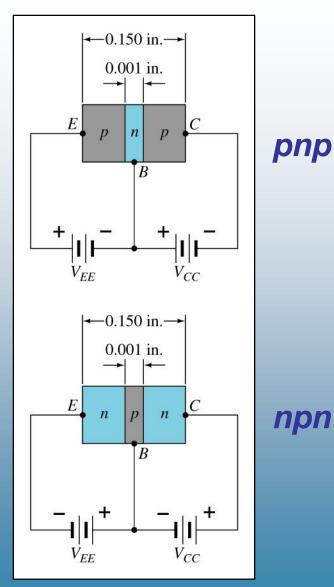
## **Electronic Devices and Circuit Theory**

**Boylestad** 

# Bipolar Junction Transistors Chapter 3

### **Transistor Construction**

There are two types of transistors:

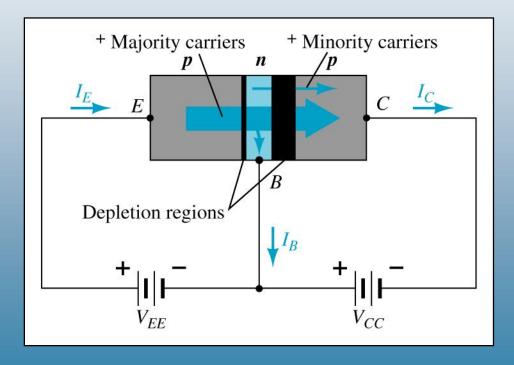

pnp and npn

The terminals are labeled:

**E - Emitter** 

B - Base

**C** - Collector



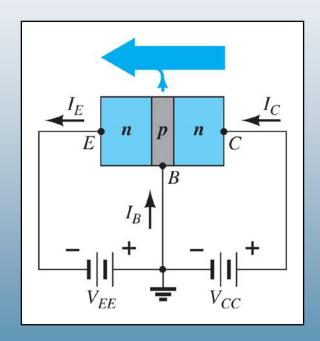

## **Transistor Operation**

With the external sources,  $V_{EE}$  and  $V_{CC}$ , connected as shown:

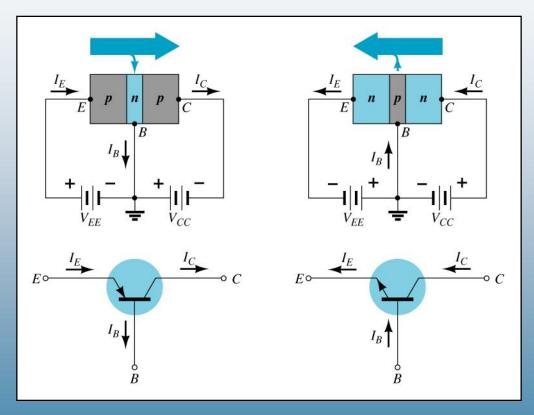
The emitter-base junction is forward biased

The base-collector junction is reverse biased




#### **Currents in a Transistor**

Emitter current is the sum of the collector and base currents:

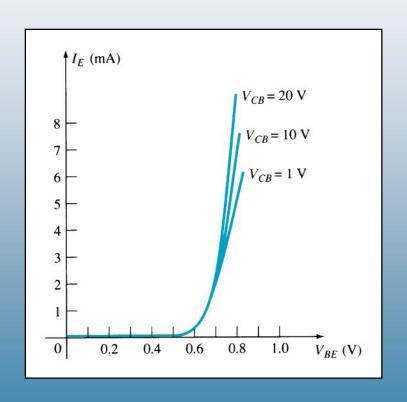

$$I_E = I_C + I_B$$

The collector current is comprised of two currents:

$$I_{C} = I_{C}$$
 (majority) +  $I_{CO}$  (minority)



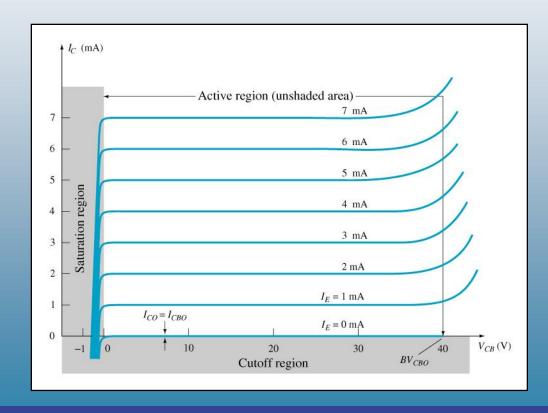
## **Common-Base Configuration**




The base is common to both input (emitter-base) junction and output (collector-base) junction of the transistor.

