## Electronic Devices and Circuit Theory

Boylestad

## BJT AC Analysis

Chapter 5

## Ch. 5 Summary

## BJT Transistor Modeling

A model is an equivalent circuit that represents the AC characteristics of the transistor.

A model uses circuit elements that approximate the behavior of the transistor.
There are two models commonly used in small signal AC analysis of a transistor:
$r_{e}$ model
Hybrid equivalent model

## Ch. 5 Summary

## The $\mathrm{r}_{\mathrm{e}}$ Transistor Model

BJTs are basically current-controlled devices; therefore the $r_{e}$ model uses a diode and a current source to duplicate the behavior of the transistor.
One disadvantage to this model is its sensitivity to the DC level. This model is designed for specific circuit conditions.


## Ch. 5 Summary

## Common-Emitter Configuration

The diode $r_{\mathrm{e}}$ model can be replaced by the resistor $r_{\mathrm{e}}$.

$$
I_{e}=(\beta+1) I_{b} \cong \beta I_{b}
$$

$$
r_{e}=\frac{26 m V}{I_{e}}
$$

## Ch. 5 Summary

## Common-Emitter Configuration

Input impedance: $Z_{i}=\beta r_{e}$
Output impedance:

$$
Z_{o}=r_{o} \cong \infty \Omega
$$

$$
\begin{aligned}
Z_{i} & =\frac{V_{i}}{I_{b}}=\frac{V_{b e}}{I_{b}} \\
V_{b e} & =I_{e} r_{e}=\left(I_{c}+I_{b}\right) r_{e}=\left(\beta I_{b}+I_{b}\right) r_{e} \\
& =(\beta+1) I_{b} r_{e} \\
Z_{i} & =\frac{V_{b e}}{I_{b}}=\frac{(\beta+1) I_{b} r_{e}}{I_{b}}
\end{aligned}
$$

Voltage gain:

$$
A_{v}=-\frac{R_{L}}{r_{e}}
$$

Current gain:

$$
A_{i}=\left.\beta\right|_{r_{o}=\infty}
$$

## Ch. 5 Summary

## Common-Base Configuration

Input impedance:

$$
r_{e}=\frac{26 m V}{I_{e}} \quad Z_{i}=r_{e}
$$



## Output impedance:

$$
Z_{o} \cong \infty \Omega
$$

Voltage gain:

$$
A_{v}=\frac{\alpha R_{L}}{r_{e}} \cong \frac{R_{L}}{r_{e}}
$$

## Current gain:

$$
A_{i}=-\alpha \cong-1
$$



## Ch. 5 Summary

## The Hybrid Equivalent Model

Hybrid parameters are developed and used for modeling the transistor. These parameters can be found on a transistor's specification sheet:
$h_{i}=$ input resistance
$h_{r}=$ reverse transfer voltage ratio $\left(V_{/} / V_{0}\right) \cong 0$
$h_{f}=$ forward transfer current ratio ( $\left.I_{d} l_{i}\right)$
$h_{0}=$ output conductance


## Ch. 5 Summary

## Simplified General h-Parameter Model


$h_{i}=$ input resistance
$h_{f}=$ forward transfer current ratio $\left(I_{d} I_{i}\right)$
Electronic Devices and Circuit Theory

## Ch. 5 Summary

## h-Parameter vs. $\boldsymbol{r}_{\boldsymbol{e}}$ Model

## Common-Emitter



## Common-Base

$$
\begin{aligned}
& h_{i b}=r_{e} \\
& h_{i b}=-\alpha \cong-1
\end{aligned}
$$



## Ch. 5 Summary

## Common-Emitter Fixed-Bias Configuration

The input is applied to the base The output is taken from the collector

High input impedance
Low output impedance
High voltage and current gain
Phase shift between input and output is $180^{\circ}$


## Ch. 5 Summary

## Common-Emitter Fixed-Bias Configuration



AC equivalent

$r_{e}$ model

## Ch. 5 Summary

## Common-Emitter Fixed-Bias Calculations

Input impedance:

Output impedance:

Voltage gain:

$$
\begin{aligned}
& Z_{i}=R_{B} \| \beta r_{e} \\
& \left.\mathrm{Z}_{\mathrm{i}} \cong \beta \mathrm{r}_{\mathrm{e}}\right|_{\mathrm{R}_{\mathrm{g}} \geq 10 \beta_{\mathrm{e}}}
\end{aligned}
$$

$$
\begin{aligned}
& Z_{o}=R_{c} / r_{o} \\
& \left.Z_{o} \cong R_{c}\right|_{r_{0} \geq 10 R_{c}}
\end{aligned}
$$

$$
A_{v}=\frac{V_{o}}{V_{i}}=-\frac{\left(R_{c} / / r_{o}\right)}{r_{e}}
$$

$$
A_{v}=-\left.\frac{R_{C}}{r_{e}}\right|_{r_{o} \geq 10 R_{c}}
$$



Current gain: $\left.A_{i} \cong \beta\right|_{r_{0} \geqslant 10 R_{C}, R_{B} \geq 10 \beta_{e}}$

$$
A_{L_{L}}=\frac{I_{o}}{l_{i}}=\frac{-\frac{V_{o}}{R_{L_{0}}}}{\frac{V_{i}}{Z_{i}}}=-\frac{V_{o}}{V_{i}}: \frac{Z_{i}}{R_{L}}
$$

