It is essentially C, using a couple pre-programmed libraries standard for the
Arduino IDE. You can bypass the Arduino dialect of C entirely, if you want.

Arduino IDE: C function:
1 digitalWrite (D13, 1 void ...
HIGH) ; digitalWrite (uint8_

%]

pin, ulnt8_t wval)

{

uint8_t timer = :
digitalPinToTimer (p

uint8 t bit = .
digitalPinToBitMask

uint8_t port =
digitalPinToPort (pi

volatile uint8 t

* out;

1f (nort ==

C

1

Il

o Controlling microcontroller peripherals is performed using special
memory locations called registers.

o Registers can be read and written.

o Imagine them as banks of 8 switches, connecting and disconnecting
wires inside the chip.

| |
Arduino IDE: Writing to a register in C
, pinMode (D13, OUTPUT) (preprocessor definitions):
> digitalWrite (D13, ... 1 DDRB = B0O0100000;
HIGH) ; 2 PORTB = B0010[0000;

@ The IDE looks simple, but there is a lot going on.

o The Arduino IDE is not the only way of programming the
microcontroller.

o The bootloader - bypassing programmers.

*.ino file Arduino IDE *.c, ".cpp files avr-gcc *.0 files *.o files
Source Additions Source . Obiject 0
code **| and changes ng code =>| Compiling = code SeEE

*.hex file avr-objcopy *.elf file avr-gcc

Machine File format Machine .
code < change code <= Linking

avrdude

Uploader

(Flash utility)

The hidden compilation process in the Arduino IDE.

Data types in C refers to an extensive system used for declaring variables or functions of
different types. The type of a variable determines how much space it occupies in the

storage and how the bit pattern stored is interpreted.

The following table provides all the data types that you will use during Arduino
programming.

void Boolean char Un(frlg;Ed byte int Unsigned int word
long Unsigned short float double | array Str;nrgr;:/har String-object

long

The void keyword is used only in function declarations. It indicates that the function is
expected to return no information to the function from which it was called.

Void Loop ()

{
// rest of the code

boolean single bit FALSE/TRUE
(really uses a whole byte of memory)
Unsigned Integers

byte eight bits 0 to 255

word two bytes 0 to 65535

unsigned long 4 bytes 0 to 4,294,967,295

Signed Integers

char eight bits -128 to 127

short two bytes -32,768 to 32,767

long 4 bytes -2,147,483,648 to 2,147,483,647.
int Unsigned integer, the number of bytes used depends on the

particular hardware used. For us int is the same as short.

Real Numbers

float Floating point number uses 4 bytes. Used for non-integers has 6-7
decimal point precision. -3.4028235E+38 to 3.4028235E+38

http://arduino.cc/en/Reference/BooleanVariables
http://arduino.cc/en/Reference/Byte
http://arduino.cc/en/Reference/Word
http://arduino.cc/en/Reference/UnsignedLong
http://arduino.cc/en/Reference/Char
http://arduino.cc/en/Reference/Short
http://arduino.cc/en/Reference/Long
http://arduino.cc/en/Reference/Int
http://arduino.cc/en/Reference/Float

A single variable can store an array of values.

The index is contained in square brackets. Arrays are zero indexed
(start at zero).

int threeints[3]; // ‘threeints’ is an array (0-2)
threeints[0]=15;

threeints[1]=10;
threeints[2]=threeints[0]-threeints[1];

http://arduino.cc/en/Reference/Array

Before using a variable it must be declared.
int a; // creates an integer with the name ‘@’
When a variable is declared it can also be initialized.

int a=34; /[creates an integer with the name ‘a’ and assigns it the
value 34.

The char data type is used to represent characters using ASCI| encoding.
Single character constants are indicated with single quotes.

char A;

A='B';
'B' is encoded with ASCII and the resulting value of 66 is stored in A.

http://arduino.cc/en/Reference/VariableDeclaration
http://arduino.cc/en/Reference/Char
http://upload.wikimedia.org/wikipedia/commons/1/1b/ASCII-Table-wide.svg

A Boolean holds one of two values, true or false. Each Boolean variable occupies one
byte of memory.

boolean val = false ; // declaration of variable with type boolean and initialize
it with false

boolean state = true ; // declaration of variable with type boolean and
initialize it with false

Unsigned char is an unsigned data type that occupies one byte of memory. The unsigned
char data type encodes numbers from 0 to 255.

