| Full Name: | Section No: 2 |
| :--- | :--- |
| Student ID: | Duration: 100 mins |
| Department Name: | Date: 08.22 .2022 |
| Instructor: Assistant Professor Mutlu Akar | Signature: |

1) A solution of the differential equation $x^{2} y$ " $+k x y^{\prime}+3 y=0$ is $y=x$ such that $k \in \mathbb{R}$ and $x>0$. Which of the following is another solution to this equation?
a) $y=e^{x}$
b) $y=e^{3 x}$
c) $y=\ln x$
d) $y=x^{2}$
$y=x$ fir cōzim rise denk levi saplar. $y \subset x^{\text {a }} \Rightarrow y^{\prime}=1 \Rightarrow y^{\prime \prime}=0$ $\Rightarrow x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0 \quad x=e^{t} \Rightarrow y^{\prime}=e^{-t} D y \Rightarrow y^{\prime \prime}=e^{-2 t} D(D-1) y, y=c_{1} e^{t}+c_{2} e^{3 t}$ $e^{2 t} \cdot e^{-2 t} D(D-1) y-3 e^{t} \cdot e^{-t} D y+3 y=0 \Rightarrow\left(D^{2}-D-3 D+3\right) y=0 \quad \begin{aligned} & \left(D^{2}-4 D+3\right) y=0\end{aligned} \begin{aligned} & =c_{1} x+c_{2} x^{3}\end{aligned}$
2) Which of the following is the new form of the differential equation $4 y^{\prime}=3 y+2 x \sqrt{y}$ that will be obtained as a result of applying an appropriate transformation?
$y^{\prime}+p(x) y=q(x) y^{\prime}$
a) $z^{\prime}-z=x$
b) $z^{\prime}-z=4 x$
(c) $\mathrm{z}^{\prime}-\frac{3}{8} z=\frac{x}{4}$
d) $z^{\prime}-\frac{3}{8} z=x$
$y^{\prime}-\frac{3}{4} y=\frac{x}{2} y^{1 / 2}$
e) $z^{\prime}+z=\frac{x}{4}$

$$
\frac{y^{\prime}}{\sqrt{y}}-\frac{3}{4} \sqrt{y}=\frac{x}{2}
$$

$\left.\begin{array}{l}\sqrt{y}=z \\ \frac{y^{\prime}}{2 \sqrt{y}}=z^{\prime} \Rightarrow \frac{y^{\prime}}{\sqrt{y}}=2 z^{\prime}\end{array}\right\} \Rightarrow 2 z^{\prime}-\frac{3}{4} z=\frac{x}{2} \Rightarrow z^{\prime}-\frac{3}{8} z=\frac{x}{4}$.
3) Which of the following is B for the differential equation $\left(5 x^{3}+B y^{3}\right) d x+\left(2 y-x^{3}\right) d y=0$ to be exact?
(a) $-\frac{x^{2}}{y^{2}}$
b) $\frac{3 x^{2}}{y}$
c) $-x y$
d) $\frac{x^{2}}{y}$
e) $x^{2} y$
$\frac{\partial}{\partial y}\left(5 x^{3}+B y^{3}\right)=\frac{\partial}{\partial x}\left(2 y-x^{3}\right) \Rightarrow 3 B y^{2}=-3 x^{2} \Rightarrow B=\frac{-x^{2}}{y^{2}}$
4) Since the general solution of the differential equation $y^{\prime \prime}+3 y^{\prime}-4 y=-5 e^{x}$ is expressed as $y=C_{1}(x) e^{x}+C_{2}(x) e^{-4 x}$, which of the following is the derivative function $C_{1}{ }^{\prime}=\frac{d C_{1}}{d x}$ ?
a) $e^{3 x}$
b) $e^{x}$
c) $e^{5 x}$
d) 1

$4 / c_{1}^{1} e^{x}+c_{2}^{1} e^{-4 x}=0$
$c_{1}^{\prime} e^{x}-4 c_{2}^{\prime} e^{-4 x}=-5 e^{x}$

$$
\begin{aligned}
5 c_{1}^{\prime} e^{x} & =-5 e^{x} \\
c_{n}^{\prime} & =-1
\end{aligned}
$$