Current gain from voltage gain:

$$
A_{i}=-A_{v} \frac{Z_{i}}{R_{c}}
$$

## Ch. 5 Summary

## Common-Emitter Voltage-Divider Bias


$r_{e}$ model requires you to determine $\beta$, $r_{e}$, and $r_{0}$.


## Ch. 5 Summary

## Common-Emitter Voltage-Divider Bias Calculations

Input impedance

$$
\begin{aligned}
& R^{\prime}=R_{1} \| R_{2} \\
& Z_{i}=R^{\prime} \| \beta r_{e}
\end{aligned}
$$

Output impedance

$$
\begin{aligned}
& Z_{o}=R_{C} \| r_{o} \\
& \left.Z_{o} \cong R_{C}\right|_{r_{0} \geq 10 R_{c}}
\end{aligned}
$$

$$
A_{i_{L}}=\frac{I_{o}}{I_{i}}=\frac{-\frac{V_{o}}{R_{L}}}{\frac{V_{i}}{Z_{i}}}=-\frac{V_{o}}{V_{i}} \cdot \frac{Z_{i}}{R_{L}}
$$

Current gain from $\mathrm{A}_{\mathrm{v}}$

$$
A_{i}=-A_{v} \frac{z_{i}}{R_{C}}
$$

Voltage gain

$$
\begin{aligned}
& A_{v}=\frac{V_{o}}{V_{i}}=\frac{-R_{C} / \| r_{o}}{r_{e}} \\
& A_{v}=\frac{V_{o}}{V_{i}} \cong-\left.\frac{R_{C}}{r_{e}}\right|_{r_{0} \geq 10 R_{c}}
\end{aligned}
$$



## Ch. 5 Summary

## Common-Emitter Emitter-Bias Configuration



## Ch. 5 Summary

## Impedance Calculations

## Input impedance:

$$
\begin{aligned}
& Z_{i}=R_{B} / / Z_{b} \\
& Z_{b}=\beta r_{e}+(\beta+1) R_{E} \\
& Z_{b} \cong \beta\left(r_{e}+R_{E}\right) \\
& Z_{b} \cong \beta R_{E}
\end{aligned}
$$

## Output impedance:



$$
Z_{o}=R_{C}
$$

## Ch. 5 Summary

## Gain Calculations

## Voltage gain:

$$
\begin{aligned}
& A_{v}=\frac{V_{o}}{V_{i}}=-\frac{\beta R_{C}}{Z_{b}} \\
& A_{v}=\frac{V_{o}}{V_{i}}=-\left.\frac{R_{C}}{r_{e}+R_{E}}\right|_{z_{b}=\beta\left(r_{e}+R_{E}\right)} \\
& A_{v}=\frac{V_{o}}{V_{i}} \cong-\left.\frac{R_{C}}{R_{E}}\right|_{z_{b} \equiv \beta R_{E}}
\end{aligned}
$$



## Current gain from $A_{v}$ :

$$
A_{i}=-A_{v} \frac{Z_{i}}{R_{C}}
$$

## Ch. 5 Summary

## Emitter-Follower Configuration



This is also known as the common-collector configuration.
The input is applied to the base and the output is taken from the emitter.
There is no phase shift between input and output.

## Ch. 5 Summary

## Impedance Calculations

## Input impedance:

$$
\begin{aligned}
& Z_{i}=R_{B} \| Z_{b} \\
& Z_{b}=\beta r_{e}+(\beta+1) R_{E} \\
& Z_{b} \cong \beta\left(r_{e}+R_{E}\right) \\
& Z_{b} \cong \beta R_{E}
\end{aligned}
$$

## Output impedance:

$$
\begin{aligned}
& Z_{o}=R_{E}| | r_{e} \\
& \left.Z_{o} \cong r_{e}\right|_{R_{E} \gg r_{e}}
\end{aligned}
$$



## Ch. 5 Summary

## Gain Calculations

## Voltage gain:

$$
\begin{aligned}
& A_{\nu}=\frac{V_{o}}{V_{i}}=\frac{R_{E}}{R_{E}+r_{e}} \\
& A_{V}=\left.\frac{V_{o}}{V_{i}} \cong\right|_{R_{E}>r_{e}} R_{E}+r_{e}=R_{E}
\end{aligned}
$$



## Current gain from voltage gain:

$$
A_{i}=-A_{v} \frac{Z_{i}}{R_{E}}
$$

## Ch. 5 Summary

## Common-Base Configuration

The input is applied to the emitter
The output is taken from the collector

Low input impedance.


