
Computer Vision
Prof. Dr. Songül Varlı

HI STOGR AM OF OR I EN T ED GR A DI ENTS

I N T ER EST POI N T DET EC TI ON

COR N ER DET EC T ION

Histograms of Oriented Gradients for Human Detection
N. Dalal and B. Triggs , CVPR 2005

◦ Detecting humans in images is a challenging task owing to
their variable appearance and the wide range of poses
that they can adopt. The first need is a robust feature set
that allows the human form to be discriminated cleanly,
even in cluttered backgrounds under difficult illumination

◦ The feature sets for human detection, showing that
locally normalized Histogram of Oriented Gradient (HOG)
descriptors provide excellent performance relative to
other existing feature sets including wavelets

HOG feature extraction steps
1. Compute centered horizontal and vertical gradients with no smoothing

2. Compute gradient orientation and magnitudes
❑ For color image, pick the color channel with the highest gradient magnitude for each pixel.

3. For a 64x128 image,

4. Divide the image into 16x16 blocks of 50% overlap.
❑ 7x15=105 blocks in total

5. Each block should consist of 2x2 cells with size 8x8.

6. Quantize the gradient orientation into 9 bins
❑The vote is the gradient magnitude

❑ Interpolate votes bi-linearly between neighboring bin center.

❑The vote can also be weighted with Gaussian to downweight the pixels near the edges of the block.

7. Concatenate histograms (Feature dimension: 105x4x9 = 3,780)

1- Computing Gradients
2- Compute Gradient Magnitude and Orientation

- 1 0 1

-1

0

1

4- Divide Image into Blocks
5- Divide Blocks into Cells

For a 64x128 Image

▪ Divide 16x16 blocks of 50% overlap.

7x15=105 blocks in total

▪ Each block should consist of 2x2

cells with size 8x8.

Each block consists of 2x2 cells with size 8x8

❑ Quantize the gradient orientation into 9 bins
(0-180)

❑ The vote is the gradient magnitude interpolate
votes linearly between neighboring bin centers.

Example: if θ=85 degrees.
◦ Distance to the bin centre Bin 70 and Bin 90 are 15

and 5 degrees, respectively.

◦ Hence, ratios are 5/20=1/4, 15/20=3/4.

◦ The vote can also be weighted with Gaussian to
downweight the pixels near the edges of the
block.

6- Quantize the Gradient Orientation into 9 bins

7- Concatenation of Histograms and
Normalization

1)(

)(
)(

922

1

2 +







=




=k

kv

nv
nv

v is the magnitude of each direction
Block (2×2 cell) is performed by 50% overlap

Final Feature Vector

❑ Concatenate histograms
❑ Make it a 1D matrix of length 3780.

❑ Visualization

Results

Navneet Dalal and Bill Triggs “Histograms of Oriented
Gradients for Human Detection” CVPR05

Example of Using HOG

HOG can represent a rough shape of the object, so that it
has been used for general object recognition, such as
people or cars.

In order to achieve the general object recognition, the
classifier (eg SVM) is be used.

1. To teach the classifier, the correct image and the incorrect
image.

2. Scan the classifier to determine whether there are people in the
detection window.

SVM Classifier
SVM divides space into two domains according to a teacher signal.

New examples are predicted to belong to a category based on which
side of the gap domain.

%matplotlib inline

import matplotlib.pyplot as plt

from skimage.feature import hog

from skimage import data, exposure

from skimage.color import rgb2gray

image1 = data.astronaut()

image=rgb2gray(image1)

print(image.shape)

fd, hog_image = hog(image, orientations=8, pixels_per_cell=(16, 16),cells_per_block=(1, 1), visualise=True)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 8), sharex=True, sharey=True)

ax1.axis('off')

ax1.imshow(image, cmap=plt.cm.gray)

ax1.set_title('Input image')

Rescale histogram for better display

hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0, 10))

ax2.axis('off')

ax2.imshow(hog_image_rescaled, cmap=plt.cm.gray)

ax2.set_title('Histogram of Oriented Gradients')

plt.show()

Interest Point Detection
Local features: main components

1) Detection: Identify the interest points

2) Description :Extract feature vector
descriptor surrounding each interest point.

3) Matching: Determine correspondence
between descriptors in two views

Interest Operator Repetability
We want to detect (at least some of) the same points in both images.

