Electronic Devices and Circuit Theory

Boylestad

DC Biasing - BJTs Chapter 4

ALWAYS LEARNING

Biasing

Biasing: Applying DC voltages to a transistor in order to turn it on so that it can amplify AC signals.

Operating Point

The DC input establishes an operating or *quiescent point* called the *Q-point*.

Electronic Devices and Circuit Theory Boylestad

The Three Operating Regions

Active or Linear Region Operation

- Base–Emitter junction is forward biased
- Base–Collector junction is reverse biased

Cutoff Region Operation

• Base–Emitter junction is reverse biased

Saturation Region Operation

- Base–Emitter junction is forward biased
- Base–Collector junction is forward biased

DC Biasing Circuits

Fixed-bias circuit Emitter-stabilized bias circuit Collector-emitter loop Voltage divider bias circuit DC bias with voltage feedback

Electronic Devices and Circuit Theory Boylestad

Fixed Bias

Electronic Devices and Circuit Theory Boylestad

The Base-Emitter Loop

Electronic Devices and Circuit Theory Boylestad

Collector-Emitter Loop

Collector current:

 $I_C = \beta I_B$

From Kirchhoff's voltage law:

$$V_{CE} = V_{CC} - I_C R_C$$

$$V_{CE} = V_C - V_E$$
$$V_{BE} = V_B - V_E$$

Electronic Devices and Circuit Theory Boylestad

Saturation

When the transistor is operating in **saturation**, current through the transistor is at its *maximum* possible value.

Electronic Devices and Circuit Theory Boylestad

Load Line Analysis

The Q-point is the operating point where the value of R_B sets the value of I_B that controls the values of V_{CF} and I_C

Electronic Devices and Circuit Theory **Boylestad**

© 2013 by Pearson Higher Education, Inc Upper Saddle River, New Jersey 07458 • All Rights Reserved

VCE

The Effect of V_{cc} on the Q-Point

Electronic Devices and Circuit Theory Boylestad

The Effect of R_c on the Q-Point

Electronic Devices and Circuit Theory Boylestad

The Effect of *I_B* on the Q-Point

Electronic Devices and Circuit Theory Boylestad

Emitter-Stabilized Bias Circuit

Adding a resistor (R_E) to the emitter circuit stabilizes the bias circuit.

Electronic Devices and Circuit Theory Boylestad

Base-Emitter Loop

From Kirchhoff's voltage law: $+V_{CC} - I_B R_B - V_{BE} - I_E R_E = 0$ Since $I_E = (\beta + 1)I_B$: $V_{CC} - I_B R_B - (\beta + 1)I_B R_E = 0$

Solving for I_B :

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E}$$

Electronic Devices and Circuit Theory Boylestad

Collector-Emitter Loop

From Kirchhoff's voltage law: $I_E R_E + V_{CE} + I_C R_C - V_{CC} = 0$ Since $I_E \cong I_C$: $V_{CE} = V_{CC} - I_C (R_C + R_E)$ Also:

$$V_{E} = I_{E}R_{E}$$
$$V_{C} = V_{CE} + V_{E} = V_{CC} - I_{C}R_{C}$$
$$V_{B} = V_{BE} + V_{E}$$

Electronic Devices and Circuit Theory Boylestad

Improved Biased Stability

Stability refers to a condition in which the currents and voltages remain fairly constant over a wide range of temperatures and transistor Beta (β) values.

Adding R_E to the emitter improves the stability of a transistor.

Electronic Devices and Circuit Theory Boylestad

Saturation Level

The endpoints can be determined from the load line.

V_{CE}cutoff:
$$I_c = 0 \text{ mA}$$

 $V_{CE} = V_{CC}$
 $I_C = \frac{V_{CC}}{R_C + R_E}$

Electronic Devices and Circuit Theory Boylestad

Voltage Divider Bias

This is a very stable bias circuit.