High output impedance
Current gain less than unity
Very high voltage gain
No phase shift between input and output


## Ch. 5 Summary

## Calculations

## Input impedance: <br> $$
Z_{i}=R_{E} \| / r_{e}
$$

## Output impedance:

$$
Z_{o}=R_{c}
$$

## Voltage gain:

$$
A_{v}=\frac{V_{o}}{V_{i}}=\frac{\alpha R_{C}}{r_{e}} \cong \frac{R_{C}}{r_{e}}
$$

Current gain:

$$
A_{i}=\frac{I_{0}}{I_{i}}=-\alpha \cong-1
$$



## Ch. 5 Summary

## Common-Emitter Collector Feedback



## Configuration



- A variation of the common-emitter fixed-bias configuration
- Input is applied to the base
- Output is taken from the collector
- There is a $180^{\circ}$ phase shift between the input and output


## Ch. 5 Summary

## Calculations

Input impedance:

$$
Z_{i}=\frac{r_{e}}{\frac{1}{\beta}+\frac{R_{C}}{R_{F}}}
$$

Output impedance: $\quad Z_{o} \cong R_{C} / / R_{F}$

Voltage gain: $A_{v}=\frac{V_{o}}{V_{i}}=-\frac{R_{C}}{r_{e}}$

## Current gain:

$$
\begin{aligned}
& A_{i}=\frac{I_{o}}{I_{i}}=\frac{\beta R_{F}}{R_{F}+\beta R_{C}} \\
& A_{i}=\frac{I_{o}}{I_{i}} \cong \frac{R_{F}}{R_{C}}
\end{aligned}
$$



## Ch. 5 Summary

## Two-Port Systems Approach

## With $V_{i}$ set to 0 V :

$$
Z_{T h}=Z_{o}=R_{o}
$$

## The voltage across the open terminals is:

$$
E_{T h}=A_{\text {vNL }} V_{i}
$$

> where $A_{v N L}$ is the noload voltage gain


## Ch. 5 Summary

## Effect of Load Impedance on Gain

This model can be applied to any current- or voltagecontrolled amplifier.
Adding a load reduces the gain of the amplifier:


$$
A_{v}=\frac{V_{o}}{V_{i}}=\frac{R_{L}}{R_{L}+R_{o}} A_{V N L}
$$

$$
A_{i}=-A_{v} \frac{Z_{i}}{R_{L}}
$$

## Ch. 5 Summary

## Effect of Source Impedance on Gain

The amplitude of the applied signal that reaches the input of the amplifier is:

$$
V_{i}=\frac{R_{i} V_{s}}{R_{i}+R_{s}}
$$



The internal resistance of the signal source reduces the overall gain:

$$
A_{v s}=\frac{V_{o}}{V_{s}}=\frac{R_{i}}{R_{i}+R_{s}} A_{v L}
$$

## Ch. 5 Summary

## Combined Effects of $R_{S}$ and $R_{L}$ on Voltage Gain

Effects of $\boldsymbol{R}_{L}$ :

$$
\begin{aligned}
& A_{\nu}=\frac{V_{o}}{V_{i}}=\frac{R_{L} A_{v N L}}{R_{L}+R_{o}} \\
& A_{i}=-A_{v} \frac{R_{i}}{R_{L}}
\end{aligned}
$$



Effects of $\boldsymbol{R}_{L}$ and $\boldsymbol{R}_{\boldsymbol{S}}$ :

$$
\begin{aligned}
& A_{v s}=\frac{V_{o}}{V_{s}}=\frac{R_{i}}{R_{i}+R_{s}} \frac{R_{L}}{R_{L}+R_{o}} A_{v N L} \\
& A_{i s}=-A_{v s} \frac{R_{s}+R_{i}}{R_{L}}
\end{aligned}
$$

## Ch. 5 Summary

## Cascaded Systems

- The output of one amplifier is the input to the next amplifier
- The overall voltage gain is determined by the product of gains of the individual stages
- The DC bias circuits are isolated from each other by the coupling capacitors
- The DC calculations are independent of the cascading
- The AC calculations for gain and impedance are interdependent


## Ch. 5 Summary

## R-C Coupled BJT Amplifiers

Voltage gain:

$$
\begin{aligned}
& A_{n 1}=\frac{R_{c}\left\|R_{1}\right\| R_{2} \| \beta R_{e}}{r_{e}} \\
& A_{v_{2}}=\frac{R_{c}}{r_{r}} \\
& A_{v}=A_{v 1} A_{v 2} \\
& \text { Input impedance, } \\
& \text { first stage: } \\
& Z_{i}=R_{1}\left\|R_{2}\right\| \beta R_{e}
\end{aligned}
$$



Output impedance, second stage:

$$
Z_{o}=R_{C}
$$

## Ch. 5 Summary

## Cascade Connection

This example is a CE-CB combination. This arrangement provides high input impedance but a low voltage gain.

