Electronic Devices and Circuit Theory

Boylestad

BJT AC Analysis Chapter 5

ALWAYS LEARNING

BJT Transistor Modeling

A model is an equivalent circuit that represents the AC characteristics of the transistor.

A model uses circuit elements that approximate the behavior of the transistor.

There are two models commonly used in small signal AC analysis of a transistor:

r_e model
Hybrid equivalent model

The r_e Transistor Model

BJTs are basically current-controlled devices; therefore the r_e model uses a diode and a current source to duplicate the behavior of the transistor. One disadvantage to this model is its sensitivity to the DC level. This model is designed for specific circuit conditions.

Common-Emitter Configuration

The diode $r_{\rm e}$ model can be replaced by the resistor $r_{\rm e}$.

$$I_{e} = (\beta + 1) I_{b} \cong \beta I_{b}$$

$$I_{b_{1}}$$

$$I_{b$$

10

$$r_{e} = rac{26 \, mV}{I_{e}}$$

Electronic Devices and Circuit Theory Boylestad

Common-Emitter Configuration

Electronic Devices and Circuit Theory Boylestad

Common-Base Configuration

Input impedance:

$$r_{\rm e} = \frac{26\,\mathrm{mV}}{I_{\rm e}} \qquad Z_{\rm i} = r_{\rm e}$$

Output impedance: $Z_o \cong \infty \Omega$

Voltage gain:

$$A_{V} = \frac{\alpha R_{L}}{r_{e}} \cong \frac{R_{L}}{r_{e}}$$

Current gain:

$$A_i = -\alpha \cong -1$$

Electronic Devices and Circuit Theory Boylestad

The Hybrid Equivalent Model

Hybrid parameters are developed and used for modeling the transistor. These parameters can be found on a transistor's specification sheet:

 h_i = input resistance h_r = reverse transfer voltage ratio $(V/V_o) \cong 0$ h_f = forward transfer current ratio (I_o/I_i) h_o = output conductance

Electronic Devices and Circuit Theory Boylestad

Simplified General h-Parameter Model

		Mın.	Max.	
Input impedance ($I_C = 1 \text{ mA dc}, V_{CE} = 10 \text{ V dc}, f = 1 \text{ kHz}$) ^{2N4400}	h _{ie}	0.5	7.5	kΩ
Voltage feedback ratio $(I_C = 1 \text{ mA dc}, V_{CE} = 10 \text{ V dc}, f = 1 \text{ kHz})$	h _{re}	0.1	8.0	$\times 10^{-4}$
Small-signal current gain ($I_C = 1 \text{ mA dc}, V_{CE} = 10 \text{ V dc}, f = 1 \text{ kHz}$) ^{2N4400}	h_{fe}	20	250	_
Output admittance $(I_C = 1 \text{ mA dc}, V_{CE} = 10 \text{ V dc}, f = 1 \text{ kHz})$	h _{oe}	1.0	30	1µS

 h_i = input resistance h_f = forward transfer current ratio (I_o/I_i)

Electronic Devices and Circuit Theory Boylestad

h-Parameter vs. r_e Model

Common-Emitter

Common-Base

Electronic Devices and Circuit Theory Boylestad

Common-Emitter Fixed-Bias Configuration

The input is applied to the base The output is taken from the collector

High input impedance Low output impedance

High voltage and current gain

Phase shift between input and output is 180°

Electronic Devices and Circuit Theory Boylestad

Common-Emitter Fixed-Bias Configuration

AC equivalent

Electronic Devices and Circuit Theory Boylestad

Common-Emitter Fixed-Bias Calculations

In	put
im	put ipedance:

$$\begin{array}{l} Z_{i}=R_{B} \mid\mid \beta r_{e} \\ Z_{i}\cong \beta r_{e} \mid_{R_{B}\geq10\beta r_{e}} \end{array}$$

$$I_{i}$$

$$I_{b}$$

$$I_{c}$$

$$I_{c}$$

$$I_{c}$$

$$I_{o}$$

$$I_{o$$

Current gain: $A_i \cong \beta |_{r_o \ge 10R_C, R_B \ge 10\beta r_e}$

Output impedance:

$$Z_o = R_C || r_o$$
$$Z_o \cong R_C ||_{r_o \ge 10R_C}$$

Voltage gain:

$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{(R_{c}||r_{o})}{r_{e}}$$
$$A_{v} = -\frac{R_{c}}{r_{e}}|_{r_{o} \ge 10R_{c}}$$

Current gain from voltage gain:

$$A_i = -A_V \frac{Z_i}{R_C}$$

Electronic Devices and Circuit Theory Boylestad © 2013 by Pearson Higher Education, Inc Upper Saddle River, New Jersey 07458 • All Rights Reserved

 $A_{i_L} = \frac{I_o}{I_i} = \frac{-\frac{V_o}{R_L}}{\frac{V_i}{V_i}} = -\frac{V_o}{V_i} \cdot \frac{Z_i}{R_L}$

Common-Emitter Voltage-Divider Bias

 r_e model requires you to determine β , r_e , and r_o .