Unsigned Char chr_y = 121 ; // declaration of variable with type Unsigned
char and initialize it with character vy

An array of characters is called a string

char examplestring[8];

examplestring="arduino”;

The last element of a sting is always the ‘null string’ which has an ASCII
value of zero

Stings can also be stored as objects using the String class.

Using String objects rather than character arrays uses more memory but
adds functionality.

Character arrays are referred to as strings with a small s, and instances
of the String class are referred to as Strings with a capital S.

Constant strings, specified in "double quotes" are treated as char arrays,
not instances of the String class.

http://arduino.cc/en/Reference/String
http://arduino.cc/en/Reference/StringObject

]_:

in- 5
/ assignment \

Type “becomes”

-
<
Q)

| value
variable name

10

11

int delayTime = 2000;

int greenlLED = 9;
volid setup () {

Declare delayTime
pinMode (greenLED, OUTPUT) Variable

volid loop () {

digitalWrite (greenlLED, HIGH);
delay(delayTime) _

yTime
dlgltalerte(greenLED %EMe
delay (delayTime) ;

Using Variables

int delayTime = 2000;
int greenLED = 9;

void setup () {
pinMode (greenLED, OUTPUT) ;

}
void loop () {
digitalWrite (greenlLED, HIGH) ;
delay (delayTime) ;
digitalWrite (greenlLED, LOW) ;
delayTime = delayTime - 100;

delay(delayTime) ; w\\\ et 100 ¢
subtrac rom

} delayTime to gradually
increase LED’s blinking
Speed
12

Classical asynchronous serial is robust, simple, widely used and the Uno can
handle it!

Transmitter Receiver
D7D6D3D4D5D2D1D0
X —0—1-0—-0-0-0-0—1—= RX
Transmitter Receiver
D7 0 =] D7
D6 1 > D6
D5 0 ~| D5
D4 0 =1 D4
D2 0 ~|D2
D1 0] D1
DO 1 =l DO

Serial (top) and parallel (bottom) modes of digital communication.

There is 1 pair of serial ports on the Uno (TX0,RX0) and 4 pairs on the
Mega.

L L |
A A
m
>
[-

[=]
Y
[=]
-
[+’

OMMUNICATION

~igure: The 4 pairs of UART pins on an Arduino Mega 2560.

o Cross connect wires

@ Need 1 wire each direction + ground

@ Not a bus, end-to-end communication

Computer

(dedicated serial)

X

RX

™

RX

) 4 Arduino

Connection scheme for serial communication.

Ground

Communication frame

Y
A

»
Data (5-9 bits) Q
- - g

ldling

EDO:D‘I:DQ:DB:D4:D5:D6:D7; | dling

SV

oV

=
pu
S
n

An example of serial communication over the line with 8 data bits, an
even parity bit and one stop bit.

0.002 0.004 0.006 0.008 0.01
Time (s)

Asynchronous serial transfer of the string of characters “Arduino”.

Set the speed in baud (communication rate) once:

1 Serial.begin(9600);
2 \pause

Print an arbitrary text:

1 Serial.print() ;

This is the same as:

1 Serial.print () ;
2 Serial.print () ;
3 Serial.print () ;

Meaning that you can separate one line of text to different parts, comes in
handy when you write variables.

Print a variable:

1 Serial.print (myVariable);

Number of decimal places:

1 Serial.print (myVariable, 4);

Format the data: BIN, HEX, ocT and DEc:

1 Serial.print (myVariable, BIN);

Insert a line ending and move to next line

1 Serial.println(myVariable);

The goal of this example is to send “Hello world!” through
serial communication to your computer and display it in the
serial console.

1 void setup () {

> Serial.begin(9600); // Open port
3 Serial.println() ; // Write

a }

5

6 volid loop () {

7}

Upload this to your board, open the Serial Monitor of the Arduino IDE

Serial monitor

Figure: The built-in serial monitor of the Arduino IDE.

Vst #

.".-‘.
=
-
‘.
-}.
-~
L
".!L'
5

s
N |

©)

ey

F

A variety of sensors with analog output, including sensors for: (a) rain;

(b) infrared distance; (c) current; (d) acceleration; (e) laser distance; (f) sound;
(g) gas; (h) temperature.