The low voltage gain of the input stage reduces the Miller
 input capacitance, making this combination suitable for highfrequency applications.

## Ch. 5 Summary

## Darlington Connection

The Darlington circuit provides very high current gain, equal to the product of the individual current gains:

$$
\beta_{D}=\beta_{1} \beta_{2}
$$



## The practical significance is that the circuit provides a very high input impedance.

## Ch. 5 Summary

## DC Bias of Darlington Circuits

## Base current:

$$
I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}+\beta_{D} R_{E}}
$$

## Emitter current:

$$
I_{E}=\left(\beta_{D}+1\right) I_{B} \cong \beta_{D} I_{B}
$$

## Emitter voltage:

$$
V_{E}=I_{E} R_{E}
$$

## Base voltage:

$$
V_{B}=V_{E}+V_{B E}
$$



## Ch. 5 Summary

## Feedback Pair

This is a two-transistor circuit that operates like a Darlington pair, but it is not a Darlington pair.

It has similar characteristics:

- High current gain
- Voltage gain near unity
- Low output impedance
- High input impedance


The difference is that a Darlington uses a pair of like transistors, whereas the feedback-pair configuration uses complementary transistors.

## Ch. 5 Summary

## Current Mirror Circuits

## Current mirror circuits provide constant current in integrated circuits.



## Ch. 5 Summary

## Current Source Circuits

Constant-current sources can be built using FETs, BJTs, and combinations of these devices.


$$
I \cong I_{E}=\frac{V_{Z}-V_{B E}}{R_{E}}
$$



$$
I_{E} \cong I_{C}
$$

## Ch. 5 Summary

## Current Source Circuits

$$
\begin{aligned}
& V_{G S}=0 \mathrm{~V} \\
& I_{D}=I_{D S S}=10 \mathrm{~mA}
\end{aligned}
$$



## Ch. 5 Summary

## Fixed-Bias

## Input impedance:

$$
Z_{i}=R_{B} \| h_{i e}
$$



## Output impedance:

$$
Z_{o}=R_{C} \| 1 / h_{o e}
$$

## Voltage gain:

$$
A_{v}=\frac{V_{o}}{V_{i}}=-\frac{h_{f e}\left(R_{c} \| 1 / h_{o} e\right)}{h_{i e}}
$$



$$
\text { Current gain: } \quad A_{i}=\frac{I_{0}}{I_{i}} \cong h_{r e}
$$

## Ch. 5 Summary

## Voltage-Divider Configuration

Input impedance:

$$
Z_{i}=R^{\prime} \| h_{i e}
$$

Output impedance:

$$
Z_{o} \cong R_{C}
$$

Voltage gain:

$$
A_{v}=-\frac{h_{t e}\left(R_{c} / / 1 / h_{o e}\right)}{h_{i e}}
$$



Current gain:

$$
A_{i}=-\frac{h_{t} R^{\prime}}{R^{\prime}+h_{i e}}
$$

## Ch. 5 Summary

## Emitter-Follower Configuration

## Input impedance:

$$
\begin{gathered}
Z_{b}=h_{t} R_{E} \\
Z_{i}=R_{o} \| Z_{b}
\end{gathered}
$$

Output impedance:

$$
Z_{o} \cong R_{E} \| \frac{h_{i e}}{h_{t e}}
$$

## Voltage gain:

$$
A_{v}=\frac{V_{o}}{V_{i}}=\frac{R_{E}}{R_{E}+h_{i e} / h_{f e}}
$$



## Ch. 5 Summary

## Common-Base Configuration

Input impedance:

$$
Z_{i}=R_{E} / / h_{i b}
$$

Output impedance:

$$
Z_{o}=R_{C}
$$

## Voltage gain:

$$
A_{v}=\frac{V_{o}}{V_{i}}=-\frac{h_{t b} R_{C}}{h_{i b}}
$$

Current gain:

$$
A_{i}=\frac{I_{o}}{I_{i}}=h_{t b} \cong-1
$$


© 2013 by Pearson Higher Education, Inc

## Ch. 5 Summary

## Troubleshooting

Check the DC bias voltages
$\checkmark$ If not correct, check power supply, resistors, transistor. Also check the coupling capacitor between amplifier stages.

## Check the AC voltages

$\checkmark$ If not correct check transistor, capacitors and the loading effect of the next stage.