Electronic Devices and Circuit Theory Boylestad

Common-Emitter Voltage-Divider Bias Calculations

Input impedance

 $R' = R_1 || R_2$ $Z_i = R' || \beta r_e$

$$Z_{o} = R_{C} \parallel r_{o}$$
$$Z_{o} \cong R_{C} \mid_{r_{o} \ge 10R_{C}}$$

 $A_{i_L} = \frac{I_o}{I_i} = \frac{-\frac{V_o}{R_L}}{\frac{V_i}{Z_i}} = -\frac{V_o}{V_i} \cdot \frac{Z_i}{R_L}$

Current gain from $\rm A_{\rm v}$

$$\mathbf{A}_{i} = -\mathbf{A}_{v} \frac{\mathbf{Z}_{i}}{\mathbf{R}_{c}}$$

Electronic Devices and Circuit Theory Boylestad

Common-Emitter Emitter-Bias Configuration

Electronic Devices and Circuit Theory Boylestad

Impedance Calculations

Input impedance:

 $Z_{i} = R_{B} || Z_{b}$ $Z_{b} = \beta r_{e} + (\beta + 1)R_{E}$ $Z_{b} \cong \beta (r_{e} + R_{E})$ $Z_{b} \cong \beta R_{E}$

Output impedance:

$$Z_o = R_C$$

Electronic Devices and Circuit Theory Boylestad

Gain Calculations

Voltage gain:

$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{\beta R_{C}}{Z_{b}}$$
$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{R_{C}}{r_{e} + R_{E}} \Big|_{Z_{b} = \beta(r_{e} + R_{E})}$$
$$A_{v} = \frac{V_{o}}{V_{i}} \cong -\frac{R_{C}}{R_{E}} \Big|_{Z_{b} \equiv \beta R_{E}}$$

Current gain from A_v :

$$A_i = -A_v \frac{Z_i}{R_c}$$

Electronic Devices and Circuit Theory Boylestad

Emitter-Follower Configuration

This is also known as the *common-collector* configuration. The input is applied to the base and the output is taken from the emitter. There is no phase shift between input and output.

Electronic Devices and Circuit Theory Boylestad

Impedance Calculations

Input impedance:

 $Z_{i} = R_{B} || Z_{b}$ $Z_{b} = \beta r_{e} + (\beta + 1) R_{E}$ $Z_{b} \cong \beta (r_{e} + R_{E})$ $Z_{b} \cong \beta R_{E}$

$$Z_{o} = R_{E} || r_{e}$$
$$Z_{o} \cong r_{e} |_{R_{E} >> r_{e}}$$

Electronic Devices and Circuit Theory Boylestad

Gain Calculations

Current gain from voltage gain:

$$A_i = -A_v rac{Z_i}{R_E}$$

Electronic Devices and Circuit Theory Boylestad

Common-Base Configuration

The input is applied to the emitter

The output is taken from the collector

Low input impedance. High output impedance

Current gain less than unity

Very high voltage gain

No phase shift between input and output

Electronic Devices and Circuit Theory Boylestad

Calculations

Input impedance: $Z_i = R_E \parallel r_e$

Output impedance:

 $Z_o = R_c$

Voltage gain:

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{\alpha R_{C}}{r_{e}} \cong \frac{R_{C}}{r_{e}}$$

Current gain:

$$A_i = \frac{I_o}{I_i} = -\alpha \cong -1$$

Electronic Devices and Circuit Theory Boylestad

Common-Emitter Collector Feedback

- A variation of the common-emitter fixed-bias configuration
- Input is applied to the base
- Output is taken from the collector
- There is a 180° phase shift between the input and output

Electronic Devices and Circuit Theory Boylestad

Calculations

Input impedance:

Voltage gain:
$$A_v = \frac{V_o}{V_i} = -\frac{R_c}{r_e}$$

Current gain:

$$A_{i} = \frac{I_{o}}{I_{i}} = \frac{\beta R_{F}}{R_{F} + \beta R_{C}}$$
$$A_{i} = \frac{I_{o}}{I_{i}} \cong \frac{R_{F}}{R_{C}}$$

$$Z_i = \frac{r_e}{\frac{1}{\beta} + \frac{R_c}{R_F}}$$

$$Z_o \cong R_C \parallel R_F$$

Electronic Devices and Circuit Theory Boylestad

Two-Port Systems Approach

With V_i set to 0 V:

 $Z_{Th} = Z_o = R_o$

The voltage across the open terminals is:

$$E_{Th} = A_{VNL}V_i$$

where A_{vNL} is the noload voltage gain

Electronic Devices and Circuit Theory Boylestad

Effect of Load Impedance on Gain

This model can be applied to any current- or voltagecontrolled amplifier.

