl−1 of the
substances S1 and S2, respectively?
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A B C D
S1 2.5 8.2 6.4 12.7
S2 3.2 15.1 13.2 0.4
S3 1.1 0.9 2.2 3.1



Referring to step 1 and step 2 of the three-step
procedure, it is obvious that we have only one
unknown here which can be defined as follows:

• x: concentration of S3 in the mixture (grams per liter)

Now step 3 requires us to write down mathematical
statements involving x.
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Three statements of this kind can be identified:

• Statement 1: 75% of the mixture consists of A and B.
• Statement 2: The mixture contains 4 gl−1 of S1.
• Statement 3: The mixture contains 5 gl−1 of S2.

Each of these statements excludes a great number of
possible mixtures and thus imposes a restriction on x.

Beginning with statement 1, it is obvious that this
statement cannot be formulated in terms of x.
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We are here in a situation where a number of auxiliary
variables is needed to translate the problem
formulation into mathematics.

(Auxiliary variables) In some cases, the translation of
a problem into mathematics may require the
introduction of auxiliary variables. These variables are
‘‘auxiliary’’ in the sense that they help us to determine
the unknowns.
Usually, the problem formulation will provide enough
information such that the auxiliary variables and the
unknowns can be determined (i.e. the auxiliary
variables will just increase the size of the system of
equations).
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In this case, we obviously need the following auxiliary
variables:

• xA: percent (by volume) of fluid A in the mixture
• xB: percent (by volume) of fluid B in the mixture
• xC: percent (by volume) of fluid C in the mixture
• xD: percent (by volume) of fluid D in the mixture

Now the above statement 1 can be easily expressed
as

xA + xB = 0.75 23.10.2017
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Similar to above, statement 2 and statement 3 can be 
formulated as

{Concentration of S1 in the mixture} = 4

and

{Concentration of S2 in the mixture} = 5
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Based on the information provided in the above table
(and again following a similar procedure as in the
previous section), these equations translate to

2.5xA + 8.2xB + 6.4xC + 12.7xD = 4

and

3.2xA + 15.1xB + 13.2xC + 0.4xD = 5
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Since x is the concentration of S3 in the mixture, a
similar argumentation shows

1.1xA + 0.9xB + 2.2xC + 3.1xD = x

So far we have the four equations and five unknowns
x, xA, xB, xC, and xD, that is, we need one more
equation. In this case, the missing equation is given
implicitly by the definition of xA, xB, xC, and xD. These
variables express percent values, and hence, we have

xA + xB + xC + xD = 1 23.10.2017
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Altogether, we have now obtained the following system 
of linear equations:

xA + xB = 0.75

2.5xA + 8.2xB + 6.4xC + 12.7xD = 4

3.2xA + 15.1xB + 13.2xC + 0.4xD = 5

1.1xA + 0.9xB + 2.2xC + 3.1xD = x

xA + xB + xC + xD = 1 23.10.2017
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Examples and Some More Definitions
Linear Programming
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All mathematical models considered so far were
formulated in terms of equations only. A mathematical
model may involve any kind of mathematical
statements. For example, it may involve inequalities.

One of the simplest class of problems involving
inequalities are linear programming problems that are
frequently used e.g. in operations research.

Consider the following problem taken from the linear
programming article of Wikipedia.org:
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Linear programming example
Suppose a farmer has a piece of farm land, say A
square kilometers large, to be planted with either
wheat or barley or some combination of the two.
Furthermore, suppose the farmer has a limited
permissible amount F of fertilizer and P of insecticide
which can be used, each of which is required in
different amounts per unit area for wheat (F1, P1) and
barley (F2, P2). Let S1 be the selling price of wheat, and
S2 the price of barley. How many square kilometers
should be planted with wheat versus barley to
maximize the revenue? 23.10.2017
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Denoting the area planted with wheat and barley with
x1 and x2 respectively, the problem can be formulated
as follows:

x1, x2 ≥ 0 (the farmer cannot plant a negative area)
x1 + x2 ≤ A
(no more than the given A square kilometers of farm
land can be used)
F1x1 + F2x2 ≤ F (fertilizer limits)
P1x1 + P2x2 ≤ P (insecticide limits)
S1x1 + S2x2 →max (required revenue maximization)
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S the farm
Q ‘‘How many square kilometers should be

planted with wheat versus barley to
maximize the revenue?’’

