
Basic Repetition

while (count<10)

{

//while action code goes here

}

Basic Repetition

while (count<10)

{
//while action code goes here

//should include a way to change count

//variable so the computer is not stuck

//inside the while loop forever

}

Basic Repetition

while (count<10)

{
//looks basically like a “for” loop

//except the variable is declared before

//and incremented inside the while

//loop

}

Basic Repetition

Or maybe:

while (digitalRead(buttonPin)==1)

{
//instead of changing a variable

//you just read a pin so the computer

//exits when you press a button

//or a sensor is tripped

}

Button Input: On/off state change

EX: User input features of the fan

• Potentiometer for speed control

• Continually variable input makes sense for speed control

• Start/stop

• Could use a conventional power switch

• Push button (momentary) switch

• Lock or limit rotation angle

• Button click to hold/release fan in one position

• Potentiometer to set range limit

Conventional on/off switch

Basic light switch or rocker switch

• Makes or breaks connection to power

• Switch stays in position: On or Off

• Toggle position indicates the state

What to do?

• Simple switch schematic

• Use multimeter to measure open/closed circuit

• Map the pin states

Image from lowes.comImage from sparkfun.com

Measure Open and Closed Circuits

Measured Resistance (Ω)

Connect
Pins

When not
pressed When pressed

1 and 2

1 and 3

1 and 4

2 and 3

Push Button Switches

• A momentary button is a “Biased

Switch”

• Pushing the button changes state

• State is reversed (return to biased

position) when button is released

• Two types

• NO: normally open

• NC: normally closed

Normally open

• electrical contact is made when button is

pressed

Normally closed

• electrical contact is broken when button is

pressed

• Internal spring returns button to its un-

pressed state

Momentary or push-button (tact

switch)switches

Image from sparkfun.com

7

Putting buttons into action

Build the circuit: same one is used for all examples

• Test with LED on/off

• LED is only controlled by the button, not by Arduino code

Create a “wait to start” button

• Simplest button implementation

• Execution is blocked while waiting for a button click

Use an interrupt handler

• Most sophisticated: Don’t block execution while waiting for button input

• Most sophisticated: Requires good understanding of coding

• Requires “de-bouncing”

Digital input with a pull-down resistor

• When switch is open (button not pressed):

• Digital input pin is tied to ground

• No current flows, so there is no voltage difference

from input pin to ground

• Reading on digital input is LOW

• When switch is closed (button is pressed):

• Current flows from 5V to ground, causing LED to

light up.

• The 10k resistor limits the current draw by the

input pin.

• The 330Ω resistor causes a large voltage drop

between 5V and ground, which causes the digital

input pin to be closer to 5V.

• Reading on digital input is HIGH

Momentary Button and LED Circuit

Technical Note

Usually we do not include an LED directly in the button circuit. The following diagrams show

button circuits with pull-up and pull-down resistors. In these applications, the pull-up or

pull-down resistors should be 10k.

Pull-up

resistor:

Pull-down

resistor:

Programs for the LED/Button Circuit

1. Continuous monitor of button state

• Program is completely occupied by monitoring the button

• Used as a demonstration — not practically useful

2. Wait for button input

3. Interrupt Handler

4. All three programs use the same electrical circuit

Continuous monitor of button state

int button_pin = 4; // pin used to read the button

void setup() {

pinMode(button_pin, INPUT);

Serial.begin(9600); // Button state is sent to host

}

void loop() {

int button;

button = digitalRead(button_pin);

if (button == HIGH) {

Serial.println("on");

} else {

Serial.println("off");

}

}

Serial monitor shows a

continuous stream of “on”
or “off”

This program does not control the LED

12

Programs for the LED/Button Circuit

1. Continuous monitor of button state

• Program is completely occupied by monitoring the button

• Used as a demonstration — not practically useful

2. Wait for button input

• Blocks execution while waiting

• May be useful as a start button

3. Interrupt Handler

4. All three programs use the same electrical circuit

Wait for button input

int button_pin = 4; // pin used to read the button

void setup() {

int start_click = LOW; // Initial state: no click yet

pinMode(button_pin, INPUT);

Serial.begin(9600);

while (!start_click) {

start_click = digitalRead(button_pin);

Serial.println("Waiting for button press");