5) Which of the following is the singular solution of the differential equation $x y^{\prime}=y-\ln \left(\frac{1}{y^{\prime}}\right)$ ?
a) $y=\ln x$
b) $y=\frac{1}{\ln x}$
(c) $=1+\ln x$
d) $y=\ln (1+x)$
e) $y=\ln \left(\frac{1}{x}\right)$
$\frac{-p / p^{2}}{1 / p}$ $y=x y^{\prime}+\ln \left(\frac{1}{y^{\prime}}\right) \quad y^{\prime}=p \Rightarrow \quad y=x p+\ln \left(\frac{1}{p}\right) \Rightarrow y^{\prime}=p+x p+$
$\Rightarrow p=p+x p^{\prime}-\frac{p^{\prime}}{p} \Rightarrow p^{\prime}\left[x-\frac{1}{p}\right]=0 \Rightarrow y$
6) Which of the following differential equations has the solution $y=\frac{x}{x+1}$ ?
a) $x y^{\prime}=y$
b) $y y^{\prime}=x$
c) $y^{2} y^{\prime}=x^{2}$
d) $x^{2} y^{\prime}=y^{2}$
e) $y^{2} y^{\prime}=x$

$$
y^{\prime}=\frac{x+1-x}{(x+1)^{2}} \Rightarrow y^{\prime}=\frac{1}{(x+1)^{2}} \Rightarrow x^{2} y^{\prime}=\frac{x^{2}}{(x+1)^{2}} \Rightarrow x^{2} y^{\prime}=y^{2}
$$

7) Which of the following is the general solution of the differential equation $(x+1) y^{\prime}=y+e^{x}(x+1)^{2}$ ?

$$
\text { a) } \frac{y}{(x+1)^{2}}=e^{x}+C
$$

(b) $\frac{y}{x+1}=e^{x}+C$
c) $\frac{y}{(x+1)^{3}}=e^{2 x}+C$
d) $\frac{y}{x+1}=e^{2 x}+C$
e) $\frac{y}{x+1}=e^{-2 x}+C$

$$
\begin{aligned}
& y^{\prime}=\frac{y^{x+1}}{x+1}+e^{x} \quad(x \neq-1) \\
& y^{\prime}-\frac{y}{x+1}=e^{x}(x+1) \quad \text { L.D.D. } 1 . \\
& \Rightarrow \frac{y^{\prime}}{x+1}-\frac{y}{(x+1)^{2}}=e^{x} \Rightarrow \frac{d y}{x+1}-\frac{y d x}{(x+1)^{2}}=e^{x} d x \quad\left\{\frac{y}{x+1}=e^{x}+c\right.
\end{aligned}
$$

8) Which of the following is the general solution of the differential equation $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0$ ?
a) $y=C_{1} x+C_{2}$
b) $y=C_{1} x^{2}+C_{2}$
c) $y=C_{1} e^{x}+C_{2}$
d) $y^{2}=C_{1} x+C_{2}$
e) $y^{2}=C_{2} e^{C_{1} x}$

$$
\left.\begin{array}{l}
y y^{\prime \prime}+y^{\prime 2}=0 \\
y^{\prime}=p \\
y^{\prime \prime}=p \frac{d p}{d y}
\end{array}\right\} \quad \begin{aligned}
& y p \frac{d p}{d y}+p^{2}=0 \\
& p\left[y \frac{d p}{d y}+p\right]=0
\end{aligned}
$$

$$
\text { 10 } \left.c_{c_{0}}\right) p=0 \Rightarrow y^{\prime}=0 \Rightarrow \text { T.c. }
$$

1) $p=0 \Rightarrow y=0 \Rightarrow y=c$ T.c.
2) $y \frac{d p}{d y}+p=0 \Rightarrow \int \frac{d p}{p}+\int \frac{d y}{y} \neq 0$
3) Which of the following is the recurrence relation obtained for the power series solution of the differential equation $y^{\prime \prime}+2 y^{\prime}=0$ around the point $x=0$ ?
a) $a_{n}=\frac{2}{n} a_{n-1}$
b) $a_{n}=\frac{1}{n} a_{n-1}$
c) $a_{n}=\frac{3}{n} a_{n-1}$
d) $a_{n}=-\frac{2}{n} a_{n-1}$
e) $a_{n}=-\frac{1}{n} a_{n-1}$

