
Chapter 12

Representative-based Clustering

Given a dataset with n points in a d-dimensional space, and k, the number of clusters to discover, our goal is
to partition the points into k groups. Each such partitioning of the points into k groups is called a clustering.
We denote a clustering with k clusters as C = {C1,C2, · · · ,Ck}. We now need some scoring function that
evaluates the goodness of a clustering.

In representative-based clustering we designate one point as the representative of a cluster. One common
representative is the mean point of a cluster, which is also called the centroid of the cluster. A common
scoring function is based on the squared deviations of the points within a cluster from their centroid. This
sum of squared errors based scoring function is defined as:

SSE(C ) =
k

∑
i=1

|Ci|

∑
j=1

(x j−µµµi)
2 (12.1)

where µµµi is the centroid of clusterCi, given as: µµµi = 1
|Ci| ∑

|Ci|
j=1 x j.

The goal of cluster discovery is to find the clustering that minimizes the SSE score:

C
∗ = argmin{SSE(C i)} (12.2)

Naive Solution: One naive algorithm for finding a good clustering is as follows:

1. Generate all the possible partitions of n points into k clusters.

2. Rank the clusterings based on the SSE score.

3. Output the clustering with the best (least) score.

Let us consider how many clusterings there are. The simplest way to derive this number is to observe
that each point can be assigned to any one of the k clusters. Thus there are O(kn) possible clusterings. Thus
the brute-force naive algorithm is clearly infeasible from a computational viewpoint.

12.1 K-means Clustering Algorithm

K-means is a greedy search algorithm for good clusterings. As it is a heuristic method, it can converge to a
locally optimum score instead of the globally optimum clustering guaranteed by the brute-force algorithm.
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The basic idea behind K-means is to randomly initialize cluster representatives, by selecting a random
set of k points as the centroids. The method then refines these initial centroids by assigning the points to the
closest centroid. New centroids can be computed once we know which points belong to a cluster. The cluster
assignment and new centroid computation steps are carried out iteratively until we reach a fixed point. The
complete K-means algorithm is described as follows:

1. Randomly initialize k centroids: µµµ1,µµµ2, ...,µµµk

2. Cluster Assignment Step:
For all x j ∈ D
a. For all i ∈ [1,k], compute δ(x j,µµµi)
b. Assign x j to closest centroid, C∗

i = arg min{δ(x j,µµµi)}

3. Recompute the means/centroids
For all i ∈ [1,k], µµµ′i =

1
|Ci| ∑

|Ci|
j=1 x j

4. Convergence Condition:
If ∑i |µµµ′i−µµµi| < ε then stop, else go to (2).

In terms of the computational complexity of the method, we can see that the cluster assignment step take
O(nkd) time, since for each of the n points we have to compute its distance to each of the k clusters, which
takes d operations (since the points are d-dimensional). The centroid re-computation step takesO(nd) time.
Assuming that there are t iterations, the total time for K-means isO(tnkd). In terms of the I/O cost it requires
O(t) full database scans, since we have to read the entire database in each iteration.

Example: As an example of how K-means works, assume we have the one-dimensional data as show in
the Figure 12.1.
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Figure 12.1: Example Data for K-means

(a)

centroids clusters new centroids
µµµ1 = 2 2,3 µµµ′1 = 5

2 = 2.5
µµµ2 = 4 4,10,11,12,20,25,30 µµµ′1 = 112

7 = 16

(b)

centroids clusters new centroids
µµµ1 = 2.5 2,3,4 µµµ′1 = 9

3 = 3
µµµ2 = 16 10,11,12,20,25,30 µµµ′1 = 108

6 = 18

Table 12.1: Cluster Assignment and Centroids Recomputation: 2 Iterations

Suppose that the data is to be clustered into two groups (k= 2), and suppose that the initial centroids are
chosen to be µµµ1 = 2 and µµµ2 = 4. The cluster assignment is shown in Table 12.1(a). With the new centroids
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µµµ′1 = 2.5 and µµµ′2 = 16, we repeat the cluster assignment and centroids recomputation steps, as shown in
Table 12.1(b). We repeat this process until the convergence criteria is met, i.e., when the centroids change
very little from one iteration to the next.