## **Common-Base Amplifier**

#### **Input Characteristics**


This curve shows the relationship between of input current ( $I_E$ ) to input voltage ( $V_{BE}$ ) for three output voltage ( $V_{CB}$ ) levels.



## **Common-Base Amplifier**

#### **Output Characteristics**

This graph demonstrates the output current ( $I_C$ ) to an output voltage ( $V_{CB}$ ) for various levels of input current ( $I_E$ ).



## **Operating Regions**

#### **Active**

Operating range of the amplifier.

#### Cutoff

The amplifier is basically off. There is voltage, but little current.

#### **Saturation**

The amplifier is fully on. There is current, but little voltage.

## **Approximations**

**Emitter and collector currents:** 

$$I_C \cong I_E$$

**Base-emitter voltage:** 

$$V_{BE} = 0.7 \text{ V (for Silicon)}$$

## Alpha $(\alpha)$

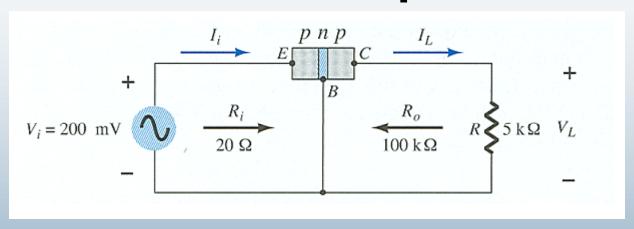
#### Alpha ( $\alpha$ ) is the ratio of $I_C$ to $I_E$ :

$$a_{dc} = \frac{I_C}{I_E}$$

 $I_{C} = I_{C}$  (majority) +  $I_{CO}$  (minority)

Ideally:  $\alpha = 1$ 

 $\mathbf{I}_{\mathrm{C}} = \alpha \mathbf{I}_{\mathrm{E}} + \mathbf{I}_{\mathrm{CBO}}$ 


In reality:  $\alpha$  falls somewhere between

0.9 and 0.998

#### Alpha ( $\alpha$ ) in the AC mode:

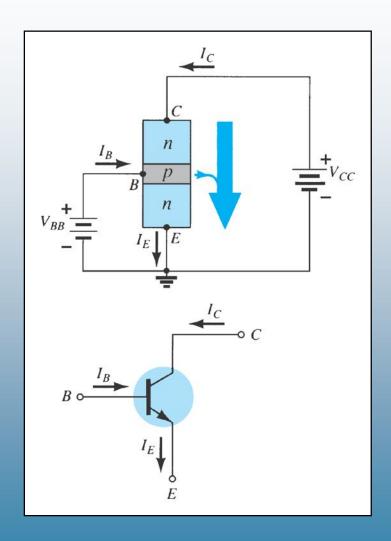
$$\alpha_{ac} = \frac{\Delta I_C}{\Delta I_E}$$

## **Transistor Amplifier**

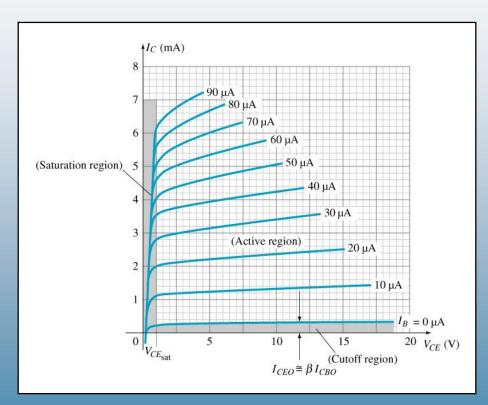


## **Currents and Voltages:**

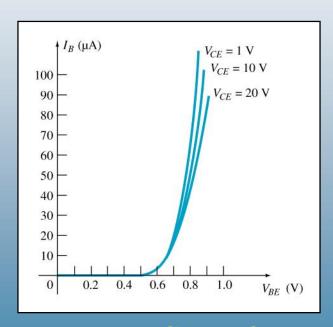
$$I_E = I_i = \frac{V_i}{R_i} = \frac{200 \,\text{mV}}{20\Omega} = 10 \,\text{mA}$$
 $I_C \cong I_E$ 
 $I_L \cong I_i = 10 \,\text{mA}$ 
 $V_I = I_I R = (10 \,\text{mA})(5 \,\text{k}\Omega) = 50 \,\text{V}$ 


#### **Voltage Gain:**

$$A_V = \frac{V_L}{V_i} = \frac{50 \, V}{200 \, mV} = 250$$


# Common-Emitter Configuration

The emitter is common to both input (base-emitter) and output (collectoremitter) circuits.