• Yet we have to be able to run the detection procedure independently
per image.

What is an Interest Point
Expressive texture

The point at which the direction of the boundary of object changes
abruptly

Intersection point between two or more edge segments

Synthetic and Real Interest Points

Corners are indicated in red

Properties of Interest Point Detectors

❑ Detect all (or most) true interest points

❑ No false interest points

❑ Well localized.

❑ Robust with respect to noise.

❑ Efficient detection

Harris Corner Detector
❑ Corner point can be recognized in a window

❑ Shifting a window in any direction should give a large change in
intensity

Harris Detector: Basic Idea

“flat” region:

no change in

all directions

“edge”:

no change along

the edge direction

“corner”:

significant change

in all directions

Harris Detector : Mathematics

 
2

,

(,) (,) (,) (,)
x y

E u v w x y I x u y v I x y= + + −

Change of intensity for the shift [u,v]:

IntensityShifted
intensity

Window
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Harris Detector: Mathematics
For small shifts [u,v] we have a bilinear approximation:

where M is a 22 matrix computed from image derivatives:

 (,) ,
u

E u v u v M
v

 
  

 

2

2
,

(,)
x x y

x y x y y

I I I
M w x y

I I I

 
=  

  


Harris Detector: Mathematics
Intensity change in shifting window: eigenvalue analysis

1, 2 – eigenvalues of M

direction of the

slowest change

direction of the

fastest change

Ellipse E(u,v) = const

 (,) ,
u

E u v u v M
v

 
  

 

Harris Detector: Mathematics

1

2

“Corner”

1 and 2 are large,

1 ~ 2;

E increases in all

directions

1 and 2 are small;

E is almost constant

in all directions

“Edge”

1 >> 2

“Edge”

2 >> 1

“Flat”

region

Classification of

image points using

eigenvalues of M:

from matplotlib import pyplot as plt

from skimage import data

from skimage.feature import corner_harris, corner_subpix, corner_peaks

from skimage.transform import warp, AffineTransform

from skimage.draw import ellipse

tform = AffineTransform(scale=(1.3, 1.1), rotation=1, shear=0.7, translation=(210, 50))

image = warp(data.checkerboard(), tform.inverse, output_shape=(350, 350))

rr, cc = ellipse(310, 175, 10, 100)

image[rr, cc] = 1

image[180:230, 10:60] = 1

image[230:280, 60:110] = 1

coords = corner_peaks(corner_harris(image), min_distance=5)

coords_subpix = corner_subpix(image, coords, window_size=13)

fig, ax = plt.subplots()

ax.imshow(image, interpolation='nearest', cmap=plt.cm.gray)

ax.plot(coords[:, 1], coords[:, 0], '.b', markersize=3)

ax.plot(coords_subpix[:, 1], coords_subpix[:, 0], '+r', markersize=15)

ax.axis((0, 350, 350, 0))

plt.show()

Deep Learning

Feature Extraction by using
Convolutional Neural Network-CNN

Convolutional Neural Networks-CNN

“beak” detector

❑ Consider learning an image

❑ Some patterns are much smaller than the whole image

Convolutional Neural Networks-CNN

❑Same pattern appears in different places: They can be compressed!
What about training a lot of such “small” detectors and each detector
must “move around”.

“upper-left

beak” detector

“middle beak”

detector

They can be

compressed

to the same

parameters.

Convolutional Neural Networks-CNN
A CNN is a neural network with some convolutional layers (and some other
layers). A convolutional layer has a number of filters that does
convolutional operation.

Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

……

These are the network

parameters to be learned.

Each filter detects a

small pattern (3 x 3).

Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -1

stride=1

Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -3

If stride=2

Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

stride=1

Convolution

-2 -2 -1
-4 3

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

3 -1 -3 -1

-3 1

-3

3

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0

Repeat this for each filter
stride=1

Two 4 x 4 images

Forming 2 x 4 x 4

matrix

Convolution
Color image: RGB 3 channels

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 -1 -1

-1 1 -1

-1 -1 1
Filter 1

-1 1 -1

-1 1 -1

-1 1 -1
Filter 2

1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

-1 1 -1

-1 -1 1

-1 1 -1

-1 1 -1

-1 1 -1

-1 1 -1

-1 1 -1

-1 1 -1
Color image