N bits of
digital information

O-Vm{\/\/\f\f\f\/—* w00 = 1100110 Ly

The ADC turns an analog voltage span to N bits of digital information.

Analog voltage

ueds A G

I

r (sjpne) epnidwy 8181981

_ v
ueds //A S

—/ 000

7
0

23-1
Quantization

——

U.Ammm:o}vmu::_aE{m:o:_Eoou.
L o

Quantization with a bit depth of 3.

1 val = analogRead (aPin);

6
<<

S
(Levels) ©3

< Continous Amplitude (Voltage)

@
e,
] =3
10 bit A/D =
22V e 9450
Conversion <
@
Infinite ~0.005V ©
precision precision E
=
0

o

Sampling 5V by the 10 bit ADC on the Arduino.

Resistive
material

5V

Zero Qutput Full
resistance voltage resistance

Schematic view of a potentiometer.

= e L=

Electrical symbol of a potentiometer.

HADE IN
ITALY

.‘.‘!‘
]

22
24
i
28
30
E]
EL]
3b
kL]

“igure: Connecting a potentiometer to the Arduino analog input (“A5” on the
Flexy).

Read the ADC output and display it in the Serial Monitor

#define REF A5

> void setup () {

3 Serial.begin(9600);}

2+ void loop () {

s 1int adc = analogRead (REF) ;
6 Serial.println(adc);

delay (500); }

=t

-h"l

Recompute ADC voltages and display it in the Serial Monitor

1 #define REF A5

2 void setup () {

3 Serial.begin(9600);}

2 void loop () {

s 1nt adc = analogRead (REF);

6 Serial.println((float)adcx5.0/1024.0);
7 delay (500);}

How would you connect something that only changes
resistance to an Arduino? Create a voltage divider!

V.

GND » : » GND

Voltage divider.

R>

Vou — V:'n .
‘ Ri + R2

@ Does not matter which is the sensor, but will change the direction of
voltage variation

o Use roughly matching resistors

in Vo, Vin vV,
Bending Light
Vaut vaut
7ll‘Jr':!l.-lt Unu:
GND GND
Light GND-) * GND Bending
(a) Sensor as Rj. (b) Sensor as R».

The relationship of output voltage depends on the placement and
proportionality of the resistance to the measured phenomena.

@ Impedance matching - use an operational amplifier
o Operational amplifier is in non-inverting voltage follower mode

@ Can ignore the opamp in the model

Connecting a resistive flexure sensor to the Arduino.

#define SENSOR A4
void setup() {
Serial.begin(115200); }
void loop () {
int adc = analogRead (SENSOR) ;
int perc = map(adc,0,1023,0,100);
Serial.println(perc);
delay (100); }

Pulse Width Modulation

« Can't use digital pins
to directly supply say
2.5V, but can pulse
the output on and off
really fast to produce
the same effect

* The on-off pulsing
happens so quickly,
the connected output
device “sees” the
result as a reduction
In the voltage

ON

oFF!

OFF

=T

75% brightness

50% brightness

25% brightness

Image from Theory and Practice of Tangible User Interfaces at UC Berkley

PWM Duty Cycle

output voltage = (on_time / cycle_time) * 5V

5 volts

....... loedemeeeeeaaleooo1 3.75 Volts

0 volts ———
5% 25% 75% 25% 75% 25%

5 volts — 1
_________ ‘ [ceeeeeiteeeeeeof 0 2 5 \Iplts
0 volts ———— T

50% 50% 50% 50% 50% 50%

5 volts

0 volte . e l_l--- I i 1.0 volts
20% B8B0% 20% B80% 20% 80%

Image credit: Tod Kurt

Fixed cycle length; constant
number of cycles/sec

PMW Pins

Your Arduino board has built in PWM circuits,
on pins 3, 5, 6, 9, 10, and 11 . Command:

analogWrite(pin,value)

 value is duty cycle:
between 0 and 255

« Examples:
analogWrite(9, 128)
for a 50% duty cycle

analogWrite(11, 64)
for a 25% duty cycle

Image from Theory and Practice of Tangible User Interfaces at UC Berkley