12.2 Expectation Maximization (EM) Clustering

In statistical computing, Expectation-Maximization (EM) is a common approach for finding the maximum
likelihood estimates of parameters of a probabilistic model. The EM method for clustering is a natural
extension of the K-Means method. Whereas in K-means a point can belong to only one cluster, i.e., a hard
assignment, in EM we allow each point to belong to a cluster with some probability, i.e., a soft assignment.
In other words, for K-means the probability of a point belong to a cluster P(x|C) is either 0 or 1, whereas in
EM, it can take any value in [0,1].

Bayes Theorem Given some probability model for the clusters, and given a dataset of n point in d-
dimensions, along with the number of clusters to mine, k, the goal in EM method is to compute the proba-
bility of each cluster Ci based on the points x j ∈ D :

P(Ci|x j) =
P(Ci and x j)

P(x j)
(12.3)

Note also that
P(x j|Ci) =

P(Ci and x j)
P(Ci)

=⇒ P(Ci and x j) = P(x j|Ci)P(Ci) (12.4)

Plugging this into (12.3) we get

P(Ci|x j) =
P(Ci and x j)

P(x j)
=
P(x j|Ci)P(Ci)

P(x j)
(12.5)

Now, since a given point xi may belong to any one of the k clusters, which are mutually exclusive events,
we get:

P(x j) =
k

∑
i=1

P(Ci and x j) =
k

∑
i=1

P(x j|Ci)P(Ci) (12.6)

Putting it all together, we have the classic statement of the Bayes Theorem:

P(Ci|x j) =
P(Ci and x j)

P(x j)
=

P(x j|Ci)P(Ci)
∑k
a=1P(x j|Ca)P(Ca)

(12.7)

The Bayes theorem can also be stated as follows:

Posterior Probability:P(Ci|x j) =
Likelihood:P(x j|Ci)×Prior Probability:P(Ci)

Normalization Term:P(x j)
(12.8)

In other words, the Bayes theorem states that we can find the posterior probability of a cluster, given a
point, which is something we do not know, in terms of the likelihood of the point given the cluster and the
prior probability of the cluster, which is something we can compute, given the underlying probability model
on the clusters. For example, a common assumption is that each cluster follows a normal distribution, and
that the data points have been generated from a mixture model of k normal distributions. Below we will see
how the EM method works, first in one dimension, and then in d-dimensions.
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12.2.1 EM in 1-Dimension

Let us assume that the dataset has been generated from a mixture of k = 2 normal distributions, f (x|µ1,σ2
1)

and f (x|µ2,σ2
2). These two distributions represent the two clusters we want to find. However, all we see

is the set of data points D generated from the mixture, and we do not know the values of the two cluster
parameters: µ1,σ2

1 and µ2,σ2
2. Our goal is to estimate these parameters via the EM approach, which consist

of three steps: initialization, expectation and maximization.

Initialization: For each cluster Ci, with i = 1,2, · · · ,k, randomly initialize µi and σ2
i . Also initialize

P(Ci) = 1
k .

Expectation Step: Given the parameters of k clusters, namely µi,σ2
i ,P(Ci), compute the likelihood P(x j|Ci)

for all points x j ∈ D where j = 1,2, · · · ,n and all clusters Ci, i = 1,2, · · · ,k. Under the normal distribution
for each cluster, we have

P(x j|Ci) = f (x j|µi,σ2
i ) =

1√
2π σi

e
−

(x j−µi)
2

2σ2
i (12.9)

Next we use the likelihood P(x j|Ci) to compute P(Ci|x j) using the Bayes theorem:

P(Ci|x j) =
f (x j|µi,σ2

i ) ·P(Ci)
Σka=1 f (x j|µa,σ2

a) ·P(Ca)
(12.10)

Maximization Step: Given all the values posterior probabilities P(Ci|x j), maximize the cluster parameters
by re-estimating µ′i,σ′2i ,P′(Ci) as follows. For convenience, letwi(x j) =P(Ci|x j) denote the weight of a point
for the cluster Ci.