M Above Equations

A mathematical model (S, Q, M) is obtained.
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Examples and Some More Definitions
Modeling a Black Box System
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It was mentioned that the systems investigated by
scientists or engineers typically are ‘‘input–output
systems’’, which means they transform the given input
parameters into output parameters.

In the tin example, the radius and height of the tin are
input parameters and the surface area of the tin is the
output parameter.

23.10.2017

117



The exploration of an example input–output system in
some more detail will now lead us to further important
concepts and definitions. Assume a ‘‘system 1’’ as in
the figure which produces an output length y
(centimeters) for every given input force x [N].

(a) System 1 with input x (N) and output y (cm)
(b) System 1 data
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Furthermore, assume that we do not know about the
processes inside the system that transform x into y,
that is, let this system be a ‘‘black box’’ to us as
described above.

Consider the following problem:

Q: Find an input x that generates an output y = 20 cm.
S: System 1
We are now looking for an appropriate set of
mathematical statements M that can help us to
answer Q. 23.10.2017
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All that the investigator of system 1 can do is to
produce some data using the system, hoping that
these data will reveal something about the processes
occurring inside the ‘‘black box’’.
To see what happens, the investigator will probably
produce a plot of the data as in the figure.
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(b) System 1
data with regression line.

(a) Plot of the 
data



Mathematically, this means that the function y = f (x)
behind the data is a straight line:
f (x) = ax + b
Now the investigator can apply a statistical method
called linear regression to determine the coefficients a
and b of this equation from the data, which leads to
the ‘‘regression line’’
f (x) = 0.33x − 0.5
Figure b shows that there is a good coincidence or, in
statistical terminology, a good ‘‘fit’’ between this
regression line and the data.
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f (x) = 0.33x − 0.5
can now be used as the M of a mathematical model of
system 1.

The question Q stated above (‘‘Which system input x
generates a desired output y = 20 cm? ’’) can then be
easily answered by setting y = f (x) = 20, that is,

20 = 0.33x − 0.5

which gives x ≈ 62.1 N.
23.10.2017
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Of course, this is just an approximate result for
several reasons.
First of all, figure shows that there are some
deviations between the regression line and the data.
These deviations may be due to measurement errors,
but they may also reflect some really existing effects.

The example shows the importance of statistical
methods in mathematical modeling.
First of all, statistics itself is a collection of
mathematical models that can be used to describe
data or to draw inferences from data. 23.10.2017
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Beyond this, statistical methods provide a necessary
link between nonstatistical mathematical models and
the real world.
In mathematical modeling, one is always concerned
with experimental data, not only to validate model
predictions, but also to develop hypotheses about the
system, which help to set up appropriate equations.
In the example, the data led us to the hypothesis that 
there is a linear relation between x and y.
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Even More Definitions
Phenomenological and Mechanistic Models
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The mathematical model used above to describe
system 1 is called a phenomenological model since it
was constructed based on experimental data only,
treating the system as a black box, that is, without
using any information about the internal processes
occurring inside system 1 when x is transformed into y.

On the other hand, models that are constructed using
information about the system S are called mechanistic
models, since such models are virtually based on a
look into the internal mechanics of S.
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(Phenomenological and mechanistic models)

A mathematical model (S, Q, M) is called

• phenomenological, if it was constructed based on
experimental data only, using no a priori information
about S,

• mechanistic, if some of the statements in M are
based on a priori information about S.
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Phenomenological models are also called empirical
models, statistical models, data-driven models or black
box models for obvious reasons.