Adding a load reduces the gain of the amplifier:

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{R_{L}}{R_{L} + R_{o}} A_{vNL}$$

$$A_i = -A_v \frac{Z_i}{R_L}$$

Electronic Devices and Circuit Theory Boylestad

Effect of Source Impedance on Gain

The amplitude of the applied signal that reaches the input of the amplifier is:

$$V_i = \frac{R_i V_s}{R_i + R_s}$$

The internal resistance of the signal source reduces the overall gain:

$$A_{vs} = \frac{V_o}{V_s} = \frac{R_i}{R_i + R_s} A_{vNL}$$

Electronic Devices and Circuit Theory Boylestad

Combined Effects of R_S and R_L on Voltage Gain

Effects of R_L and R_S :

$$A_{vs} = \frac{V_o}{V_s} = \frac{R_i}{R_i + R_s} \frac{R_L}{R_L + R_o} A_{vNL}$$
$$A_{is} = -A_{vs} \frac{R_s + R_i}{R_L}$$

Electronic Devices and Circuit Theory Boylestad

Cascaded Systems

- The output of one amplifier is the input to the next amplifier
- The overall voltage gain is determined by the product of gains of the individual stages
- The DC bias circuits are isolated from each other by the coupling capacitors
- The DC calculations are independent of the cascading
- The AC calculations for gain and impedance are interdependent

R-C Coupled BJT Amplifiers

Voltage gain: $A_{v1} = \frac{R_C || R_1 || R_2 || \beta R_e}{r_e}$ $A_{v2} = \frac{R_C}{r_e}$ $A_v = A_{v1}A_{v2}$

Input impedance, first stage:

$$Z_i = R_1 \parallel R_2 \parallel \beta R_e$$

Output impedance, second stage:

 $Z_o = R_c$

Electronic Devices and Circuit Theory Boylestad

Cascade Connection

This example is a CE–CB combination. This arrangement provides high input impedance but a low voltage gain.

The low voltage gain of the input stage reduces the Miller input capacitance, making this combination suitable for highfrequency applications.

Darlington Connection

The Darlington circuit provides very high current gain, equal to the product of the individual current gains:

 $\beta_D = \beta_1 \beta_2$

The practical significance is that the circuit provides a very high input impedance.

Electronic Devices and Circuit Theory Boylestad

DC Bias of Darlington Circuits

Base current:

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + \beta_D R_E}$$

Emitter current:

$$I_E = (\beta_D + 1)I_B \cong \beta_D I_B$$

Emitter voltage:

$$V_E = I_E R_E$$

Base voltage:

$$V_B = V_E + V_{BE}$$

Electronic Devices and Circuit Theory Boylestad

Feedback Pair

This is a two-transistor circuit that operates like a Darlington pair, but it is not a Darlington pair.

It has similar characteristics:

- High current gain
- Voltage gain near unity
- Low output impedance
- High input impedance

The difference is that a Darlington uses a pair of like transistors, whereas the feedback-pair configuration uses complementary transistors.

Electronic Devices and Circuit Theory Boylestad

Current Mirror Circuits

Current mirror circuits provide constant current in integrated circuits.

Electronic Devices and Circuit Theory Boylestad

Current Source Circuits

Constant-current sources can be built using FETs, BJTs, and combinations of these devices.

Electronic Devices and Circuit Theory Boylestad

Current Source Circuits

Electronic Devices and Circuit Theory Boylestad

Fixed-Bias

Input impedance:

 $Z_i = R_B \parallel h_{ie}$

Output impedance:

 $Z_o = R_C \parallel 1/h_{oe}$

Voltage gain:

$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{h_{fe}(R_{c} \parallel 1/h_{o}e)}{h_{ie}}$$

Current gain:

$$A_i = rac{I_o}{I_i} \cong h_{fe}$$

Electronic Devices and Circuit Theory Boylestad

Voltage-Divider Configuration

Input impedance:

$$Z_i = R' \parallel h_{ie}$$

Output impedance:

$$Z_o \cong R_c$$

Voltage gain:

$$A_{v} = -\frac{h_{fe}(R_{c} \parallel 1/h_{oe})}{h_{ie}}$$

Current gain:

$$A_i = -rac{h_{fe}R'}{R'+h_{ie}}$$

Electronic Devices and Circuit Theory Boylestad

Emitter-Follower Configuration

Electronic Devices and Circuit Theory Boylestad

Common-Base Configuration

Input impedance: $Z_{i} = R_{E} \parallel h_{ib}$ Output impedance: $Z_{o} = R_{C}$ Voltage gain: $A_{v} = \frac{V_{o}}{V_{i}} = -\frac{h_{fb}R_{C}}{h_{ib}}$ Current gain:

$$A_i = \frac{I_o}{I_i} = h_{fb} \cong -1$$

Electronic Devices and Circuit Theory Boylestad

Troubleshooting

Check the DC bias voltages

 If not correct, check power supply, resistors, transistor. Also check the coupling capacitor between amplifier stages.

Check the AC voltages

✓ If not correct check transistor, capacitors and the loading effect of the next stage.

Electronic Devices and Circuit Theory Boylestad