DAHIL DE GAL
10) Which of the following is true about the differential equation $y^{(4)}-y^{\prime \prime \prime}-3 y^{\prime \prime}+5 y^{\prime}-2 y=0$ ?
a) The characteristic equation has a coincident root.
b) The characteristic equation has a complex root.
c) The general solution has 3 constants.
d) The characteristic equation has no real roots.
e) One of the roots of the characteristic equation is 2 .

$$
\begin{aligned}
& (r-1)^{2} \cdot\left(r^{2}+r-2\right)=0 \\
& (r-1)^{2}(r+2)(r-1)=0
\end{aligned}
$$

$$
\begin{aligned}
& \left(D^{4}-D^{3}-3 D^{2}+5 D-2\right) y=0 \\
& k \cdot-1: r^{4}-r^{3}-3 r^{2}+5 r-2=0 \\
& \left(r^{4}-r^{3}-3 r^{2}+3 r+2 r-2=0\right. \\
& r^{3}(r-1)-33(r-1+2(r-1)=0 \\
& \left(r^{2}-1\right)\left[r^{3}-3 r+2\right]=0 \\
& r_{1}=1 \quad r^{3}-3 r+2+\frac{r-1}{r^{2}+r-2}
\end{aligned}
$$

11) The general solution of the differential equation $y^{\prime \prime}+a y^{\prime}+b y=0$ is $y=e^{2 x}\left(c_{1} \sin 2 x+c_{2} \cos 2 x\right)$. Which of the following is $\mathrm{a}+\mathrm{b}$ ?
(a) 2
c) 6
d) 8
e) 10

$$
\begin{aligned}
& r_{1 r 2}=2 \mp 2 i \\
& (r-2+2 i)(r-2-2 i) \\
& r^{2}-2 r-2 i r-2 r+4+4 / 2+2 i r-4 h+4 \\
& r^{2}-4 r+8 \quad a=-4 \\
& \quad b=8
\end{aligned}
$$

12) Which of the following is the function $x_{1}(t)$ in the system of differential equations $\begin{aligned} & \frac{d x_{1}}{d t}=x_{1}+x_{2}+e^{-2 t} \\ & \frac{d x_{2}}{d t}=4 x_{1}-2 x_{2}\end{aligned}$ ?
a) $x_{1}(t)=c_{1} e^{2 t}+c_{2} e^{-3 t}$
b) $x_{1}(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t}$
c) $x_{1}(t)=c_{1} e^{-2 t}+c_{2} e^{3 t}$
d) $x_{1}(t)=c_{1} e^{2 t}+c_{2} e^{3 t}$
e) $x_{1}(t)=c_{1} e^{2 t}+c_{2} e^{4 t}$
13) Which of the following is the solution function group that forms the general solution of the 3rd order differential equation?

$$
\begin{aligned}
& \text { a) } y_{1}=2 x^{2}+1, y_{2}=x^{2}-1, y_{3}=1 \\
& \text { b) } y_{1}=1, y_{2}=\sin x, y_{3}=-2 \sin x \\
& \text { e) } y_{1}=e^{-2 x}, y_{2}=e^{x}, y_{3}=4 e^{-2 x} \\
& \text { (d) } y_{1}=e^{2 x}, y_{2}=x e^{2 x}, y_{3}=e^{-x} \\
& \text { e) } y_{1}=\cos x, y_{2}=e^{x}, y_{3}=4 \cos x
\end{aligned}
$$

$$
c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3}=0
$$

$$
c_{1}\left(2 x^{2}+1\right)+c_{2}\left(x^{2}-1\right)+c_{3}=0
$$

$$
C_{1}=1 \quad C_{2}=-2
$$

$$
C_{3}=-3
$$

$$
2 x^{2}+1-2 x^{2}+2-3=0
$$

14) If $a$ and $b$ are real numbers and the solution of the differential equation $a y^{\prime \prime}+b y^{\prime}+3 y=0$ is $y=-2 x e^{-3 x}$, which of the following is $a+b$ ?
a) $\frac{2}{3}$
b) $\frac{4}{3}$
c) $\frac{5}{3}$
d) $\frac{7}{3}$
e) $\frac{8}{3}$
15) When the Laplace transform is applied to the linear differential equation with constant coefficients at the time $t=0, Y(s)=\frac{3 s}{s^{2}+4 s+8}$ is calculated such that $L^{-1}\{Y(s)\}=y(t)$. Accordingly, which of the following is the solution function $y(t)$ ?
a) $y(t)=3 e^{-2 t}(\cos 2 t+\sin 2 t)$
b) $y(t)=3 e^{2 t}(\cos 2 t-\sin 2 t)$
c) $y(t)=3 e^{-2 t}(\cos 2 t-\sin 2 t)$
d) $y(t)=3 e^{2 t}(\cos 2 t+\sin 2 t)$
e) $y(t)=3 e^{-2 t}(\cos 2 t-2 \sin 2 t)$