Mechanistic models for which all necessary information
about S are available are also called white box models.

Most mechanistic models are located somewhere
between the extreme black and white box cases, that
is, they are based on some information about S while
some other important information is unavailable. Such
models are sometimes called gray box models or
semi-empirical models.
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Phenomenological models are also called empirical
models, statistical models, data-driven models or black
box models for obvious reasons.

Mechanistic models for which all necessary information
about S are available are also called white box models.

Most mechanistic models are located somewhere
between the extreme black and white box cases, that
is, they are based on some information about S while
some other important information is unavailable. Such
models are sometimes called gray box models or
semi-empirical models.
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Assume that system 1 is a mechanical spring, x is a
force acting on that spring, and y is the resulting
elongation. This is now an a priori information about
system 1, and it can be used to construct a
mechanistic mathematical model based on elementary
physical knowledge.

Mechanical springs can be described by Hooke’s law.

x = k · y
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Now the following mechanistic mathematical model (S,
Q, M) is obtained:

• S: System 1

• Q: Which system input x generates a desired output
of y = 20 cm?

• M: x = k · y
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The mechanistic model of system 1 has several
important advantages compared to the
phenomenological model, and these advantages are
characteristic advantages of the mechanistic approach.

Mechanistic models do also allow better predictions of
modified systems.

Another advantage of mechanistic models is the fact
that they usually involve physically interpretable
parameters, that is, parameters which represent real
properties of the system. 23.10.2017
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(Phenomenological vs. mechanistic)

Phenomenological models are universally applicable,
easy to set up, but limited in scope.

Mechanistic models typically involve physically
interpretable parameters, allow deeper insights into
system performance and better predictions, but they
require a priori information on the system and often
need more time and resources.
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Even More Definitions
Stationary and Instationary models
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(Stationary/instationary models)

A mathematical model (S,Q, M) is called

• instationary, if at least one of its system parameters
or state variables depends on time and

• stationary otherwise.
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Even More Definitions
Distributed and Lumped models
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(Distributed/lumped models)

A mathematical model (S, Q,M) is called

• distributed, if at least one of its system parameters or 
state variables depends on a space variable,

• lumped otherwise.
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Classification of Mathematical Models
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The practical use of a classification of mathematical
models lies in the fact that you understand ‘‘where you
are’’ in the space of mathematical models, and which
types of models might be applicable to your problem
beyond the models that you have already used.
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Classification of Mathematical Models
From Black to White Box Models
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The ‘‘space of mathematical models’’ evolves naturally
from definiton, where we have defined a mathematical
model to be a triple (S,Q,M) consisting of a system S,
a question Q, and a set of mathematical statements M.

Based on this definition, it is natural to classify
mathematical models in an SQM space.
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(a) Classification of mathematical models between black and 
white box models



Note that the three dimensions of a mathematical
model (S, Q, M) can be seen in the figure:
the systems (S) are classified on top of the bar,
immediately below the bar there is a list of objectives
that mathematical models in each of the segments
may have (which is Q), and at the bottom end there
are corresponding mathematical structures (M) ranging
from algebraic equations (AEs) to differential equations
(DEs).
f (x) = ax + b is an example of AEs
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Classification of Mathematical Models
SQM Space Classification: S Axis
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Since mathematical models are characterized by their
respective individual S, Q and M ‘‘values’’, one can
also think of each model as being located somewhere
in the ‘‘SQM space’’ of figure.

On each of the S-, Q- and M-axes of the figure,
mathematical models are classified with respect to a
number of criteria which were compiled based on
various classification attempts in the literature.
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(b) Classification of mathematical models in the SQM space.



Physical – conceptual.
Physical systems are part of the real world, for
example, a fish or a car. Conceptual systems are made
up of thoughts and ideas, for example, a set of
mathematical axioms. We focus entirely on physical
systems.