The input is applied to the base and the output is taken from the collector.



#### **Common-Emitter Characteristics**



**Collector Characteristics** 



Base (input)
Characteristics

## **Common-Emitter Amplifier Currents**

**Ideal Currents** 

$$I_E = I_C + I_B$$

$$I_C = \alpha I_E$$

**Actual Currents** 

$$I_C = \alpha I_E + I_{CBO}$$

where I<sub>CBO</sub> = minority collector current

 $I_{CBO}$  is usually so small that it can be ignored, except in high power transistors and in high temperature environments.

When  $I_B = 0 \mu A$  the transistor is in cutoff, but there is some minority current flowing called  $I_{CEO}$ .

$$I_{CEO} = \frac{I_{CBO}}{1 - \alpha} \Big|_{I_B = 0 \, \mu A}$$

## Beta (β)

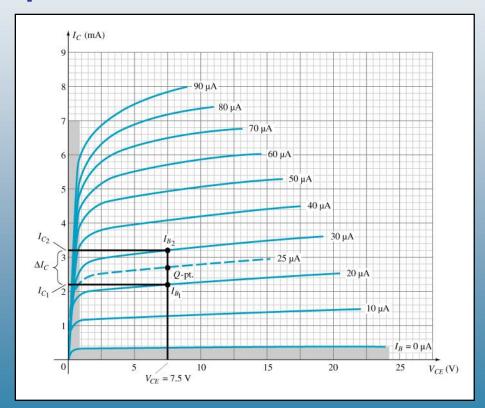
 $\beta$  represents the amplification factor of a transistor.

In DC mode:

$$eta_{dc} = rac{I_C}{I_B}$$

In AC mode:

$$\beta_{ac} = \frac{\Delta I_C}{\Delta I_B} \Big|_{V_{CE} = constant}$$


 $\beta_{ac}$  is sometimes referred to as  $h_{fe}$ , a term used in transistor modeling calculations

## Beta (β)

#### Determining $\beta$ from a Graph

$$\beta_{AC} = \frac{(3.2 \text{ mA} - 2.2 \text{ mA})}{(30 \text{ µA} - 20 \text{ µA})}$$
$$= \frac{1 \text{ mA}}{10 \text{ µA}} \Big|_{V_{CE} = 7.5 \text{ V}}$$
$$= 100$$