$$
\begin{array}{llll}
2 r^{2}-r=0 & r_{1}=0 & y_{1}=1 & y!=0 \\
r(2 x-1)=0 & r_{2}=1 / 2 & y_{2}=e^{x / 2} & y_{2}^{\prime}=\frac{1}{2}
\end{array}
$$

16) Which of the following is the Wronskian determinant of the solution set of the differential equation $2 y^{\prime \prime}-y^{\prime}=0$ ?
a) $\frac{1}{2} e^{\frac{x}{2}}$
b) $e^{\frac{x}{2}}$
c) 0
d) $\frac{1}{2} e^{-\frac{x}{2}}$
e) $e^{-\frac{x}{2}}$
17) When the Laplace transform is applied to the initial value problem $y^{\prime \prime \prime}+a y^{\prime \prime}+b y^{\prime}+c y=0 ; y(0)=1$, $y^{\prime}(0)=0, y^{\prime \prime}(0)=0$, the expression $Y(s)=\frac{s^{2}+5 s}{(s+1)\left(s^{2}+4 s-4\right)}$ is obtained. So which of the following is $a+b+c$ ?
a) -1
b) 0
c) 1
d) 2
e ) -2
18) Which of the following is the solution of the system of differential equations $\left\{\begin{array}{l}u^{\prime}=4 u-v \\ v^{\prime}=-4 u+4 v\end{array}\right.$ such that $u=u(x)$ and $v=v(x)$ ?
a) $u(x)=c_{1} e^{2 x}+c_{2} e^{6 x}, v(x)=2 c_{1} e^{2 x}-2 c_{2} e^{6 x}$
b) $u(x)=c_{1} e^{-2 x}+c_{2} e^{6 x}, v(x)=2 c_{1} e^{-2 x}-2 c_{2} e^{6 x}$
c) $u(x)=c_{1} e^{2 x}+c_{2} e^{-6 x}, v(x)=2 c_{1} e^{2 x}-2 c_{2} e^{-6 x}$
d) $u(x)=c_{1} e^{-2 x}+c_{2} e^{-6 x}, v(x)=2 c_{1} e^{-2 x}-2 c_{2} e^{-6 x}$
e) $u(x)=c_{1} e^{2 x}-2 c_{2} e^{6 x}, v(x)=c_{1} e^{2 x}+c_{2} e^{6 x}$
19) Which of the following is the general solution of the differential equation $y^{(5)}+2 y^{\prime \prime \prime}+y^{\prime}=0$ ?
a) $y=c_{1} x+\left(c_{2} x+c_{3}\right) \sin x++\left(c_{4} x+c_{5}\right) \cos x$
b) $y=c_{1}+\left(c_{2} x+c_{3}\right) \sin x++\left(c_{4} x+c_{5}\right) \cos x$
c) $y=c_{1}+\left(c_{2} x+c_{3}\right) \sin 2 x++\left(c_{4} x+c_{5}\right) \cos 2 x$
d) $y=c_{1} x^{2}+\left(c_{2} x+c_{3}\right) \sin x++\left(c_{4} x+c_{5}\right) \cos x$
e) $y=c_{1} x^{2}+\left(c_{2} x+c_{3}\right) \sin 2 x++\left(c_{4} x+c_{5}\right) \cos 2 x$
20) The differential equation $2 y^{\prime \prime \prime}+6 y^{\prime \prime}+8 y^{\prime}+4 y=3 \sin 2 x-4 e^{-x}+8 x^{2}+5+e^{-x} \cos x$ is given. Which of the following cannot be the particular solution of the nonhomogeneous part?
a) $y_{p}=A \cos 2 x+B \sin 2 x$
b) $y_{p}=A x e^{-x}$.
c) $y_{p}=e^{-x}(A \cos x+B \sin x)$
(d) $y_{p}=A$
e) $y_{p}=A x^{2}+B x+C$