The currents and voltages are nearly independent of any variations in β.

Electronic Devices and Circuit Theory Boylestad

Approximate Analysis

Where $I_B \ll I_1$ and $I_1 \cong I_2$:

 $V_B = \frac{R_2 V_{CC}}{R_1 + R_2}$

Where $\beta R_E > 10R_2$:

$$V_{BE} = V_B - V_E$$

$$I_E = \frac{V_E}{R_E}$$

From Kirchhoff's voltage law:

Electronic Devices and Circuit Theory Boylestad

Voltage Divider Bias Analysis

Transistor Saturation Level

$$I_{Csat} = I_{Cmax} = \frac{V_{CC}}{R_{C} + R_{E}}$$

Load Line Analysis

Cutoff:

$$V_{CE} = V_{CC}$$
$$I_C = 0 \,\mathrm{mA}$$

Saturation:

$$I_{C} = \frac{V_{CC}}{R_{C} + R_{E}}$$
$$V_{CE} = 0 \text{ V}$$

Electronic Devices and Circuit Theory Boylestad

DC Bias With Voltage Feedback

Another way to improve the stability of a bias circuit is to add a feedback path from collector to base.

In this bias circuit the Q-point is only slightly dependent on the transistor beta, β .

Electronic Devices and Circuit Theory Boylestad

Base-Emitter Loop

From Kirchhoff's voltage law:

$$\mathsf{V}_{\mathsf{CC}} - \mathsf{I}_{\mathsf{C}}^{\prime}\mathsf{R}_{\mathsf{C}} - \mathsf{I}_{\mathsf{B}}\mathsf{R}_{\mathsf{F}} - \mathsf{V}_{\mathsf{BE}} - \mathsf{I}_{\mathsf{E}}\mathsf{R}_{\mathsf{E}} = 0$$

Where
$$I_B \ll I_C$$
: $I'_C = I_C + I_B \cong I_C$

Knowing $I_C = \beta I_B$ and $I_E \cong I_C$, the loop equation becomes:

$$V_{\rm CC} - \beta I_{\rm B} R_{\rm C} - I_{\rm B} R_{\rm F} - V_{\rm BE} - \beta I_{\rm B} R_{\rm E} = 0$$

Solving for I_B :

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{F} + \beta(R_{C} + R_{E})}$$

Electronic Devices and Circuit Theory Boylestad

Collector-Emitter Loop

Electronic Devices and Circuit Theory Boylestad

Base-Emitter Bias Analysis

Transistor Saturation Level

$$I_{Csat} = I_{Cmax} = \frac{V_{CC}}{R_{C} + R_{E}}$$

Load Line Analysis
Cutoff

$$V_{CE} = V_{CC}$$

 $I_C = 0 mA$
Saturation
 $I_C = \frac{V_{CC}}{R_C + R_E}$
 $V_{CE} = 0 V$

Electronic Devices and Circuit Theory Boylestad

© 2013 by Pearson Higher Education, Inc Upper Saddle River, New Jersey 07458 • All Rights Reserved

V_{CC}

Transistor Switching Networks

Transistors with only the DC source applied can be used as electronic switches.

Electronic Devices and Circuit Theory Boylestad

Switching Circuit Calculations

Electronic Devices and Circuit Theory Boylestad

Switching Time

Electronic Devices and Circuit Theory Boylestad

Troubleshooting Hints

Approximate voltages

 $V_{BE} \cong 0.7$ V for silicon transistors $V_{CE} \cong 25\%$ to 75% of V_{CC}

Test for opens and shorts with an ohmmeter.

Test the solder joints.

Test the transistor with a transistor tester or a curve tracer.

Note that the load or the next stage affects the transistor operation.

Electronic Devices and Circuit Theory Boylestad

PNP Transistors

The analysis for *pnp* transistor biasing circuits is the same as that for *npn* transistor circuits. The only difference is that the currents are flowing in the opposite direction.