$$\beta_{DC} = \frac{2.7 \ mA}{25 \ \mu A} \Big|_{V_{CE}=7.5 \ V}$$
$$= 108$$

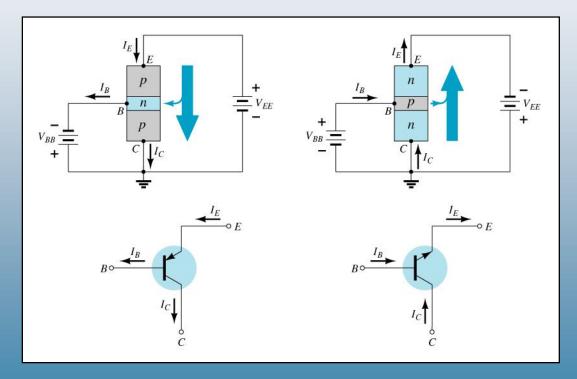


## Beta (β)

#### Relationship between amplification factors $\beta$ and $\alpha$ :

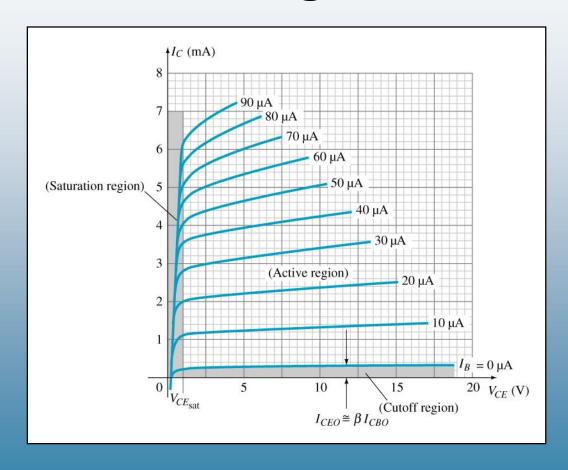
$$\alpha = \frac{\beta}{\beta + 1}$$

$$\beta = \frac{\alpha}{\alpha - 1}$$


#### **Relationship Between Currents:**

$$I_{\rm C} = \beta I_{\rm B}$$

$$I_E = (\beta + 1)I_B$$


## **Common-Collector Configuration**

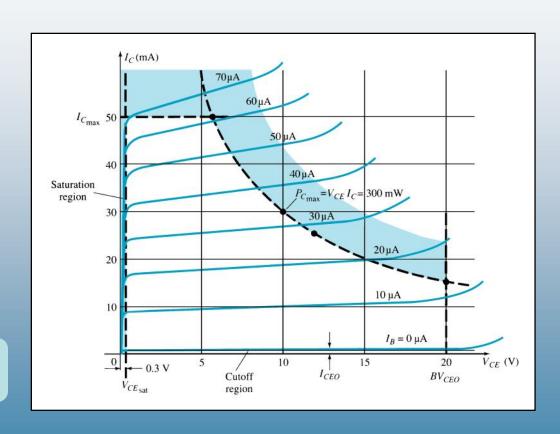
The input is on the base and the output is on the emitter.



## **Common-Collector Configuration**

The characteristics are similar to those of the common-emitter amplifier, except the vertical axis is  $I_F$ .




## **Operating Limits**

 $V_{CE}$  is maximum and  $I_C$  is minimum in the cutoff region.

$$I_{C(\text{max})} = I_{CEO}$$

 $I_C$  is maximum and  $V_{CE}$  is minimum in the saturation region.

$$V_{CE(max)} = V_{CE(sat)} = V_{CEO}$$



The transistor operates in the active region between saturation and cutoff.

## **Power Dissipation**

#### Common-base:

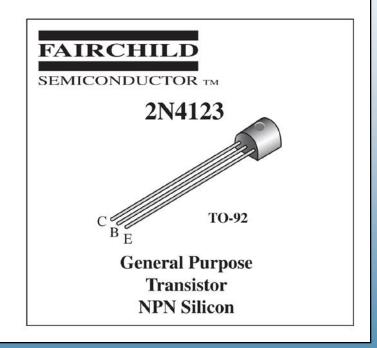
$$P_{Cmax} = V_{CB}I_{C}$$

#### Common-emitter:

$$P_{Cmax} = V_{CE}I_{C}$$

#### Common-collector:

$$P_{Cmax} = V_{CE}I_{E}$$


## **Transistor Specification Sheet**

#### MAXIMUM RATINGS

| Rating                                                        | Symbol           | 2N4123      | Unit       |
|---------------------------------------------------------------|------------------|-------------|------------|
| Collector-Emitter Voltage                                     | V <sub>CEO</sub> | 30          | Vdc        |
| Collector-Base Voltage                                        | V <sub>CBO</sub> | 40          | Vdc        |
| Emitter-Base Voltage                                          | V <sub>EBO</sub> | 5.0         | Vdc        |
| Collector Current – Continuous                                | $I_{C}$          | 200         | mAdc       |
| Total Device Dissipation @ $T_A = 25$ °C Derate above $25$ °C | $P_{D}$          | 625<br>5.0  | mW<br>mW°C |
| Operating and Storage Junction<br>Temperature Range           | $T_j, T_{stg}$   | -55 to +150 | °C         |

#### THERMAL CHARACTERISTICS

| Characteristic                          | Symbol         | Max  | Unit |
|-----------------------------------------|----------------|------|------|
| Thermal Resistance, Junction to Case    | $R_{	heta JC}$ | 83.3 | °C W |
| Thermal Resistance, Junction to Ambient | $R_{	heta JA}$ | 200  | °C W |