Natural – technical.
Naturally, a natural system is a part of nature, such as
a fish or a flower, while a technical system is a car, a
machine, and so on.
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Stochastic – deterministic.
Stochastic systems involve random effects, such as
rolling dice, share prices and so on.
Deterministic systems involve no or very little random
effects, for example, mechanical systems, such as the
planetary system, a pendulum, and so on. In a
deterministic system, a particular state A of the system
is always followed by one and the same state B, while
A may be followed by B, C or other states in an
unpredictable way if the system is stochastic.

23.10.2017

148



Continuous – discrete.
Continuous systems involve quantities that change
continuously with time, such as sugar and ethanol
concentrations in a wine fermenter.
Discrete systems, on the other hand, involve quantities
that change at discrete times only, such as the number
of individuals in animal populations.
Note that on the M axis of figure, continuous systems
can be represented by discrete mathematical
statements and vice versa (e.g. a continuous
mathematical formulation is used to describe the
discrete predator–prey system). 23.10.2017
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Dimension.
Depending on their spatial symmetries, physical
systems can be described using 1, 2, or 3 space
variables. The number of space variables used to
describe a physical system is called its dimension
(frequently denoted 1D, 2D, or 3D).

Field of application.
We can distinguish between chemical systems,
physical systems, biological systems, and so on.
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Classification of Mathematical Models
SQM Space Classification: Q Axis
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Phenomenological – mechanistic.
This has been discussed in detail before.
Stationary – instationary.
It depends on the question which we are asking (i.e. on
the ‘‘Q’’ of a mathematical model (S, Q, M)) whether a
stationary (time-independent) or instationary (time-
dependent) model is appropriate.
Lumped – distributed.
It depends on the question which we are asking (i.e. on
the ‘‘Q’’ of a mathematical model (S, Q, M)) whether a
lumped (space-independent) or distributed (space-
dependent) model is appropriate. 23.10.2017
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Direct – inverse.
Consider an input–output system. If Q assumes given
input and system parameters and asks for the output,
the model solves a so-called direct problem.
If, on the other hand, Q asks for the input or for
parameters of S, the model solves a so-called inverse
problem.
If Q asks for parameters of S, the resulting problem is
also called a parameter identification problem.
If Q asks for input parameters, the resulting problem is
also called a control problem, since in this case the
problem is to control the input in a way that generates
some desired output.
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Research – management.
Research models are used if Q aims at the
understanding of S; management models, on the other
hand, are used if the focus is on the solution of
practical problems related to S. Research models tend
to be more complex and less manageable from a
practical point of view.
Depending on Q, the same mathematical equations
can be a part of a research or of a management
model. For example, the predator–prey model is a
research model if the investigator just wants to
understand the oscillations of the predator and prey
populations, and it is a management model if is used
to control the predator and prey populations.
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Speculation – design.

Scale.
Depending on Q, the model will describe the system
on an appropriate scale. For example, depending on Q
it can be appropriate to virtually follow a fluid particle
on its way through the complex channels of a porous
medium, or just to compute the pressure drop across a
porous medium based on its permeability.
Obviously, these cases correspond to a description of
a porous medium on two scales
(microscopic/macroscopic). 23.10.2017
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Classification of Mathematical Models
SQM Space Classification: M Axis
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Linear – nonlinear.
In linear models, the unknowns (or their derivatives)
are combined using linear mathematical operations
only, such as addition/subtraction or multiplication with
parameters.
Nonlinear models, on the other hand, may involve the
multiplication of unknowns, the application of
transcendental functions, and so on. Nonlinear models
typically have more (and more interesting) solutions
but are harder to solve.