}

}

void loop() {

int button;

button = digitalRead(button_pin);

if (button == HIGH) {

Serial.println("on");

} else {

Serial.println("off");

}

}

same loop() function as in

the preceding sketch

while loop continues

as long as start_click

is FALSE

14

Programs for the LED/Button Circuit

1. Continuous monitor of button state

• Program is completely occupied by monitoring the button

• Used as a demonstration — not practically useful

2. Wait for button input

• Blocks execution while waiting

• May be useful as a start button

3. Interrupt Handler

• Most versatile

• Does not block execution

• Interrupt is used to change a flag that indicates state

• Regular code in loop function checks the sate of the flag

4. All three programs use the same electrical circuit

15

Interrupt handler for button input

int button_interrupt = 0; // Interrupt 0 is on pin 2 !!

int toggle_on = false; // Button click switches state

void setup() {

Serial.begin(9600);

attachInterrupt(button_interrupt, handle_click, RISING); // Register handler

}

void loop() {

if (toggle_on) {

Serial.println("on");

} else {

Serial.println("off");

}

}

void handle_click() {

static unsigned long last_interrupt_time = 0; // Zero only at start

unsigned long interrupt_time = millis(); // Read the clock

if (interrupt_time - last_interrupt_time > 200) { // Ignore when < 200 msec

toggle_on = !toggle_on;

}

last_interrupt_time = interrupt_time;

}

16

Interrupt handler for button input

int button_interrupt = 0; // Interrupt 0 is on pin 2 !!

int toggle_on = false; // Button click switches state

void setup() {

Serial.begin(9600);

attachInterrupt(button_interrupt, handle_click, RISING); // Register handler

}

void loop() {

if (toggle_on) {

Serial.println("on");

} else {

Serial.println("off");

}

}

void handle_click() {

static unsigned long last_interrupt_time = 0; // Zero only at start

unsigned long interrupt_time = millis(); // Read the clock

if (interrupt_time - last_interrupt_time > 200) { // Ignore when < 200 msec

toggle_on = !toggle_on;

}

last_interrupt_time = interrupt_time;

}

Interrupt handler must be registered when program starts

The interrupt handler, handle_click, is a

user-written function that is called when

an interrupt is detected

button_interrupt is the ID or number of

the interrupt. It must be 0 or 1 A RISING interrupt occurs when the

pin changes from LOW to HIGH

17

Interrupt handler for button input

int button_interrupt = 0; // Interrupt 0 is on pin 2 !!

int toggle_on = false; // Button click switches state

void setup() {

Serial.begin(9600);

attachInterrupt(button_interrupt, handle_click, RISING); // Register handler

}

void loop() {

if (toggle_on) {

Serial.println("on");

} else {

Serial.println("off");

}

}

void handle_click() {

static unsigned long last_interrupt_time = 0; // Zero only at start

unsigned long interrupt_time = millis(); // Read the clock

if (interrupt_time - last_interrupt_time > 200) { // Ignore when < 200 msec

toggle_on = !toggle_on;

}

last_interrupt_time = interrupt_time;

}

toggle_on is a global variable that remembers the

“state”. It is either true or false (1 or 0).

The loop() function only checks the state of

toggle_on. The value of toggle_on is set in the

interrupt handler, handle_click.

The value of toggle_on is flipped only when a

true interrupt even occurs. De-bouncing is

described in the next slide.

18

Interrupt handler for button input

int button_interrupt = 0; // Interrupt 0 is on pin 2 !!

int toggle_on = false; // Button click switches state

void setup() {

Serial.begin(9600);

attachInterrupt(button_interrupt, handle_click, RISING); // Register handler

}

void loop() {

if (toggle_on) {

Serial.println("on");

} else {

Serial.println("off");

}

}

void handle_click() {

static unsigned long last_interrupt_time = 0; // Zero only at start

unsigned long interrupt_time = millis(); // Read the clock

if (interrupt_time - last_interrupt_time > 200) { // Ignore when < 200 msec

toggle_on = !toggle_on;

}

last_interrupt_time = interrupt_time;

}

Value of a static variable is always retained

Ignore events that occur in less than 200

ms from each other. These are likely to be

mechanical bounces.

Use long: the time value in

milliseconds can become large

Clock time when current interrupt occurs

Save current time as the new “last” time