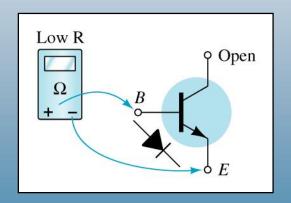


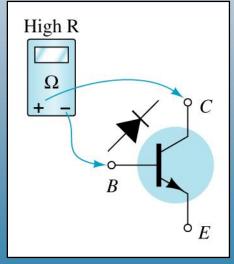
## **Transistor Specification Sheet**

| Characteristic                                                                                                                    | Symbol               | Min              | Max  | Unit |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|------|------|
| OFF CHARACTERISTICS                                                                                                               |                      |                  |      |      |
| Collector-Emitter Breakdown Voltage (1) $(I_C = 1.0 \text{ mAdc}, I_E = 0)$                                                       | V <sub>(BR)CEO</sub> | 30               |      | Vdc  |
| Collector-Base Breakdown Voltage $(I_C = 10 \mu Adc, I_E = 0)$                                                                    | V <sub>(BR)CBO</sub> | 40               |      | Vdc  |
| Emitter-Base Breakdown Voltage $(I_E = 10 \mu Adc, I_C = 0)$                                                                      | V <sub>(BR)EBO</sub> | 5.0              | -    | Vdc  |
| Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$                                                                     | $I_{CBO}$            | 7-2              | 50   | nAdc |
| Emitter Cutoff Current $(V_{BE} = 3.0 \text{ Vdc}, I_C = 0)$                                                                      | I <sub>EBO</sub>     | -                | 50   | nAdc |
| ON CHARACTERISTICS                                                                                                                |                      |                  |      |      |
| DC Current Gain(1)<br>$(I_C = 2.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$<br>$(I_C = 50 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$ | h <sub>FE</sub>      | 50<br>25         | 150  | 7-7  |
| Collector-Emitter Saturation Voltage(1)<br>$(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$                                      | V <sub>CE(sat)</sub> | : <del>-</del> : | 0.3  | Vdc  |
| Base-Emitter Saturation Voltage(1)<br>$(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$                                           | V <sub>BE(sat)</sub> | (=)              | 0.95 | Vde  |

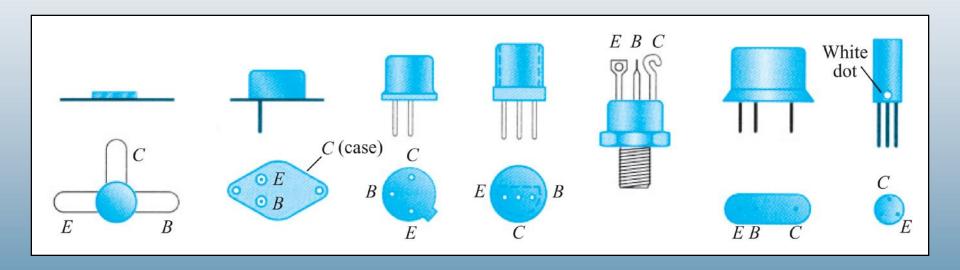
## **Transistor Specification Sheet**

| Current-Gain – Bandwidth Product<br>$(I_C = 10 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ MHz})$                                                                      | $f_T$             | 250       |          | MHz |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|----------|-----|
| Output Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_E = 0, f = 100 \text{ MHz})$                                                                                                    | $C_{ m obo}$      |           | 4.0      | pF  |
| Input Capacitance $(V_{BE} = 0.5 \text{ Vdc}, I_C = 0, f = 100 \text{ kHz})$                                                                                                     | C <sub>ibo</sub>  | -         | 8.0      | pF  |
| Collector-Base Capacitance $(I_E = 0, V_{CB} = 5.0 \text{ V}, f = 100 \text{ kHz})$                                                                                              | C <sub>cb</sub>   | (-)       | 4.0      | pF  |
| Small-Signal Current Gain $(I_C = 2.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$                                                                               | h <sub>fe</sub>   | 50        | 200      | -   |
| Current Gain – High Frequency $ (I_C = 10 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ MHz}) $ $ (I_C = 2.0 \text{ mAdc}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ kHz}) $ | $h_{\mathrm{fe}}$ | 2.5<br>50 | -<br>200 | -   |
| Noise Figure ( $I_C = 100 \mu Adc$ , $V_{CE} = 5.0 \text{ Vdc}$ , $R_S = 1.0 \text{ k ohm}$ , $f = 1.0 \text{ kHz}$ )                                                            | NF                | 1,-       | 6.0      | dB  |


<sup>(1)</sup> Pulse Test: Pulse Width =  $300 \mu s$ . Duty Cycle = 2.0%


## **Transistor Testing**

Curve Tracer Provides a graph of the characteristic curves.


**DMM** Some DMMs measure  $\beta_{DC}$  or  $h_{FE}$ .

**Ohmmeter:** 





### **Transistor Terminal Identification**