23.10.2017

157



Analytical – numerical.
In analytic models, the system behavior can be
expressed in terms of mathematical formulas involving
the system parameters. Based on these models,
qualitative effects of parameters and the entire system
behavior can be studied theoretically, without using
concrete values for the parameters.
Numerical models, on the other hand, can be used to
obtain the system behavior for specific parameter
values.
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Autonomous – nonautonomous.
This is a mathematical classification of instationary
models. If an equation does not depend explicitly on
time, it is called autonomous, otherwise
nonautonomous.
Continuous – discrete.
In continuous models, the independent variables may
assume arbitrary (typically real) values within some
interval. For example, many of the ODE models use
time (within some time interval) as the independent
variable. In discrete models, on the other hand, the
independent variables may assume some discrete
values only. 23.10.2017
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Difference equations.
In difference equations, the quantity of interest is
obtained as a sequence of discrete values. Usually,
this is expressed in terms of recurrence relations in
which each term of the sequence depends on previous
terms. Difference equations are frequently used to
describe discrete systems.
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Differential equations.
Differential equations are equations involving
derivatives of an unknown function. They are a main
tool to set up continuous mechanistic models.
Integral equations.
Integral equations are equations involving an integral
of an unknown function.
Algebraic equations.
AEs are equations involving the usual algebraic
operations such as addition, subtraction, division, and
so on.
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Phenomenological Models
Elementary Statistics - Descriptive Statistics
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The first thing that is usually done with a given dataset
is descriptive statistics, that is, the application of
methods that summarize and describe the data.

Table: Spring data.
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x 10 20 30 40 50
y 3 5 11 12 16



The simplest thing that one can do with a dataset is to
compute measures of position, which characterize the
approximate location of the data in various ways.
The most well known and most frequently used
measure of position is the arithmetic mean, which is
defined as follows:

�̅�𝑥 = ∑𝑖𝑖=1
𝑛𝑛 𝑥𝑥𝑖𝑖
𝑛𝑛

�𝑦𝑦 = ∑𝑖𝑖=1
𝑛𝑛 𝑦𝑦𝑖𝑖
𝑛𝑛

For example,the arithmetic means of the x and y are x
= 30 and y = 9.4, respectively, which basically says
that the x and y data spread around these values. 23.10.2017
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After computing measures of position, the next step
usually is to look at measures of variation (or
measures of statistical dispersion), which basically
measure how widely spread the values in a dataset
are. The most popular measure of variation is the
sample standard deviation

𝑠𝑠 = ∑𝑖𝑖=1
𝑛𝑛 𝑥𝑥𝑖𝑖− �𝑥𝑥𝑖𝑖 2

𝑛𝑛−1

s ≈ 15.8 and s ≈ 5.3 when applied to the x and y data,
respectively. 23.10.2017
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The sample standard deviation measures the
variability of the data in terms of the deviations from
the mean.
Basically, the sample standard deviation expresses an
average of these (squared) deviations. To understand
the meaning of this expression a little more, let us look
at what is meant by a ‘‘sample’’ here.
Statistical investigations typically focus on a well-
defined collection of objects which constitute what is
called a population.
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For example, if an investigator wants to characterize
the impact of a nutrient on a particular plant species,
then his investigation will involve a population
consisting of all plants of this species. In many cases,
it will be impossible and inefficient to investigate the
entire population due to limited time and resources
(e.g. the plant species under investigation may cover
most of the earth’s surface).
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Statistical investigations will thus typically be restricted
to a subset of a population which is called a sample. A
number of strategies such as random sampling (each
member of the population has an equal chance of
being selected) or stratified sampling (which uses a
division of the population into subgroups sharing the
same characteristics such as gender or age) are used
to make sure that the sample represents the entire
population as good as possible.
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Other frequently used measures of variation include

• the (sample) range, that is, the difference between
the maximum and minimum values in the sample;

• the (sample) average deviation, that is, the mean of
the absolute deviations |xi − x|;