We compute the new µ′i as the weighted mean of all the points x j:

µ′i =
∑n
j=1wi(x j) · x j
∑n
j=1wi(x j)

(12.11)

and (σ
′2
i ) as the weighted variance across all the points:

σ
′2
i =

Σnj=1wi(x j)(x j−µi)2

Σnj=1wi(x j)
(12.12)

and finally we compute P′(Ci) as the fraction of the total weight belonging to a given cluster:

P′(Ci) =
Σnj=1wi(x j)

Σka=1Σ
n
j=1wa(x j)

(12.13)

Now that we have updated estimates for the cluster parameters and prior probabilities, we can repeat the
expectation and maximization steps until convergence, for example, until the means change very little from
one iteration to the next. Note also that although we assumed a normal mixture model for the clusters, the
EM approach can be applied for other models as well, by replacing the way we compute P(x j|Ci).
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K-Mean as specialization of EM: We can obtain the K-means algorithm by replacing the likelihood
function as follows:

P(x j|Ci) =

{

1 Ci = arg mina{δ(x j,µa)}
0 otherwise

(12.14)

12.3 EM in d-Dimensions

If we have a d-dimensional dataset, we have to generalize the EM method to the d-dimensional case. If we
assume that the data is produced from a mixture of d-dimensional normal distributions/clusters, we need to
estimate for each clusterCi, the d-dimensional mean vector:

µµµi = (µ1
i ,µ

2
i , · · · ,µdi ) (12.15)

and the d×d covariance matrix:

ΣΣΣi =











σix1x1 σix1x2 . . . σix1xd
σix2x1 σix2x2 . . . σix2xd...

... . . .
σixdx1 σixdx2 . . . σixdxd











(12.16)

The total number of unknown variables per cluster is d for the mean and d(d−1)
2 for the covariance

matrix ΣΣΣi (since it is symmetric). Thus altogether there are d(d+1)
2 = O(d2) parameters to estimate, which

is too large for practical purposes. For example, if d = 100, then we have to estimate 100∗101/2 = 5050
parameters! This is a very difficult task, and we may not have enough data to estimate all of these reliably.

In order to apply EM approach in practice, we can assume that all dimensions are independent, and thus
all covariances can be set to zero:

ΣΣΣi =











σix1x1 0 . . . 0
0 σix2x2 . . . 0
...

... . . .
0 0 . . . σixdxd











(12.17)

We now only have d variances to estimate for a total of only 2d parameters to estimate per cluster.
The main EM approach is essentially the same as that given for the one dimensional case above, with the

following differences. First, instead of a univariate normal distribution in (12.9), we compute the likelihood
using:

P(x j|Ci) = f (x j|µµµi,ΣΣΣi) =
1

(2π) d2 |ΣΣΣi|
1
2
e−

(x j−µµµi)TΣΣΣ
−1
i (x j−µµµi)

2
(12.18)

Second, instead of computing the variance in (12.12), we compute the covariances:

σ
′i
xaxb =

∑n
j=1wi(x j)(xaj −µµµai )× (xbj −µµµbi )

∑nj=1wi(x j)
(12.19)

where xaj is the value of the data point, and µµµai is the value of the cluster mean, for the a-th attribute. Once
we compute σ′i

xaxb for all pairs of attributes, we obtain the new covariance matrix ΣΣΣ′i.
The computational complexity of the EM method is alsoO(tnkd), and the I/O complexity is O(t) where

t is the number of iterations.
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