• various dimensionless measures such as the
(sample) coefficient of variation cv = s/�̅�𝑥,
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Phenomenological Models
Elementary Statistics - Random Processes and Probability
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Suppose you are interested in some quantity which we
denote by X, and which may be temperature, the
concentration of some substance, and so on.
You will usually need to have precise measurements of
that quantity, so let us assume that you have a new
measurement device and want to know about the
measurement errors produced by that device.
Then, a standard procedure is to repeatedly measure
that quantity in a situation where the correct result is
known (e.g. by using standardized solutions if X is the
concentration of some substance).
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Assuming that the true value of the quantity of interest
is 20, the data produced in this way may look like this:

20.13443 19.83828 20.01702 19.99835 19.94526
20.01415 19.96707

What we see here is that the measurement values
oscillate in a random way around the true value. Most
measurement devices produce random errors of this
kind, which is no problem as long as the amplitude of
these oscillations is small enough.
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Now a natural question regarding the above data is
this:

What is the probability with which the deviations of the
measurement value from the true value will be less
than some specified value such as 0.1?
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In statistical terms, we would say that the above data
have been generated by the random variable X.

(Random variable)
A random variable is a variable that has a single
numerical value, determined by chance, for each
outcome of a procedure.
Perhaps the most classical example is the random
variable
X1 : result of a dice
X2: waiting time at a bus stop if you arrive there without
knowing the time table and many other examples. 23.10.2017
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Let us ask for the probability with which a random
variable attains certain values.
This is an easy thing if one is concerned with simple
systems such as a dice.
Everyone of us knows that the probability of getting a
‘‘3’’ in a dice play is 1/6 or 16.7%. In statistics, this is
usually written as

P(X1 = 3) = 1/6
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(Events and sample space)

• An event is any collection of results or outcomes of a
procedure.

• A simple event is an outcome or an event that cannot
be further broken down into simpler components.

• The sample space for a procedure consists of all
possible simple events.
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In the dice example, the sample space would be

S = {1, 2, 3, 4, 5, 6}

and all subsets A ⊂ S such as

A1 = {1, 2} (‘‘dice result is below 3’’) or
A2 = {1, 3, 5} (‘‘dice result is an odd number’’)
would be events in the sense of the above definition.

Examples of simple events would be A3 = {2}, A4 =
{5}, and so on. 23.10.2017
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In the bus-waiting-time example, the sample space
would be

S = {x ∈ R|0 ≤ x < 15}

if we assume that the buses arrive in 15-min intervals,
and a possible event would be [0, 2[ (‘‘the waiting time
is below 2min’’).

23.10.2017

178



The probability function P is usually defined based on
axioms.

(Probability)

Given a sample space S, the probability function P
assigns to each event A ⊂ S a number P(A) ∈ [0, 1],
called the probability of the event A, which will give a
precise measure of the chance that A will occur.
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(Classical approach to probability)

Assume that a given procedure has n different simple
events and that each of those simple events has an
equal chance of occurring. If event A can occur in s of
these n ways, then

P(A) = s/n
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This formula works well for the dice and many other
similar discrete random variables that involve a finite
number of equally likely possible results (note that
discrete random variables may also involve countable
infinitely many possible results).

It does not work, however, for continuous random
variables with an infinite number of possible results
similar to the random variable X2 discussed above that
describes the bus waiting time.
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S = {x ∈ R|0 ≤ x < 15} of this example indeed involves
an infinite number of continuously distributed possible
results between 0 and 15 min. In this case, the
following formula can be used:

(Relative frequency approximation)

Assume that a given procedure is repeated n times,
and let fn(A) denote the relative frequency with which
an event A occurs. Then,
P(A) = lim n→∞ fn(A)

23.10.2017

182



This means that if we, for example, want to
approximate the probability of bus waiting times
between 0 and 2 min (i.e. the probability of A = [0, 2[),
the following approximation can be used

P(A) ≈ fn(A)

and the quality of this approximation will increase as n
is increased.
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